summaryrefslogtreecommitdiff
path: root/drivers/usb/cdns3/cdnsp-ring.c
diff options
context:
space:
mode:
authorPawel Laszczak <pawell@cadence.com>2020-12-07 13:32:24 +0300
committerPeter Chen <peter.chen@nxp.com>2020-12-29 07:36:13 +0300
commit3d82904559f4f5a2622db1b21de3edf2eded7664 (patch)
treea06f42704976fa6b5fed6178416fcea7cf9eee6e /drivers/usb/cdns3/cdnsp-ring.c
parente93e58d2740282d32c0278fab283eb0ae158bb59 (diff)
downloadlinux-3d82904559f4f5a2622db1b21de3edf2eded7664.tar.xz
usb: cdnsp: cdns3 Add main part of Cadence USBSSP DRD Driver
This patch introduces the main part of Cadence USBSSP DRD driver to Linux kernel. To reduce the patch size a little bit, the header file gadget.h was intentionally added as separate patch. The Cadence USBSSP DRD Controller is a highly configurable IP Core which can be instantiated as Dual-Role Device (DRD), Peripheral Only and Host Only (XHCI)configurations. The current driver has been validated with FPGA platform. We have support for PCIe bus, which is used on FPGA prototyping. The host side of USBSS DRD controller is compliant with XHCI. The architecture for device side is almost the same as for host side, and most of the XHCI specification can be used to understand how this controller operates. Signed-off-by: Pawel Laszczak <pawell@cadence.com> Signed-off-by: Peter Chen <peter.chen@nxp.com>
Diffstat (limited to 'drivers/usb/cdns3/cdnsp-ring.c')
-rw-r--r--drivers/usb/cdns3/cdnsp-ring.c2376
1 files changed, 2376 insertions, 0 deletions
diff --git a/drivers/usb/cdns3/cdnsp-ring.c b/drivers/usb/cdns3/cdnsp-ring.c
new file mode 100644
index 000000000000..a28faca41a8f
--- /dev/null
+++ b/drivers/usb/cdns3/cdnsp-ring.c
@@ -0,0 +1,2376 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Cadence CDNSP DRD Driver.
+ *
+ * Copyright (C) 2020 Cadence.
+ *
+ * Author: Pawel Laszczak <pawell@cadence.com>
+ *
+ * Code based on Linux XHCI driver.
+ * Origin: Copyright (C) 2008 Intel Corp
+ */
+
+/*
+ * Ring initialization rules:
+ * 1. Each segment is initialized to zero, except for link TRBs.
+ * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
+ * Consumer Cycle State (CCS), depending on ring function.
+ * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
+ *
+ * Ring behavior rules:
+ * 1. A ring is empty if enqueue == dequeue. This means there will always be at
+ * least one free TRB in the ring. This is useful if you want to turn that
+ * into a link TRB and expand the ring.
+ * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
+ * link TRB, then load the pointer with the address in the link TRB. If the
+ * link TRB had its toggle bit set, you may need to update the ring cycle
+ * state (see cycle bit rules). You may have to do this multiple times
+ * until you reach a non-link TRB.
+ * 3. A ring is full if enqueue++ (for the definition of increment above)
+ * equals the dequeue pointer.
+ *
+ * Cycle bit rules:
+ * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
+ * in a link TRB, it must toggle the ring cycle state.
+ * 2. When a producer increments an enqueue pointer and encounters a toggle bit
+ * in a link TRB, it must toggle the ring cycle state.
+ *
+ * Producer rules:
+ * 1. Check if ring is full before you enqueue.
+ * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
+ * Update enqueue pointer between each write (which may update the ring
+ * cycle state).
+ * 3. Notify consumer. If SW is producer, it rings the doorbell for command
+ * and endpoint rings. If controller is the producer for the event ring,
+ * and it generates an interrupt according to interrupt modulation rules.
+ *
+ * Consumer rules:
+ * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
+ * the TRB is owned by the consumer.
+ * 2. Update dequeue pointer (which may update the ring cycle state) and
+ * continue processing TRBs until you reach a TRB which is not owned by you.
+ * 3. Notify the producer. SW is the consumer for the event ring, and it
+ * updates event ring dequeue pointer. Controller is the consumer for the
+ * command and endpoint rings; it generates events on the event ring
+ * for these.
+ */
+
+#include <linux/scatterlist.h>
+#include <linux/dma-mapping.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/irq.h>
+
+#include "cdnsp-gadget.h"
+
+/*
+ * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
+ * address of the TRB.
+ */
+dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg,
+ union cdnsp_trb *trb)
+{
+ unsigned long segment_offset = trb - seg->trbs;
+
+ if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT)
+ return 0;
+
+ return seg->dma + (segment_offset * sizeof(*trb));
+}
+
+static bool cdnsp_trb_is_noop(union cdnsp_trb *trb)
+{
+ return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
+}
+
+static bool cdnsp_trb_is_link(union cdnsp_trb *trb)
+{
+ return TRB_TYPE_LINK_LE32(trb->link.control);
+}
+
+bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb)
+{
+ return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
+}
+
+bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring,
+ struct cdnsp_segment *seg,
+ union cdnsp_trb *trb)
+{
+ return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
+}
+
+static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb)
+{
+ return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
+}
+
+static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type)
+{
+ if (cdnsp_trb_is_link(trb)) {
+ /* Unchain chained link TRBs. */
+ trb->link.control &= cpu_to_le32(~TRB_CHAIN);
+ } else {
+ trb->generic.field[0] = 0;
+ trb->generic.field[1] = 0;
+ trb->generic.field[2] = 0;
+ /* Preserve only the cycle bit of this TRB. */
+ trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
+ trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
+ }
+}
+
+/*
+ * Updates trb to point to the next TRB in the ring, and updates seg if the next
+ * TRB is in a new segment. This does not skip over link TRBs, and it does not
+ * effect the ring dequeue or enqueue pointers.
+ */
+static void cdnsp_next_trb(struct cdnsp_device *pdev,
+ struct cdnsp_ring *ring,
+ struct cdnsp_segment **seg,
+ union cdnsp_trb **trb)
+{
+ if (cdnsp_trb_is_link(*trb)) {
+ *seg = (*seg)->next;
+ *trb = ((*seg)->trbs);
+ } else {
+ (*trb)++;
+ }
+}
+
+/*
+ * See Cycle bit rules. SW is the consumer for the event ring only.
+ * Don't make a ring full of link TRBs. That would be dumb and this would loop.
+ */
+void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
+{
+ /* event ring doesn't have link trbs, check for last trb. */
+ if (ring->type == TYPE_EVENT) {
+ if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
+ ring->dequeue++;
+ return;
+ }
+
+ if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
+ ring->cycle_state ^= 1;
+
+ ring->deq_seg = ring->deq_seg->next;
+ ring->dequeue = ring->deq_seg->trbs;
+ return;
+ }
+
+ /* All other rings have link trbs. */
+ if (!cdnsp_trb_is_link(ring->dequeue)) {
+ ring->dequeue++;
+ ring->num_trbs_free++;
+ }
+ while (cdnsp_trb_is_link(ring->dequeue)) {
+ ring->deq_seg = ring->deq_seg->next;
+ ring->dequeue = ring->deq_seg->trbs;
+ }
+}
+
+/*
+ * See Cycle bit rules. SW is the consumer for the event ring only.
+ * Don't make a ring full of link TRBs. That would be dumb and this would loop.
+ *
+ * If we've just enqueued a TRB that is in the middle of a TD (meaning the
+ * chain bit is set), then set the chain bit in all the following link TRBs.
+ * If we've enqueued the last TRB in a TD, make sure the following link TRBs
+ * have their chain bit cleared (so that each Link TRB is a separate TD).
+ *
+ * @more_trbs_coming: Will you enqueue more TRBs before ringing the doorbell.
+ */
+static void cdnsp_inc_enq(struct cdnsp_device *pdev,
+ struct cdnsp_ring *ring,
+ bool more_trbs_coming)
+{
+ union cdnsp_trb *next;
+ u32 chain;
+
+ chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
+
+ /* If this is not event ring, there is one less usable TRB. */
+ if (!cdnsp_trb_is_link(ring->enqueue))
+ ring->num_trbs_free--;
+ next = ++(ring->enqueue);
+
+ /* Update the dequeue pointer further if that was a link TRB */
+ while (cdnsp_trb_is_link(next)) {
+ /*
+ * If the caller doesn't plan on enqueuing more TDs before
+ * ringing the doorbell, then we don't want to give the link TRB
+ * to the hardware just yet. We'll give the link TRB back in
+ * cdnsp_prepare_ring() just before we enqueue the TD at the
+ * top of the ring.
