summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2021-09-10 23:20:47 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2021-09-10 23:20:47 +0300
commitd6498af58f5c7fb7b252f4791620fe4dd7213ca3 (patch)
treebf5d04b798050834a64680a1bbc276eb9369c747 /drivers
parente99f23c5bf59219d0cd9b6e0d7d4c1b641a98704 (diff)
parentbe2d24336f8876d60d8a4634f1a1e4753c4be124 (diff)
downloadlinux-d6498af58f5c7fb7b252f4791620fe4dd7213ca3.tar.xz
Merge tag 'pm-5.15-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management updates from Rafael Wysocki: "These improve hybrid processors support in intel_pstate, fix an issue in the core devices PM code, clean up the handling of dedicated wake IRQs, update the Energy Model documentation and update MAINTAINERS. Specifics: - Make the HWP performance levels calibration on hybrid processors in intel_pstate more straightforward (Rafael Wysocki). - Prevent the PM core from leaving devices in suspend after a failing system-wide suspend transition in some cases when driver PM flags are used (Prasad Sodagudi). - Drop unused function argument from the dedicated wake IRQs handling code (Sergey Shtylyov). - Fix up Energy Model kerneldoc comments and include them in the Energy Model documentation (Lukasz Luba). - Use my kernel.org address in MAINTAINERS insead of the personal one (Rafael Wysocki)" * tag 'pm-5.15-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: MAINTAINERS: Change Rafael's e-mail address PM: sleep: core: Avoid setting power.must_resume to false Documentation: power: include kernel-doc in Energy Model doc PM: EM: fix kernel-doc comments cpufreq: intel_pstate: hybrid: Rework HWP calibration ACPI: CPPC: Introduce cppc_get_nominal_perf() PM: sleep: wakeirq: drop useless parameter from dev_pm_attach_wake_irq()
Diffstat (limited to 'drivers')
-rw-r--r--drivers/acpi/cppc_acpi.c47
-rw-r--r--drivers/base/power/main.c2
-rw-r--r--drivers/base/power/wakeirq.c11
-rw-r--r--drivers/cpufreq/intel_pstate.c185
4 files changed, 107 insertions, 138 deletions
diff --git a/drivers/acpi/cppc_acpi.c b/drivers/acpi/cppc_acpi.c
index a4d4eebba1da..bd482108310c 100644
--- a/drivers/acpi/cppc_acpi.c
+++ b/drivers/acpi/cppc_acpi.c
@@ -1008,23 +1008,14 @@ static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
return ret_val;
}
-/**
- * cppc_get_desired_perf - Get the value of desired performance register.
- * @cpunum: CPU from which to get desired performance.
- * @desired_perf: address of a variable to store the returned desired performance
- *
- * Return: 0 for success, -EIO otherwise.
- */
-int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
+static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
{
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
- int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
- struct cpc_register_resource *desired_reg;
- struct cppc_pcc_data *pcc_ss_data = NULL;
-
- desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
+ struct cpc_register_resource *reg = &cpc_desc->cpc_regs[reg_idx];
- if (CPC_IN_PCC(desired_reg)) {
+ if (CPC_IN_PCC(reg)) {
+ int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
+ struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = 0;
if (pcc_ss_id < 0)
@@ -1035,7 +1026,7 @@ int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
down_write(&pcc_ss_data->pcc_lock);
if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
- cpc_read(cpunum, desired_reg, desired_perf);
+ cpc_read(cpunum, reg, perf);
else
ret = -EIO;
@@ -1044,13 +1035,37 @@ int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
return ret;
}
- cpc_read(cpunum, desired_reg, desired_perf);
+ cpc_read(cpunum, reg, perf);
return 0;
}
+
+/**
+ * cppc_get_desired_perf - Get the desired performance register value.
+ * @cpunum: CPU from which to get desired performance.
+ * @desired_perf: Return address.
+ *
+ * Return: 0 for success, -EIO otherwise.
+ */
+int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
+{
+ return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
+}
EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
/**
+ * cppc_get_nominal_perf - Get the nominal performance register value.
+ * @cpunum: CPU from which to get nominal performance.