+ */
+ if (!chain && !more_trbs_coming)
+ break;
+
+ next->link.control &= cpu_to_le32(~TRB_CHAIN);
+ next->link.control |= cpu_to_le32(chain);
+
+ /* Give this link TRB to the hardware */
+ wmb();
+ next->link.control ^= cpu_to_le32(TRB_CYCLE);
+
+ /* Toggle the cycle bit after the last ring segment. */
+ if (cdnsp_link_trb_toggles_cycle(next))
+ ring->cycle_state ^= 1;
+
+ ring->enq_seg = ring->enq_seg->next;
+ ring->enqueue = ring->enq_seg->trbs;
+ next = ring->enqueue;
+ }
+}
+
+/*
+ * Check to see if there's room to enqueue num_trbs on the ring and make sure
+ * enqueue pointer will not advance into dequeue segment.
+ */
+static bool cdnsp_room_on_ring(struct cdnsp_device *pdev,
+ struct cdnsp_ring *ring,
+ unsigned int num_trbs)
+{
+ int num_trbs_in_deq_seg;
+
+ if (ring->num_trbs_free < num_trbs)
+ return false;
+
+ if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
+ num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
+
+ if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
+ return false;
+ }
+
+ return true;
+}
+
+/*
+ * Workaround for L1: controller has issue with resuming from L1 after
+ * setting doorbell for endpoint during L1 state. This function forces
+ * resume signal in such case.
+ */
+static void cdnsp_force_l0_go(struct cdnsp_device *pdev)
+{
+ if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable)
+ cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0);
+}
+
+/* Ring the doorbell after placing a command on the ring. */
+void cdnsp_ring_cmd_db(struct cdnsp_device *pdev)
+{
+ writel(DB_VALUE_CMD, &pdev->dba->cmd_db);
+}
+
+/*
+ * Ring the doorbell after placing a transfer on the ring.
+ * Returns true if doorbell was set, otherwise false.
+ */
+static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev,
+ struct cdnsp_ep *pep,
+ unsigned int stream_id)
+{
+ __le32 __iomem *reg_addr = &pdev->dba->ep_db;
+ unsigned int ep_state = pep->ep_state;
+ unsigned int db_value;
+
+ /*
+ * Don't ring the doorbell for this endpoint if endpoint is halted or
+ * disabled.
+ */
+ if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED))
+ return false;
+
+ /* For stream capable endpoints driver can ring doorbell only twice. */
+ if (pep->ep_state & EP_HAS_STREAMS) {
+ if (pep->stream_info.drbls_count >= 2)
+ return false;
+
+ pep->stream_info.drbls_count++;
+ }
+
+ pep->ep_state &= ~EP_STOPPED;
+
+ if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE &&
+ !pdev->ep0_expect_in)
+ db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id);
+ else
+ db_value = DB_VALUE(pep->idx, stream_id);
+
+ writel(db_value, reg_addr);
+
+ cdnsp_force_l0_go(pdev);
+
+ /* Doorbell was set. */
+ return true;
+}
+
+/*
+ * Get the right ring for the given pep and stream_id.
+ * If the endpoint supports streams, boundary check the USB request's stream ID.
+ * If the endpoint doesn't support streams, return the singular endpoint ring.
+ */
+static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev,
+ struct cdnsp_ep *pep,
+ unsigned int stream_id)
+{
+ if (!(pep->ep_state & EP_HAS_STREAMS))
+ return pep->ring;
+
+ if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) {
+ dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n",
+ pep->name, stream_id);
+ return NULL;
+ }
+
+ return pep->stream_info.stream_rings[stream_id];
+}
+
+static struct cdnsp_ring *
+ cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev,
+ struct cdnsp_request *preq)
+{
+ return cdnsp_get_transfer_ring(pdev, preq->pep,
+ preq->request.stream_id);
+}
+
+/* Ring the doorbell for any rings with pending requests. */
+void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev,
+ struct cdnsp_ep *pep)
+{
+ struct cdnsp_stream_info *stream_info;
+ unsigned int stream_id;
+ int ret;
+
+ if (pep->ep_state & EP_DIS_IN_RROGRESS)
+ return;
+
+ /* A ring has pending Request if its TD list is not empty. */
+ if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) {
+ if (pep->ring && !list_empty(&pep->ring->td_list))
+ cdnsp_ring_ep_doorbell(pdev, pep, 0);
+ return;
+ }
+
+ stream_info = &pep->stream_info;
+
+ for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) {
+ struct cdnsp_td *td, *td_temp;
+ struct cdnsp_ring *ep_ring;
+
+ if (stream_info->drbls_count >= 2)
+ return;
+
+ ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
+ if (!ep_ring)
+ continue;
+
+ if (!ep_ring->stream_active || ep_ring->stream_rejected)
+ continue;
+
+ list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
+ td_list) {
+ if (td->drbl)
+ continue;
+
+ ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
+ if (ret)
+ td->drbl = 1;
+ }
+ }
+}
+
+/*
+ * Get the hw dequeue pointer controller stopped on, either directly from the
+ * endpoint context, or if streams are in use from the stream context.
+ * The returned hw_dequeue contains the lowest four bits with cycle state
+ * and possible stream context type.
+ */
+static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev,
+ unsigned int ep_index,
+ unsigned int stream_id)
+{
+ struct cdnsp_stream_ctx *st_ctx;
+ struct cdnsp_ep *pep;
+
+ pep = &pdev->eps[stream_id];
+
+ if (pep->ep_state & EP_HAS_STREAMS) {
+ st_ctx = &pep->stream_info.stream_ctx_array[stream_id];
+ return le64_to_cpu(st_ctx->stream_ring);
+ }
+
+ return le64_to_cpu(pep->out_ctx->deq);
+}
+
+/*
+ * Move the controller endpoint ring dequeue pointer past cur_td.
+ * Record the new state of the controller endpoint ring dequeue segment,
+ * dequeue pointer, and new consumer cycle state in state.
+ * Update internal representation of the ring's dequeue pointer.
+ *
+ * We do this in three jumps:
+ * - First we update our new ring state to be the same as when the
+ * controller stopped.
+ * - Then we traverse the ring to find the segment that contains
+ * the last TRB in the TD. We toggle the controller new cycle state
+ * when we pass any link TRBs with the toggle cycle bit set.
+ * - Finally we move the dequeue state one TRB further, toggling the cycle bit
+ * if we've moved it past a link TRB with the toggle cycle bit set.
+ */
+static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev,
+ struct cdnsp_ep *pep,
+ unsigned int stream_id,
+ struct cdnsp_td *cur_td,
+ struct cdnsp_dequeue_state *state)
+{
+ bool td_last_trb_found = false;
+ struct cdnsp_segment *new_seg;
+ struct cdnsp_ring *ep_ring;
+ union cdnsp_trb *new_deq;
+ bool cycle_found = false;
+ u64 hw_dequeue;
+
+ ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
+ if (!ep_ring)
+ return;
+
+ /*
+ * Dig out the cycle state saved by the controller during the
+ * stop endpoint command.
+ */
+ hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id);
+ new_seg = ep_ring->deq_seg;
+ new_deq = ep_ring->dequeue;
+ state->new_cycle_state = hw_dequeue & 0x1;
+ state->stream_id = stream_id;
+
+ /*
+ * We want to find the pointer, segment and cycle state of the new trb
+ * (the one after current TD's last_trb). We know the cycle state at
+ * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
+ * found.
+ */
+ do {
+ if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq)
+ == (dma_addr_t)(hw_dequeue & ~0xf)) {
+ cycle_found = true;
+
+ if (td_last_trb_found)
+ break;
+ }
+
+ if (new_deq == cur_td->last_trb)
+ td_last_trb_found = true;
+
+ if (cycle_found && cdnsp_trb_is_link(new_deq) &&
+ cdnsp_link_trb_toggles_cycle(new_deq))
+ state->new_cycle_state ^= 0x1;
+
+ cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq);
+
+ /* Search wrapped around, bail out. */
+ if (new_deq == pep->ring->dequeue) {
+ dev_err(pdev->dev,
+ "Error: Failed finding new dequeue state\n");
+ state->new_deq_seg = NULL;
+ state->new_deq_ptr = NULL;
+ return;
+ }
+
+ } while (!cycle_found || !td_last_trb_found);
+
+ state->new_deq_seg = new_seg;
+ state->new_deq_ptr = new_deq;
+}
+
+/*
+ * flip_cycle means flip the cycle bit of all but the first and last TRB.
+ * (The last TRB actually points to the ring enqueue pointer, which is not part
+ * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
+ */
+static void cdnsp_td_to_noop(struct cdnsp_device *pdev,
+ struct cdnsp_ring *ep_ring,
+ struct cdnsp_td *td,
+ bool flip_cycle)
+{
+ struct cdnsp_segment *seg = td->start_seg;
+ union cdnsp_trb *trb = td->first_trb;
+
+ while (1) {
+ cdnsp_trb_to_noop(trb, TRB_TR_NOOP);
+
+ /* flip cycle if asked to */
+ if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
+ trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
+
+ if (trb == td->last_trb)
+ break;
+
+ cdnsp_next_trb(pdev, ep_ring, &seg, &trb);
+ }
+}
+
+/*
+ * This TD is defined by the TRBs starting at start_trb in start_seg and ending
+ * at end_trb, which may be in another segment. If the suspect DMA address is a
+ * TRB in this TD, this function returns that TRB's segment. Otherwise it
+ * returns 0.
+ */
+static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev,
+ struct cdnsp_segment *start_seg,
+ union cdnsp_trb *start_trb,
+ union cdnsp_trb *end_trb,
+ dma_addr_t suspect_dma)
+{
+ struct cdnsp_segment *cur_seg;
+ union cdnsp_trb *temp_trb;
+ dma_addr_t end_seg_dma;
+ dma_addr_t end_trb_dma;
+ dma_addr_t start_dma;
+
+ start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb);
+ cur_seg = start_seg;
+
+ do {
+ if (start_dma == 0)
+ return NULL;
+
+ temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1];
+ /* We may get an event for a Link TRB in the middle of a TD */
+ end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb);
+ /* If the end TRB isn't in this segment, this is set to 0 */
+ end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb);
+
+ if (end_trb_dma > 0) {
+ /*
+ * The end TRB is in this segment, so suspect should
+ * be here
+ */
+ if (start_dma <= end_trb_dma) {
+ if (suspect_dma >= start_dma &&
+ suspect_dma <= end_trb_dma) {
+ return cur_seg;
+ }
+ } else {
+ /*
+ * Case for one segment with a
+ * TD wrapped around to the top
+ */
+ if ((suspect_dma >= start_dma &&
+ suspect_dma <= end_seg_dma) ||
+ (suspect_dma >= cur_seg->dma &&
+ suspect_dma <= end_trb_dma)) {
+ return cur_seg;
+ }
+ }
+
+ return NULL;
+ }
+
+ /* Might still be somewhere in this segment */
+ if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
+ return cur_seg;
+
+ cur_seg = cur_seg->next;
+ start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
+ } while (cur_seg != start_seg);
+
+ return NULL;
+}
+
+static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev,
+ struct cdnsp_ring *ring,
+ struct cdnsp_td *td)
+{
+ struct cdnsp_segment *seg = td->bounce_seg;
+ struct cdnsp_request *preq;
+ size_t len;
+
+ if (!seg)
+ return;
+
+ preq = td->preq;
+
+ if (!preq->direction) {
+ dma_unmap_single(pdev->dev, seg->bounce_dma,
+ ring->bounce_buf_len, DMA_TO_DEVICE);
+ return;
+ }
+
+ dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len,
+ DMA_FROM_DEVICE);
+
+ /* For in transfers we need to copy the data from bounce to sg */
+ len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs,
+ seg->bounce_buf, seg->bounce_len,
+ seg->bounce_offs);
+ if (len != seg->bounce_len)
+ dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n",
+ len, seg->bounce_len);
+
+ seg->bounce_len = 0;
+ seg->bounce_offs = 0;
+}
+
+static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev,
+ struct cdnsp_ep *pep,
+ struct cdnsp_dequeue_state *deq_state)
+{
+ struct cdnsp_ring *ep_ring;
+ int ret;
+
+ if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) {
+ cdnsp_ring_doorbell_for_active_rings(pdev, pep);
+ return 0;
+ }
+
+ cdnsp_queue_new_dequeue_state(pdev, pep, deq_state);
+ cdnsp_ring_cmd_db(pdev);
+ ret = cdnsp_wait_for_cmd_compl(pdev);
+
+ /*
+ * Update the ring's dequeue segment and dequeue pointer
+ * to reflect the new position.
+ */
+ ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id);
+
+ if (cdnsp_trb_is_link(ep_ring->dequeue)) {
+ ep_ring->deq_seg = ep_ring->deq_seg->next;
+ ep_ring->dequeue = ep_ring->deq_seg->trbs;
+ }
+
+ while (ep_ring->dequeue != deq_state->new_deq_ptr) {
+ ep_ring->num_trbs_free++;
+ ep_ring->dequeue++;
+
+ if (cdnsp_trb_is_link(ep_ring->dequeue)) {
+ if (ep_ring->dequeue == deq_state->new_deq_ptr)
+ break;
+
+ ep_ring->deq_seg = ep_ring->deq_seg->next;
+ ep_ring->dequeue = ep_ring->deq_seg->trbs;
+ }
+ }
+
+ /*
+ * Probably there was TIMEOUT during handling Set Dequeue Pointer
+ * command. It's critical error and controller will be stopped.
+ */
+ if (ret)
+ return -ESHUTDOWN;
+
+ /* Restart any rings with pending requests */
+ cdnsp_ring_doorbell_for_active_rings(pdev, pep);
+
+ return 0;
+}
+
+int cdnsp_remove_request(struct cdnsp_device *pdev,
+ struct cdnsp_request *preq,
+ struct cdnsp_ep *pep)
+{
+ struct cdnsp_dequeue_state deq_state;
+ struct cdnsp_td *cur_td = NULL;
+ struct cdnsp_ring *ep_ring;
+ struct cdnsp_segment *seg;
+ int status = -ECONNRESET;
+ int ret = 0;
+ u64 hw_deq;
+
+ memset(&deq_state, 0, sizeof(deq_state));
+
+ cur_td = &preq->td;
+ ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
+
+ /*
+ * If we stopped on the TD we need to cancel, then we have to
+ * move the controller endpoint ring dequeue pointer past
+ * this TD.
+ */
+ hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id);
+ hw_deq &= ~0xf;
+
+ seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb,
+ cur_td->last_trb, hw_deq);
+
+ if (seg && (pep->ep_state & EP_ENABLED))
+ cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id,
+ cur_td, &deq_state);
+ else
+ cdnsp_td_to_noop(pdev, ep_ring, cur_td, false);
+
+ /*
+ * The event handler won't see a completion for this TD anymore,
+ * so remove it from the endpoint ring's TD list.
+ */
+ list_del_init(&cur_td->td_list);
+ ep_ring->num_tds--;
+ pep->stream_info.td_count--;
+
+ /*
+ * During disconnecting all endpoint will be disabled so we don't
+ * have to worry about updating dequeue pointer.