+ * @nominal_perf: Return address.
+ *
+ * Return: 0 for success, -EIO otherwise.
+ */
+int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
+{
+ return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
+}
+
+/**
* cppc_get_perf_caps - Get a CPU's performance capabilities.
* @cpunum: CPU from which to get capabilities info.
* @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
diff --git a/drivers/base/power/main.c b/drivers/base/power/main.c
index d568772152c2..cbea78e79f3d 100644
--- a/drivers/base/power/main.c
+++ b/drivers/base/power/main.c
@@ -1642,7 +1642,7 @@ static int __device_suspend(struct device *dev, pm_message_t state, bool async)
}
dev->power.may_skip_resume = true;
- dev->power.must_resume = false;
+ dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
dpm_watchdog_set(&wd, dev);
device_lock(dev);
diff --git a/drivers/base/power/wakeirq.c b/drivers/base/power/wakeirq.c
index 3bad3266a2ad..b91a3a9bf9f6 100644
--- a/drivers/base/power/wakeirq.c
+++ b/drivers/base/power/wakeirq.c
@@ -12,14 +12,11 @@
/**
* dev_pm_attach_wake_irq - Attach device interrupt as a wake IRQ
* @dev: Device entry
- * @irq: Device wake-up capable interrupt
* @wirq: Wake irq specific data
*
- * Internal function to attach either a device IO interrupt or a
- * dedicated wake-up interrupt as a wake IRQ.
+ * Internal function to attach a dedicated wake-up interrupt as a wake IRQ.
*/
-static int dev_pm_attach_wake_irq(struct device *dev, int irq,
- struct wake_irq *wirq)
+static int dev_pm_attach_wake_irq(struct device *dev, struct wake_irq *wirq)
{
unsigned long flags;
@@ -65,7 +62,7 @@ int dev_pm_set_wake_irq(struct device *dev, int irq)
wirq->dev = dev;
wirq->irq = irq;
- err = dev_pm_attach_wake_irq(dev, irq, wirq);
+ err = dev_pm_attach_wake_irq(dev, wirq);
if (err)
kfree(wirq);
@@ -196,7 +193,7 @@ int dev_pm_set_dedicated_wake_irq(struct device *dev, int irq)
if (err)
goto err_free_name;
- err = dev_pm_attach_wake_irq(dev, irq, wirq);
+ err = dev_pm_attach_wake_irq(dev, wirq);
if (err)
goto err_free_irq;
diff --git a/drivers/cpufreq/intel_pstate.c b/drivers/cpufreq/intel_pstate.c
index 2d83a9f9651b..1097f826ad70 100644
--- a/drivers/cpufreq/intel_pstate.c
+++ b/drivers/cpufreq/intel_pstate.c
@@ -268,6 +268,7 @@ static struct cpudata **all_cpu_data;
* @get_min: Callback to get minimum P state
* @get_turbo: Callback to get turbo P state
* @get_scaling: Callback to get frequency scaling factor
+ * @get_cpu_scaling: Get frequency scaling factor for a given cpu
* @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
* @get_val: Callback to convert P state to actual MSR write value
* @get_vid: Callback to get VID data for Atom platforms
@@ -281,6 +282,7 @@ struct pstate_funcs {
int (*get_min)(void);
int (*get_turbo)(void);
int (*get_scaling)(void);
+ int (*get_cpu_scaling)(int cpu);
int (*get_aperf_mperf_shift)(void);
u64 (*get_val)(struct cpudata*, int pstate);
void (*get_vid)(struct cpudata *);
@@ -384,6 +386,15 @@ static int intel_pstate_get_cppc_guaranteed(int cpu)
return cppc_perf.nominal_perf;
}
+static u32 intel_pstate_cppc_nominal(int cpu)
+{
+ u64 nominal_perf;
+
+ if (cppc_get_nominal_perf(cpu, &nominal_perf))
+ return 0;
+
+ return nominal_perf;
+}
#else /* CONFIG_ACPI_CPPC_LIB */
static inline void intel_pstate_set_itmt_prio(int cpu)
{
@@ -470,20 +481,6 @@ static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
acpi_processor_unregister_performance(policy->cpu);
}
-
-static bool intel_pstate_cppc_perf_valid(u32 perf, struct cppc_perf_caps *caps)
-{
- return perf && perf <= caps->highest_perf && perf >= caps->lowest_perf;
-}
-
-static bool intel_pstate_cppc_perf_caps(struct cpudata *cpu,
- struct cppc_perf_caps *caps)
-{
- if (cppc_get_perf_caps(cpu->cpu, caps))
- return false;
-
- return caps->highest_perf && caps->lowest_perf <= caps->highest_perf;
-}
#else /* CONFIG_ACPI */
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
@@ -506,15 +503,8 @@ static inline int intel_pstate_get_cppc_guaranteed(int cpu)
}
#endif /* CONFIG_ACPI_CPPC_LIB */
-static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
-{
- pr_debug("CPU%d: Using PERF_CTL scaling for HWP\n", cpu->cpu);
-
- cpu->pstate.scaling = cpu->pstate.perf_ctl_scaling;
-}
-
/**
- * intel_pstate_hybrid_hwp_calibrate - Calibrate HWP performance levels.
+ * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
* @cpu: Target CPU.
*
* On hybrid processors, HWP may expose more performance levels than there are
@@ -522,115 +512,46 @@ static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
* scaling factor between HWP performance levels and CPU frequency will be less
* than the scaling factor between P-state values and CPU frequency.
*
- * In that case, the scaling factor between HWP performance levels and CPU
- * frequency needs to be determined which can be done with the help of the
- * observation that certain HWP performance levels should correspond to certain
- * P-states, like for example the HWP highest performance should correspond
- * to the maximum turbo P-state of the CPU.
+ * In that case, adjust the CPU parameters used in computations accordingly.
*/
-static void intel_pstate_hybrid_hwp_calibrate(struct cpudata *cpu)
+static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
{
int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
int perf_ctl_turbo = pstate_funcs.get_turbo();
int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
- int perf_ctl_max = pstate_funcs.get_max();
- int max_freq = perf_ctl_max * perf_ctl_scaling;
- int scaling = INT_MAX;
- int freq;
+ int scaling = cpu->pstate.scaling;
pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
- pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, perf_ctl_max);
+ pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
-
pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
-
-#ifdef CONFIG_ACPI
- if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) {
- struct cppc_perf_caps caps;
-
- if (intel_pstate_cppc_perf_caps(cpu, &caps)) {
- if (intel_pstate_cppc_perf_valid(caps.nominal_perf, &caps)) {
- pr_debug("CPU%d: Using CPPC nominal\n", cpu->cpu);
-
- /*
- * If the CPPC nominal performance is valid, it
- * can be assumed to correspond to cpu_khz.
- */
- if (caps.nominal_perf == perf_ctl_max_phys) {
- intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
- return;
- }
- scaling = DIV_ROUND_UP(cpu_khz, caps.nominal_perf);
- } else if (intel_pstate_cppc_perf_valid(caps.guaranteed_perf, &caps)) {
- pr_debug("CPU%d: Using CPPC guaranteed\n", cpu->cpu);
-
- /*
- * If the CPPC guaranteed performance is valid,
- * it can be assumed to correspond to max_freq.
- */
- if (caps.guaranteed_perf == perf_ctl_max) {
- intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
- return;
- }
- scaling = DIV_ROUND_UP(max_freq, caps.guaranteed_perf);
- }
- }
- }
-#endif
- /*
- * If using the CPPC data to compute the HWP-to-frequency scaling factor
- * doesn't work, use the HWP_CAP gauranteed perf for this purpose with
- * the assumption that it corresponds to max_freq.
- */
- if (scaling > perf_ctl_scaling) {
- pr_debug("CPU%d: Using HWP_CAP guaranteed\n", cpu->cpu);
-
- if (cpu->pstate.max_pstate == perf_ctl_max) {
- intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
- return;
- }
- scaling = DIV_ROUND_UP(max_freq, cpu->pstate.max_pstate);
- if (scaling > perf_ctl_scaling) {
- /*
- * This should not happen, because it would mean that
- * the number of HWP perf levels was less than the
- * number of P-states, so use the PERF_CTL scaling in
- * that case.