+ */
+ if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING) {
+ status = -ESHUTDOWN;
+ ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state);
+ }
+
+ cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td);
+ cdnsp_gadget_giveback(pep, cur_td->preq, status);
+
+ return ret;
+}
+
+static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id)
+{
+ struct cdnsp_port *port = pdev->active_port;
+ u8 old_port = 0;
+
+ if (port && port->port_num == port_id)
+ return 0;
+
+ if (port)
+ old_port = port->port_num;
+
+ if (port_id == pdev->usb2_port.port_num) {
+ port = &pdev->usb2_port;
+ } else if (port_id == pdev->usb3_port.port_num) {
+ port = &pdev->usb3_port;
+ } else {
+ dev_err(pdev->dev, "Port event with invalid port ID %d\n",
+ port_id);
+ return -EINVAL;
+ }
+
+ if (port_id != old_port) {
+ cdnsp_disable_slot(pdev);
+ pdev->active_port = port;
+ cdnsp_enable_slot(pdev);
+ }
+
+ if (port_id == pdev->usb2_port.port_num)
+ cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1);
+ else
+ writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1),
+ &pdev->usb3_port.regs->portpmsc);
+
+ return 0;
+}
+
+static void cdnsp_handle_port_status(struct cdnsp_device *pdev,
+ union cdnsp_trb *event)
+{
+ struct cdnsp_port_regs __iomem *port_regs;
+ u32 portsc, cmd_regs;
+ bool port2 = false;
+ u32 link_state;
+ u32 port_id;
+
+ /* Port status change events always have a successful completion code */
+ if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
+ dev_err(pdev->dev, "ERR: incorrect PSC event\n");
+
+ port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
+
+ if (cdnsp_update_port_id(pdev, port_id))
+ goto cleanup;
+
+ port_regs = pdev->active_port->regs;
+
+ if (port_id == pdev->usb2_port.port_num)
+ port2 = true;
+
+new_event:
+ portsc = readl(&port_regs->portsc);
+ writel(cdnsp_port_state_to_neutral(portsc) |
+ (portsc & PORT_CHANGE_BITS), &port_regs->portsc);
+
+ pdev->gadget.speed = cdnsp_port_speed(portsc);
+ link_state = portsc & PORT_PLS_MASK;
+
+ /* Port Link State change detected. */
+ if ((portsc & PORT_PLC)) {
+ if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
+ link_state == XDEV_RESUME) {
+ cmd_regs = readl(&pdev->op_regs->command);
+ if (!(cmd_regs & CMD_R_S))
+ goto cleanup;
+
+ if (DEV_SUPERSPEED_ANY(portsc)) {
+ cdnsp_set_link_state(pdev, &port_regs->portsc,
+ XDEV_U0);
+
+ cdnsp_resume_gadget(pdev);
+ }
+ }
+
+ if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
+ link_state == XDEV_U0) {
+ pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING;
+
+ cdnsp_force_header_wakeup(pdev, 1);
+ cdnsp_ring_cmd_db(pdev);
+ cdnsp_wait_for_cmd_compl(pdev);
+ }
+
+ if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 &&
+ !DEV_SUPERSPEED_ANY(portsc))
+ cdnsp_resume_gadget(pdev);
+
+ if (link_state == XDEV_U3 && pdev->link_state != XDEV_U3)
+ cdnsp_suspend_gadget(pdev);
+
+ pdev->link_state = link_state;
+ }
+
+ if (portsc & PORT_CSC) {
+ /* Detach device. */
+ if (pdev->gadget.connected && !(portsc & PORT_CONNECT))
+ cdnsp_disconnect_gadget(pdev);
+
+ /* Attach device. */
+ if (portsc & PORT_CONNECT) {
+ if (!port2)
+ cdnsp_irq_reset(pdev);
+
+ usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED);
+ }
+ }
+
+ /* Port reset. */
+ if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) {
+ cdnsp_irq_reset(pdev);
+ pdev->u1_allowed = 0;
+ pdev->u2_allowed = 0;
+ pdev->may_wakeup = 0;
+ }
+
+ if (portsc & PORT_CEC)
+ dev_err(pdev->dev, "Port Over Current detected\n");
+
+ if (portsc & PORT_CEC)
+ dev_err(pdev->dev, "Port Configure Error detected\n");
+
+ if (readl(&port_regs->portsc) & PORT_CHANGE_BITS)
+ goto new_event;
+
+cleanup:
+ cdnsp_inc_deq(pdev, pdev->event_ring);
+}
+
+static void cdnsp_td_cleanup(struct cdnsp_device *pdev,
+ struct cdnsp_td *td,
+ struct cdnsp_ring *ep_ring,
+ int *status)
+{
+ struct cdnsp_request *preq = td->preq;
+
+ /* if a bounce buffer was used to align this td then unmap it */
+ cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td);
+
+ /*
+ * If the controller said we transferred more data than the buffer
+ * length, Play it safe and say we didn't transfer anything.
+ */
+ if (preq->request.actual > preq->request.length) {
+ preq->request.actual = 0;
+ *status = 0;
+ }
+
+ list_del_init(&td->td_list);
+ ep_ring->num_tds--;
+ preq->pep->stream_info.td_count--;
+
+ cdnsp_gadget_giveback(preq->pep, preq, *status);
+}
+
+static void cdnsp_finish_td(struct cdnsp_device *pdev,
+ struct cdnsp_td *td,
+ struct cdnsp_transfer_event *event,
+ struct cdnsp_ep *ep,
+ int *status)
+{
+ struct cdnsp_ring *ep_ring;
+ u32 trb_comp_code;
+
+ ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
+ trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
+
+ if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
+ trb_comp_code == COMP_STOPPED ||
+ trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
+ /*
+ * The Endpoint Stop Command completion will take care of any
+ * stopped TDs. A stopped TD may be restarted, so don't update
+ * the ring dequeue pointer or take this TD off any lists yet.
+ */
+ return;
+ }
+
+ /* Update ring dequeue pointer */
+ while (ep_ring->dequeue != td->last_trb)
+ cdnsp_inc_deq(pdev, ep_ring);
+
+ cdnsp_inc_deq(pdev, ep_ring);
+
+ cdnsp_td_cleanup(pdev, td, ep_ring, status);
+}
+
+/* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
+static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev,
+ struct cdnsp_ring *ring,
+ union cdnsp_trb *stop_trb)
+{
+ struct cdnsp_segment *seg = ring->deq_seg;
+ union cdnsp_trb *trb = ring->dequeue;
+ u32 sum;
+
+ for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) {
+ if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb))
+ sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
+ }
+ return sum;
+}
+
+static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev,
+ struct cdnsp_ep *pep,
+ unsigned int stream_id,
+ int start_cycle,
+ struct cdnsp_generic_trb *start_trb)
+{
+ /*
+ * Pass all the TRBs to the hardware at once and make sure this write
+ * isn't reordered.
+ */
+ wmb();
+
+ if (start_cycle)
+ start_trb->field[3] |= cpu_to_le32(start_cycle);
+ else
+ start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
+
+ if ((pep->ep_state & EP_HAS_STREAMS) &&
+ !pep->stream_info.first_prime_det)
+ return 0;
+
+ return cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
+}
+
+/*
+ * Process control tds, update USB request status and actual_length.
+ */
+static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev,
+ struct cdnsp_td *td,
+ union cdnsp_trb *event_trb,
+ struct cdnsp_transfer_event *event,
+ struct cdnsp_ep *pep,
+ int *status)
+{
+ struct cdnsp_ring *ep_ring;
+ u32 remaining;
+ u32 trb_type;
+
+ trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3]));
+ ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
+ remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
+
+ /*
+ * if on data stage then update the actual_length of the USB
+ * request and flag it as set, so it won't be overwritten in the event
+ * for the last TRB.
+ */
+ if (trb_type == TRB_DATA) {
+ td->request_length_set = true;
+ td->preq->request.actual = td->preq->request.length - remaining;
+ }
+
+ /* at status stage */
+ if (!td->request_length_set)
+ td->preq->request.actual = td->preq->request.length;
+
+ if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 &&
+ pdev->three_stage_setup) {
+ td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
+ td_list);
+ pdev->ep0_stage = CDNSP_STATUS_STAGE;
+
+ cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state,
+ &td->last_trb->generic);
+ return;
+ }
+
+ cdnsp_finish_td(pdev, td, event, pep, status);
+}
+
+/*
+ * Process isochronous tds, update usb request status and actual_length.
+ */
+static void cdnsp_process_isoc_td(struct cdnsp_device *pdev,
+ struct cdnsp_td *td,
+ union cdnsp_trb *ep_trb,
+ struct cdnsp_transfer_event *event,
+ struct cdnsp_ep *pep,
+ int status)
+{
+ struct cdnsp_request *preq = td->preq;
+ u32 remaining, requested, ep_trb_len;
+ bool sum_trbs_for_length = false;
+ struct cdnsp_ring *ep_ring;
+ u32 trb_comp_code;
+ u32 td_length;
+
+ ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
+ trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
+ remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
+ ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
+
+ requested = preq->request.length;
+
+ /* handle completion code */
+ switch (trb_comp_code) {
+ case COMP_SUCCESS:
+ preq->request.status = 0;
+ break;
+ case COMP_SHORT_PACKET:
+ preq->request.status = 0;
+ sum_trbs_for_length = true;
+ break;
+ case COMP_ISOCH_BUFFER_OVERRUN:
+ case COMP_BABBLE_DETECTED_ERROR:
+ preq->request.status = -EOVERFLOW;
+ break;
+ case COMP_STOPPED:
+ sum_trbs_for_length = true;
+ break;
+ case COMP_STOPPED_SHORT_PACKET:
+ /* field normally containing residue now contains transferred */
+ preq->request.status = 0;
+ requested = remaining;
+ break;
+ case COMP_STOPPED_LENGTH_INVALID:
+ requested = 0;
+ remaining = 0;
+ break;
+ default:
+ sum_trbs_for_length = true;
+ preq->request.status = -1;
+ break;
+ }
+
+ if (sum_trbs_for_length) {
+ td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb);
+ td_length += ep_trb_len - remaining;
+ } else {
+ td_length = requested;
+ }
+
+ td->preq->request.actual += td_length;
+
+ cdnsp_finish_td(pdev, td, event, pep, &status);
+}
+
+static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev,
+ struct cdnsp_td *td,
+ struct cdnsp_transfer_event *event,
+ struct cdnsp_ep *pep,
+ int status)
+{
+ struct cdnsp_ring *ep_ring;
+
+ ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
+ td->preq->request.status = -EXDEV;
+ td->preq->request.actual = 0;
+
+ /* Update ring dequeue pointer */
+ while (ep_ring->dequeue != td->last_trb)
+ cdnsp_inc_deq(pdev, ep_ring);
+
+ cdnsp_inc_deq(pdev, ep_ring);
+
+ cdnsp_td_cleanup(pdev, td, ep_ring, &status);
+}
+
+/*
+ * Process bulk and interrupt tds, update usb request status and actual_length.
+ */
+static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev,
+ struct cdnsp_td *td,
+ union cdnsp_trb *ep_trb,
+ struct cdnsp_transfer_event *event,
+ struct cdnsp_ep *ep,
+ int *status)
+{
+ u32 remaining, requested, ep_trb_len;
+ struct cdnsp_ring *ep_ring;
+ u32 trb_comp_code;
+
+ ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
+ trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
+ remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
+ ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
+ requested = td->preq->request.length;
+
+ switch (trb_comp_code) {
+ case COMP_SUCCESS:
+ case COMP_SHORT_PACKET:
+ *status = 0;
+ break;
+ case COMP_STOPPED_SHORT_PACKET:
+ td->preq->request.actual = remaining;
+ goto finish_td;
+ case COMP_STOPPED_LENGTH_INVALID:
+ /* Stopped on ep trb with invalid length, exclude it. */
+ ep_trb_len = 0;
+ remaining = 0;
+ break;
+ }
+
+ if (ep_trb == td->last_trb)
+ ep_trb_len = requested - remaining;
+ else
+ ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) +
+ ep_trb_len - remaining;
+ td->preq->request.actual = ep_trb_len;
+
+finish_td:
+ ep->stream_info.drbls_count--;
+
+ cdnsp_finish_td(pdev, td, event, ep, status);
+}
+
+static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev,
+ struct cdnsp_transfer_event *event)
+{
+ struct cdnsp_generic_trb *generic;
+ struct cdnsp_ring *ep_ring;
+ struct cdnsp_ep *pep;
+ int cur_stream;
+ int ep_index;
+ int host_sid;
+ int dev_sid;
+
+ generic = (struct cdnsp_generic_trb *)event;
+ ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
+ dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0]));
+ host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2]));
+
+ pep = &pdev->eps[ep_index];
+
+ if (!(pep->ep_state & EP_HAS_STREAMS))
+ return;
+
+ if (host_sid == STREAM_PRIME_ACK) {
+ pep->stream_info.first_prime_det = 1;
+ for (cur_stream = 1; cur_stream < pep->stream_info.num_streams;
+ cur_stream++) {
+ ep_ring = pep->stream_info.stream_rings[cur_stream];
+ ep_ring->stream_active = 1;
+ ep_ring->stream_rejected = 0;
+ }
+ }
+
+ if (host_sid == STREAM_REJECTED) {
+ struct cdnsp_td *td, *td_temp;
+
+ pep->stream_info.drbls_count--;
+ ep_ring = pep->stream_info.stream_rings[dev_sid];
+ ep_ring->stream_active = 0;
+ ep_ring->stream_rejected = 1;
+
+ list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
+ td_list) {
+ td->drbl = 0;
+ }
+ }
+
+ cdnsp_ring_doorbell_for_active_rings(pdev, pep);
+}
+
+/*
+ * If this function returns an error condition, it means it got a Transfer
+ * event with a corrupted TRB DMA address or endpoint is disabled.
+ */
+static int cdnsp_handle_tx_event(struct cdnsp_device *pdev,
+ struct cdnsp_transfer_event *event)
+{
+ const struct usb_endpoint_descriptor *desc;
+ bool handling_skipped_tds = false;
+ struct cdnsp_segment *ep_seg;
+ struct cdnsp_ring *ep_ring;
+ int status = -EINPROGRESS;
+ union cdnsp_trb *ep_trb;
+ dma_addr_t ep_trb_dma;
+ struct cdnsp_ep *pep;
+ struct cdnsp_td *td;
+ u32 trb_comp_code;
+ int invalidate;
+ int ep_index;
+
+ invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE;
+ ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
+ trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
+ ep_trb_dma = le64_to_cpu(event->buffer);
+
+ pep = &pdev->eps[ep_index];
+ ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
+
+ /*
+ * If device is disconnect then all requests will be dequeued
+ * by upper layers as part of disconnect sequence.
+ * We don't want handle such event to avoid racing.
+ */
+ if (invalidate || !pdev->gadget.connected)
+ goto cleanup;
+
+ if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED)
+ goto err_out;
+
+ /* Some transfer events don't always point to a trb*/
+ if (!ep_ring) {
+ switch (trb_comp_code) {
+ case COMP_INVALID_STREAM_TYPE_ERROR:
+ case COMP_INVALID_STREAM_ID_ERROR:
+ case COMP_RING_UNDERRUN:
+ case COMP_RING_OVERRUN:
+ goto cleanup;
+ default:
+ dev_err(pdev->dev, "ERROR: %s event for unknown ring\n",
+ pep->name);
+ goto err_out;
+ }
+ }
+
+ /* Look for some error cases that need special treatment. */
+ switch (trb_comp_code) {
+ case COMP_BABBLE_DETECTED_ERROR:
+ status = -EOVERFLOW;
+ break;
+ case COMP_RING_UNDERRUN:
+ case COMP_RING_OVERRUN:
+ /*
+ * When the Isoch ring is empty, the controller will generate
+ * a Ring Overrun Event for IN Isoch endpoint or Ring
+ * Underrun Event for OUT Isoch endpoint.
+ */
+ goto cleanup;
+ case COMP_MISSED_SERVICE_ERROR:
+ /*
+ * When encounter missed service error, one or more isoc tds
+ * may be missed by controller.
+ * Set skip flag of the ep_ring; Complete the missed tds as
+ * short transfer when process the ep_ring next time.
+ */
+ pep->skip = true;
+ break;
+ }
+
+ do {
+ /*
+ * This TRB should be in the TD at the head of this ring's TD
+ * list.
+ */
+ if (list_empty(&ep_ring->td_list)) {
+ if (pep->skip)
+ pep->skip = false;
+
+ goto cleanup;
+ }
+
+ td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
+ td_list);
+
+ /* Is this a TRB in the currently executing TD? */
+ ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg,
+ ep_ring->dequeue, td->last_trb,
+ ep_trb_dma);
+
+ /*
+ * Skip the Force Stopped Event. The event_trb(ep_trb_dma)
+ * of FSE is not in the current TD pointed by ep_ring->dequeue
+ * because that the hardware dequeue pointer still at the
+ * previous TRB of the current TD. The previous TRB maybe a
+ * Link TD or the last TRB of the previous TD. The command
+ * completion handle will take care the rest.
+ */
+ if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
+ trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
+ pep->skip = false;
+ goto cleanup;
+ }
+
+ desc = td->preq->pep->endpoint.desc;
+ if (!ep_seg) {
+ if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) {
+ /* Something is busted, give up! */
+ dev_err(pdev->dev,
+ "ERROR Transfer event TRB DMA ptr not "
+ "part of current TD ep_index %d "
+ "comp_code %u\n", ep_index,
+ trb_comp_code);
+ return -EINVAL;
+ }
+
+ cdnsp_skip_isoc_td(pdev, td, event, pep, status);
+ goto cleanup;
+ }
+
+ if (trb_comp_code == COMP_SHORT_PACKET)
+ ep_ring->last_td_was_short = true;
+ else
+ ep_ring->last_td_was_short = false;
+
+ if (pep->skip) {
+ pep->skip = false;
+ cdnsp_skip_isoc_td(pdev, td, event, pep, status);
+ goto cleanup;
+ }
+
+ ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma)
+ / sizeof(*ep_trb)];
+
+ if (cdnsp_trb_is_noop(ep_trb))
+ goto cleanup;
+
+ if (usb_endpoint_xfer_control(desc))
+ cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep,
+ &status);
+ else if (usb_endpoint_xfer_isoc(desc))
+ cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep,
+ status);
+ else
+ cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep,
+ &status);
+cleanup:
+ handling_skipped_tds = pep->skip;
+
+ /*
+ * Do not update event ring dequeue pointer if we're in a loop
+ * processing missed tds.
+ */
+ if (!handling_skipped_tds)
+ cdnsp_inc_deq(pdev, pdev->event_ring);
+
+ /*
+ * If ep->skip is set, it means there are missed tds on the
+ * endpoint ring need to take care of.
+ * Process them as short transfer until reach the td pointed by
+ * the event.
+ */
+ } while (handling_skipped_tds);
+ return 0;
+
+err_out:
+ dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n",
+ (unsigned long long)
+ cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
+ pdev->event_ring->dequeue),
+ lower_32_bits(le64_to_cpu(event->buffer)),
+ upper_32_bits(le64_to_cpu(event->buffer)),
+ le32_to_cpu(event->transfer_len),
+ le32_to_cpu(event->flags));
+ return -EINVAL;
+}
+
+/*
+ * This function handles all events on the event ring.
+ * Returns true for "possibly more events to process" (caller should call
+ * again), otherwise false if done.