- */
- pr_debug("CPU%d: scaling (%d) out of range\n", cpu->cpu,
- scaling);
-
- intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
- return;
- }
- }
+ pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
/*
- * If the product of the HWP performance scaling factor obtained above
- * and the HWP_CAP highest performance is greater than the maximum turbo
- * frequency corresponding to the pstate_funcs.get_turbo() return value,
- * the scaling factor is too high, so recompute it so that the HWP_CAP
- * highest performance corresponds to the maximum turbo frequency.
+ * If the product of the HWP performance scaling factor and the HWP_CAP
+ * highest performance is greater than the maximum turbo frequency
+ * corresponding to the pstate_funcs.get_turbo() return value, the
+ * scaling factor is too high, so recompute it to make the HWP_CAP
+ * highest performance correspond to the maximum turbo frequency.
*/
if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
- pr_debug("CPU%d: scaling too high (%d)\n", cpu->cpu, scaling);
-
cpu->pstate.turbo_freq = turbo_freq;
scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
- }
+ cpu->pstate.scaling = scaling;
- cpu->pstate.scaling = scaling;
-
- pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
+ pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
+ cpu->cpu, scaling);
+ }
cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
perf_ctl_scaling);
- freq = perf_ctl_max_phys * perf_ctl_scaling;
- cpu->pstate.max_pstate_physical = DIV_ROUND_UP(freq, scaling);
+ cpu->pstate.max_pstate_physical =
+ DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
+ scaling);
cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
/*
@@ -1861,6 +1782,38 @@ static int knl_get_turbo_pstate(void)
return ret;
}
+#ifdef CONFIG_ACPI_CPPC_LIB
+static u32 hybrid_ref_perf;
+
+static int hybrid_get_cpu_scaling(int cpu)
+{
+ return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
+ intel_pstate_cppc_nominal(cpu));
+}
+
+static void intel_pstate_cppc_set_cpu_scaling(void)
+{
+ u32 min_nominal_perf = U32_MAX;
+ int cpu;
+
+ for_each_present_cpu(cpu) {
+ u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
+
+ if (nominal_perf && nominal_perf < min_nominal_perf)
+ min_nominal_perf = nominal_perf;
+ }
+
+ if (min_nominal_perf < U32_MAX) {
+ hybrid_ref_perf = min_nominal_perf;
+ pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
+ }
+}
+#else
+static inline void intel_pstate_cppc_set_cpu_scaling(void)
+{
+}
+#endif /* CONFIG_ACPI_CPPC_LIB */
+
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
@@ -1889,10 +1842,8 @@ static void intel_pstate_max_within_limits(struct cpudata *cpu)
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
- bool hybrid_cpu = boot_cpu_has(X86_FEATURE_HYBRID_CPU);
int perf_ctl_max_phys = pstate_funcs.get_max_physical();
- int perf_ctl_scaling = hybrid_cpu ? cpu_khz / perf_ctl_max_phys :
- pstate_funcs.get_scaling();
+ int perf_ctl_scaling = pstate_funcs.get_scaling();
cpu->pstate.min_pstate = pstate_funcs.get_min();
cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
@@ -1901,10 +1852,13 @@ static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
if (hwp_active && !hwp_mode_bdw) {
__intel_pstate_get_hwp_cap(cpu);
- if (hybrid_cpu)
- intel_pstate_hybrid_hwp_calibrate(cpu);
- else
+ if (pstate_funcs.get_cpu_scaling) {
+ cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
+ if (cpu->pstate.scaling != perf_ctl_scaling)
+ intel_pstate_hybrid_hwp_adjust(cpu);
+ } else {
cpu->pstate.scaling = perf_ctl_scaling;
+ }
} else {
cpu->pstate.scaling = perf_ctl_scaling;
cpu->pstate.max_pstate = pstate_funcs.get_max();
@@ -3276,6 +3230,9 @@ static int __init intel_pstate_init(void)
if (!default_driver)
default_driver = &intel_pstate;
+ if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
+ intel_pstate_cppc_set_cpu_scaling();
+
goto hwp_cpu_matched;
}
} else {