+ */
+static bool cdnsp_handle_event(struct cdnsp_device *pdev)
+{
+ unsigned int comp_code;
+ union cdnsp_trb *event;
+ bool update_ptrs = true;
+ __le32 cycle_bit;
+ int ret = 0;
+ u32 flags;
+
+ event = pdev->event_ring->dequeue;
+ flags = le32_to_cpu(event->event_cmd.flags);
+ cycle_bit = (flags & TRB_CYCLE);
+
+ /* Does the controller or driver own the TRB? */
+ if (cycle_bit != pdev->event_ring->cycle_state)
+ return false;
+
+ /*
+ * Barrier between reading the TRB_CYCLE (valid) flag above and any
+ * reads of the event's flags/data below.
+ */
+ rmb();
+
+ switch (flags & TRB_TYPE_BITMASK) {
+ case TRB_TYPE(TRB_COMPLETION):
+ /*
+ * Command can't be handled in interrupt context so just
+ * increment command ring dequeue pointer.
+ */
+ cdnsp_inc_deq(pdev, pdev->cmd_ring);
+ break;
+ case TRB_TYPE(TRB_PORT_STATUS):
+ cdnsp_handle_port_status(pdev, event);
+ update_ptrs = false;
+ break;
+ case TRB_TYPE(TRB_TRANSFER):
+ ret = cdnsp_handle_tx_event(pdev, &event->trans_event);
+ if (ret >= 0)
+ update_ptrs = false;
+ break;
+ case TRB_TYPE(TRB_SETUP):
+ pdev->ep0_stage = CDNSP_SETUP_STAGE;
+ pdev->setup_id = TRB_SETUPID_TO_TYPE(flags);
+ pdev->setup_speed = TRB_SETUP_SPEEDID(flags);
+ pdev->setup = *((struct usb_ctrlrequest *)
+ &event->trans_event.buffer);
+
+ cdnsp_setup_analyze(pdev);
+ break;
+ case TRB_TYPE(TRB_ENDPOINT_NRDY):
+ cdnsp_handle_tx_nrdy(pdev, &event->trans_event);
+ break;
+ case TRB_TYPE(TRB_HC_EVENT): {
+ comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2]));
+
+ switch (comp_code) {
+ case COMP_EVENT_RING_FULL_ERROR:
+ dev_err(pdev->dev, "Event Ring Full\n");
+ break;
+ default:
+ dev_err(pdev->dev, "Controller error code 0x%02x\n",
+ comp_code);
+ }
+
+ break;
+ }
+ case TRB_TYPE(TRB_MFINDEX_WRAP):
+ case TRB_TYPE(TRB_DRB_OVERFLOW):
+ break;
+ default:
+ dev_warn(pdev->dev, "ERROR unknown event type %ld\n",
+ TRB_FIELD_TO_TYPE(flags));
+ }
+
+ if (update_ptrs)
+ /* Update SW event ring dequeue pointer. */
+ cdnsp_inc_deq(pdev, pdev->event_ring);
+
+ /*
+ * Caller will call us again to check if there are more items
+ * on the event ring.
+ */
+ return true;
+}
+
+irqreturn_t cdnsp_thread_irq_handler(int irq, void *data)
+{
+ struct cdnsp_device *pdev = (struct cdnsp_device *)data;
+ union cdnsp_trb *event_ring_deq;
+ int counter = 0;
+
+ spin_lock(&pdev->lock);
+
+ if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) {
+ cdnsp_died(pdev);
+ spin_unlock(&pdev->lock);
+ return IRQ_HANDLED;
+ }
+
+ event_ring_deq = pdev->event_ring->dequeue;
+
+ while (cdnsp_handle_event(pdev)) {
+ if (++counter >= TRBS_PER_EV_DEQ_UPDATE) {
+ cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0);
+ event_ring_deq = pdev->event_ring->dequeue;
+ counter = 0;
+ }
+ }
+
+ cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
+
+ spin_unlock(&pdev->lock);
+
+ return IRQ_HANDLED;
+}
+
+irqreturn_t cdnsp_irq_handler(int irq, void *priv)
+{
+ struct cdnsp_device *pdev = (struct cdnsp_device *)priv;
+ u32 irq_pending;
+ u32 status;
+
+ status = readl(&pdev->op_regs->status);
+
+ if (status == ~(u32)0) {
+ cdnsp_died(pdev);
+ return IRQ_HANDLED;
+ }
+
+ if (!(status & STS_EINT))
+ return IRQ_NONE;
+
+ writel(status | STS_EINT, &pdev->op_regs->status);
+ irq_pending = readl(&pdev->ir_set->irq_pending);
+ irq_pending |= IMAN_IP;
+ writel(irq_pending, &pdev->ir_set->irq_pending);
+
+ if (status & STS_FATAL) {
+ cdnsp_died(pdev);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_WAKE_THREAD;
+}
+
+/*
+ * Generic function for queuing a TRB on a ring.
+ * The caller must have checked to make sure there's room on the ring.
+ *
+ * @more_trbs_coming: Will you enqueue more TRBs before setting doorbell?
+ */
+static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring,
+ bool more_trbs_coming, u32 field1, u32 field2,
+ u32 field3, u32 field4)
+{
+ struct cdnsp_generic_trb *trb;
+
+ trb = &ring->enqueue->generic;
+
+ trb->field[0] = cpu_to_le32(field1);
+ trb->field[1] = cpu_to_le32(field2);
+ trb->field[2] = cpu_to_le32(field3);
+ trb->field[3] = cpu_to_le32(field4);
+
+ cdnsp_inc_enq(pdev, ring, more_trbs_coming);
+}
+
+/*
+ * Does various checks on the endpoint ring, and makes it ready to
+ * queue num_trbs.
+ */
+static int cdnsp_prepare_ring(struct cdnsp_device *pdev,
+ struct cdnsp_ring *ep_ring,
+ u32 ep_state, unsigned
+ int num_trbs,
+ gfp_t mem_flags)
+{
+ unsigned int num_trbs_needed;
+
+ /* Make sure the endpoint has been added to controller schedule. */
+ switch (ep_state) {
+ case EP_STATE_STOPPED:
+ case EP_STATE_RUNNING:
+ case EP_STATE_HALTED:
+ break;
+ default:
+ dev_err(pdev->dev, "ERROR: incorrect endpoint state\n");
+ return -EINVAL;
+ }
+
+ while (1) {
+ if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs))
+ break;
+
+ num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
+ if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed,
+ mem_flags)) {
+ dev_err(pdev->dev, "Ring expansion failed\n");
+ return -ENOMEM;
+ }
+ }
+
+ while (cdnsp_trb_is_link(ep_ring->enqueue)) {
+ ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN);
+ /* The cycle bit must be set as the last operation. */
+ wmb();
+ ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
+
+ /* Toggle the cycle bit after the last ring segment. */
+ if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue))
+ ep_ring->cycle_state ^= 1;
+ ep_ring->enq_seg = ep_ring->enq_seg->next;
+ ep_ring->enqueue = ep_ring->enq_seg->trbs;
+ }
+ return 0;
+}
+
+static int cdnsp_prepare_transfer(struct cdnsp_device *pdev,
+ struct cdnsp_request *preq,
+ unsigned int num_trbs)
+{
+ struct cdnsp_ring *ep_ring;
+ int ret;
+
+ ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep,
+ preq->request.stream_id);
+ if (!ep_ring)
+ return -EINVAL;
+
+ ret = cdnsp_prepare_ring(pdev, ep_ring,
+ GET_EP_CTX_STATE(preq->pep->out_ctx),
+ num_trbs, GFP_ATOMIC);
+ if (ret)
+ return ret;
+
+ INIT_LIST_HEAD(&preq->td.td_list);
+ preq->td.preq = preq;
+
+ /* Add this TD to the tail of the endpoint ring's TD list. */
+ list_add_tail(&preq->td.td_list, &ep_ring->td_list);
+ ep_ring->num_tds++;
+ preq->pep->stream_info.td_count++;
+
+ preq->td.start_seg = ep_ring->enq_seg;
+ preq->td.first_trb = ep_ring->enqueue;
+
+ return 0;
+}
+
+static unsigned int cdnsp_count_trbs(u64 addr, u64 len)
+{
+ unsigned int num_trbs;
+
+ num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
+ TRB_MAX_BUFF_SIZE);
+ if (num_trbs == 0)
+ num_trbs++;
+
+ return num_trbs;
+}
+
+static unsigned int count_trbs_needed(struct cdnsp_request *preq)
+{
+ return cdnsp_count_trbs(preq->request.dma, preq->request.length);
+}
+
+static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq)
+{
+ unsigned int i, len, full_len, num_trbs = 0;
+ struct scatterlist *sg;
+
+ full_len = preq->request.length;
+
+ for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) {
+ len = sg_dma_len(sg);
+ num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len);
+ len = min(len, full_len);
+ full_len -= len;
+ if (full_len == 0)
+ break;
+ }
+
+ return num_trbs;
+}
+
+static unsigned int count_isoc_trbs_needed(struct cdnsp_request *preq)
+{
+ return cdnsp_count_trbs(preq->request.dma, preq->request.length);
+}
+
+static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total)
+{
+ if (running_total != preq->request.length)
+ dev_err(preq->pep->pdev->dev,
+ "%s - Miscalculated tx length, "
+ "queued %#x, asked for %#x (%d)\n",
+ preq->pep->name, running_total,
+ preq->request.length, preq->request.actual);
+}
+
+/*
+ * TD size is the number of max packet sized packets remaining in the TD
+ * (*not* including this TRB).
+ *
+ * Total TD packet count = total_packet_count =
+ * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
+ *
+ * Packets transferred up to and including this TRB = packets_transferred =
+ * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
+ *
+ * TD size = total_packet_count - packets_transferred
+ *
+ * It must fit in bits 21:17, so it can't be bigger than 31.
+ * This is taken care of in the TRB_TD_SIZE() macro
+ *
+ * The last TRB in a TD must have the TD size set to zero.
+ */
+static u32 cdnsp_td_remainder(struct cdnsp_device *pdev,
+ int transferred,
+ int trb_buff_len,
+ unsigned int td_total_len,
+ struct cdnsp_request *preq,
+ bool more_trbs_coming)
+{
+ u32 maxp, total_packet_count;
+
+ /* One TRB with a zero-length data packet. */
+ if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
+ trb_buff_len == td_total_len)
+ return 0;
+
+ maxp = usb_endpoint_maxp(preq->pep->endpoint.desc);
+ total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
+
+ /* Queuing functions don't count the current TRB into transferred. */
+ return (total_packet_count - ((transferred + trb_buff_len) / maxp));
+}
+
+static int cdnsp_align_td(struct cdnsp_device *pdev,
+ struct cdnsp_request *preq, u32 enqd_len,
+ u32 *trb_buff_len, struct cdnsp_segment *seg)
+{
+ struct device *dev = pdev->dev;
+ unsigned int unalign;
+ unsigned int max_pkt;
+ u32 new_buff_len;
+
+ max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
+ unalign = (enqd_len + *trb_buff_len) % max_pkt;
+
+ /* We got lucky, last normal TRB data on segment is packet aligned. */
+ if (unalign == 0)
+ return 0;
+
+ /* Is the last nornal TRB alignable by splitting it. */
+ if (*trb_buff_len > unalign) {
+ *trb_buff_len -= unalign;
+ return 0;
+ }
+
+ /*
+ * We want enqd_len + trb_buff_len to sum up to a number aligned to
+ * number which is divisible by the endpoint's wMaxPacketSize. IOW:
+ * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
+ */
+ new_buff_len = max_pkt - (enqd_len % max_pkt);
+
+ if (new_buff_len > (preq->request.length - enqd_len))
+ new_buff_len = (preq->request.length - enqd_len);
+
+ /* Create a max max_pkt sized bounce buffer pointed to by last trb. */
+ if (preq->direction) {
+ sg_pcopy_to_buffer(preq->request.sg,
+ preq->request.num_mapped_sgs,
+ seg->bounce_buf, new_buff_len, enqd_len);
+ seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
+ max_pkt, DMA_TO_DEVICE);
+ } else {
+ seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
+ max_pkt, DMA_FROM_DEVICE);
+ }
+
+ if (dma_mapping_error(dev, seg->bounce_dma)) {
+ /* Try without aligning.*/
+ dev_warn(pdev->dev,
+ "Failed mapping bounce buffer, not aligning\n");
+ return 0;
+ }
+
+ *trb_buff_len = new_buff_len;
+ seg->bounce_len = new_buff_len;
+ seg->bounce_offs = enqd_len;
+
+ /*
+ * Bounce buffer successful aligned and seg->bounce_dma will be used
+ * in transfer TRB as new transfer buffer address.
+ */
+ return 1;
+}
+
+int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
+{
+ unsigned int enqd_len, block_len, trb_buff_len, full_len;
+ unsigned int start_cycle, num_sgs = 0;
+ struct cdnsp_generic_trb *start_trb;
+ u32 field, length_field, remainder;
+ struct scatterlist *sg = NULL;
+ bool more_trbs_coming = true;
+ bool need_zero_pkt = false;
+ bool zero_len_trb = false;
+ struct cdnsp_ring *ring;
+ bool first_trb = true;
+ unsigned int num_trbs;
+ struct cdnsp_ep *pep;
+ u64 addr, send_addr;
+ int sent_len, ret;
+
+ ring = cdnsp_request_to_transfer_ring(pdev, preq);
+ if (!ring)
+ return -EINVAL;
+
+ full_len = preq->request.length;
+
+ if (preq->request.num_sgs) {
+ num_sgs = preq->request.num_sgs;
+ sg = preq->request.sg;
+ addr = (u64)sg_dma_address(sg);
+ block_len = sg_dma_len(sg);
+ num_trbs = count_sg_trbs_needed(preq);
+ } else {
+ num_trbs = count_trbs_needed(preq);
+ addr = (u64)preq->request.dma;
+ block_len = full_len;
+ }
+
+ pep = preq->pep;
+
+ /* Deal with request.zero - need one more td/trb. */
+ if (preq->request.zero && preq->request.length &&
+ IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) {
+ need_zero_pkt = true;
+ num_trbs++;
+ }
+
+ ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
+ if (ret)
+ return ret;
+
+ /*
+ * Don't give the first TRB to the hardware (by toggling the cycle bit)
+ * until we've finished creating all the other TRBs. The ring's cycle
+ * state may change as we enqueue the other TRBs, so save it too.
+ */
+ start_trb = &ring->enqueue->generic;
+ start_cycle = ring->cycle_state;
+ send_addr = addr;
+
+ /* Queue the TRBs, even if they are zero-length */
+ for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len;
+ enqd_len += trb_buff_len) {
+ field = TRB_TYPE(TRB_NORMAL);
+
+ /* TRB buffer should not cross 64KB boundaries */
+ trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
+ trb_buff_len = min(trb_buff_len, block_len);
+ if (enqd_len + trb_buff_len > full_len)
+ trb_buff_len = full_len - enqd_len;
+
+ /* Don't change the cycle bit of the first TRB until later */
+ if (first_trb) {
+ first_trb = false;
+ if (start_cycle == 0)
+ field |= TRB_CYCLE;
+ } else {
+ field |= ring->cycle_state;
+ }
+
+ /*
+ * Chain all the TRBs together; clear the chain bit in the last
+ * TRB to indicate it's the last TRB in the chain.
+ */
+ if (enqd_len + trb_buff_len < full_len || need_zero_pkt) {
+ field |= TRB_CHAIN;
+ if (cdnsp_trb_is_link(ring->enqueue + 1)) {
+ if (cdnsp_align_td(pdev, preq, enqd_len,
+ &trb_buff_len,
+ ring->enq_seg)) {
+ send_addr = ring->enq_seg->bounce_dma;
+ /* Assuming TD won't span 2 segs */
+ preq->td.bounce_seg = ring->enq_seg;
+ }
+ }
+ }
+
+ if (enqd_len + trb_buff_len >= full_len) {
+ if (need_zero_pkt && zero_len_trb) {
+ zero_len_trb = true;
+ } else {
+ field &= ~TRB_CHAIN;
+ field |= TRB_IOC;
+ more_trbs_coming = false;
+ need_zero_pkt = false;
+ preq->td.last_trb = ring->enqueue;
+ }
+ }
+
+ /* Only set interrupt on short packet for OUT endpoints. */
+ if (!preq->direction)
+ field |= TRB_ISP;
+
+ /* Set the TRB length, TD size, and interrupter fields. */
+ remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len,
+ full_len, preq,
+ more_trbs_coming);
+
+ length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
+ TRB_INTR_TARGET(0);
+
+ cdnsp_queue_trb(pdev, ring, more_trbs_coming | need_zero_pkt,
+ lower_32_bits(send_addr),
+ upper_32_bits(send_addr),
+ length_field,
+ field);
+
+ addr += trb_buff_len;
+ sent_len = trb_buff_len;
+ while (sg && sent_len >= block_len) {
+ /* New sg entry */
+ --num_sgs;
+ sent_len -= block_len;
+ if (num_sgs != 0) {
+ sg = sg_next(sg);
+ block_len = sg_dma_len(sg);
+ addr = (u64)sg_dma_address(sg);
+ addr += sent_len;
+ }
+ }
+ block_len -= sent_len;
+ send_addr = addr;
+ }
+
+ cdnsp_check_trb_math(preq, enqd_len);
+ ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id,
+ start_cycle, start_trb);
+
+ if (ret)
+ preq->td.drbl = 1;
+
+ return 0;
+}
+
+int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
+{
+ u32 field, length_field, remainder;
+ struct cdnsp_ep *pep = preq->pep;
+ struct cdnsp_ring *ep_ring;
+ int num_trbs;
+ int ret;
+
+ ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
+ if (!ep_ring)
+ return -EINVAL;
+
+ /* 1 TRB for data, 1 for status */
+ num_trbs = (pdev->three_stage_setup) ? 2 : 1;
+
+ ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
+ if (ret)
+ return ret;
+
+ /* If there's data, queue data TRBs */
+ if (pdev->ep0_expect_in)
+ field = TRB_TYPE(TRB_DATA) | TRB_IOC;
+ else
+ field = TRB_ISP | TRB_TYPE(TRB_DATA) | TRB_IOC;
+
+ if (preq->request.length > 0) {
+ remainder = cdnsp_td_remainder(pdev, 0, preq->request.length,
+ preq->request.length, preq, 1);
+
+ length_field = TRB_LEN(preq->request.length) |
+ TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0);
+
+ if (pdev->ep0_expect_in)
+ field |= TRB_DIR_IN;
+
+ cdnsp_queue_trb(pdev, ep_ring, true,
+ lower_32_bits(preq->request.dma),
+ upper_32_bits(preq->request.dma), length_field,
+ field | ep_ring->cycle_state |
+ TRB_SETUPID(pdev->setup_id) |
+ pdev->setup_speed);
+
+ pdev->ep0_stage = CDNSP_DATA_STAGE;
+ }
+
+ /* Save the DMA address of the last TRB in the TD. */
+ preq->td.last_trb = ep_ring->enqueue;
+
+ /* Queue status TRB. */
+ if (preq->request.length == 0)
+ field = ep_ring->cycle_state;
+ else
+ field = (ep_ring->cycle_state ^ 1);
+
+ if (preq->request.length > 0 && pdev->ep0_expect_in)
+ field |= TRB_DIR_IN;
+
+ if (pep->ep_state & EP0_HALTED_STATUS) {
+ pep->ep_state &= ~EP0_HALTED_STATUS;
+ field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL);
+ } else {
+ field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK);
+ }
+
+ cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0),
+ field | TRB_IOC | TRB_SETUPID(pdev->setup_id) |
+ TRB_TYPE(TRB_STATUS) | pdev->setup_speed);
+
+ cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id);
+
+ return 0;
+}
+
+int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
+{
+ u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx);
+ int ret = 0;
+
+ if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED)
+ goto ep_stopped;
+
+ cdnsp_queue_stop_endpoint(pdev, pep->idx);
+ cdnsp_ring_cmd_db(pdev);
+ ret = cdnsp_wait_for_cmd_compl(pdev);
+
+ep_stopped:
+ pep->ep_state |= EP_STOPPED;
+ return ret;
+}
+
+int cdnsp_cmd_flush_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
+{
+ int ret;
+
+ cdnsp_queue_flush_endpoint(pdev, pep->idx);
+ cdnsp_ring_cmd_db(pdev);
+ ret = cdnsp_wait_for_cmd_compl(pdev);
+
+ return ret;
+}
+
+/*
+ * The transfer burst count field of the isochronous TRB defines the number of
+ * bursts that are required to move all packets in this TD. Only SuperSpeed
+ * devices can burst up to bMaxBurst number of packets per service interval.
+ * This field is zero based, meaning a value of zero in the field means one
+ * burst. Basically, for everything but SuperSpeed devices, this field will be
+ * zero.
+ */
+static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev,
+ struct cdnsp_request *preq,
+ unsigned int total_packet_count)
+{
+ unsigned int max_burst;
+
+ if (pdev->gadget.speed < USB_SPEED_SUPER)
+ return 0;
+
+ max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
+ return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
+}
+
+/*
+ * Returns the number of packets in the last "burst" of packets. This field is
+ * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
+ * the last burst packet count is equal to the total number of packets in the
+ * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
+ * must contain (bMaxBurst + 1) number of packets, but the last burst can
+ * contain 1 to (bMaxBurst + 1) packets.
+ */
+static unsigned int
+ cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev,
+ struct cdnsp_request *preq,
+ unsigned int total_packet_count)
+{
+ unsigned int max_burst;
+ unsigned int residue;
+
+ if (pdev->gadget.speed >= USB_SPEED_SUPER) {
+ /* bMaxBurst is zero based: 0 means 1 packet per burst. */
+ max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
+ residue = total_packet_count % (max_burst + 1);
+
+ /*
+ * If residue is zero, the last burst contains (max_burst + 1)
+ * number of packets, but the TLBPC field is zero-based.
+ */
+ if (residue == 0)
+ return max_burst;
+
+ return residue - 1;
+ }
+ if (total_packet_count == 0)
+ return 0;
+
+ return total_packet_count - 1;
+}
+
+/* Queue function isoc transfer */
+static int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev,
+ struct cdnsp_request *preq)
+{
+ int trb_buff_len, td_len, td_remain_len, ret;
+ unsigned int burst_count, last_burst_pkt;
+ unsigned int total_pkt_count, max_pkt;
+ struct cdnsp_generic_trb *start_trb;
+ bool more_trbs_coming = true;
+ struct cdnsp_ring *ep_ring;
+ int running_total = 0;
+ u32 field, length_field;
+ int start_cycle;
+ int trbs_per_td;
+ u64 addr;
+ int i;
+
+ ep_ring = preq->pep->ring;
+ start_trb = &ep_ring->enqueue->generic;
+ start_cycle = ep_ring->cycle_state;
+ td_len = preq->request.length;
+ addr = (u64)preq->request.dma;
+ td_remain_len = td_len;
+
+ max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
+ total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
+
+ /* A zero-length transfer still involves at least one packet. */
+ if (total_pkt_count == 0)
+ total_pkt_count++;
+
+ burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count);
+ last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq,
+ total_pkt_count);
+ trbs_per_td = count_isoc_trbs_needed(preq);
+
+ ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td);
+ if (ret)
+ goto cleanup;
+
+ /*
+ * Set isoc specific data for the first TRB in a TD.
+ * Prevent HW from getting the TRBs by keeping the cycle state
+ * inverted in the first TDs isoc TRB.
+ */
+ field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) |
+ !start_cycle | TRB_SIA | TRB_TBC(burst_count);
+
+ /* Fill the rest of the TRB fields, and remaining normal TRBs. */
+ for (i = 0; i < trbs_per_td; i++) {
+ u32 remainder;
+
+ /* Calculate TRB length. */
+ trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
+ if (trb_buff_len > td_remain_len)
+ trb_buff_len = td_remain_len;
+
+ /* Set the TRB length, TD size, & interrupter fields. */
+ remainder = cdnsp_td_remainder(pdev, running_total,
+ trb_buff_len, td_len, preq,
+ more_trbs_coming);
+
+ length_field = TRB_LEN(trb_buff_len) | TRB_INTR_TARGET(0);
+
+ /* Only first TRB is isoc, overwrite otherwise. */
+ if (i) {
+ field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state;
+ length_field |= TRB_TD_SIZE(remainder);
+ } else {
+ length_field |= TRB_TD_SIZE_TBC(burst_count);
+ }
+
+ /* Only set interrupt on short packet for OUT EPs. */
+ if (usb_endpoint_dir_out(preq->pep->endpoint.desc))
+ field |= TRB_ISP;
+
+ /* Set the chain bit for all except the last TRB. */
+ if (i < trbs_per_td - 1) {
+ more_trbs_coming = true;
+ field |= TRB_CHAIN;
+ } else {
+ more_trbs_coming = false;
+ preq->td.last_trb = ep_ring->enqueue;
+ field |= TRB_IOC;
+ }
+
+ cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming,
+ lower_32_bits(addr), upper_32_bits(addr),
+ length_field, field);
+
+ running_total += trb_buff_len;
+ addr += trb_buff_len;
+ td_remain_len -= trb_buff_len;
+ }
+
+ /* Check TD length */
+ if (running_total != td_len) {
+ dev_err(pdev->dev, "ISOC TD length unmatch\n");
+ ret = -EINVAL;
+ goto cleanup;
+ }
+
+ cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id,
+ start_cycle, start_trb);
+
+ return 0;
+
+cleanup:
+ /* Clean up a partially enqueued isoc transfer. */
+ list_del_init(&preq->td.td_list);
+ ep_ring->num_tds--;
+
+ /*
+ * Use the first TD as a temporary variable to turn the TDs we've
+ * queued into No-ops with a software-owned cycle bit.
+ * That way the hardware won't accidentally start executing bogus TDs
+ * when we partially overwrite them.
+ * td->first_trb and td->start_seg are already set.
+ */
+ preq->td.last_trb = ep_ring->enqueue;
+ /* Every TRB except the first & last will have its cycle bit flipped. */
+ cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true);
+
+ /* Reset the ring enqueue back to the first TRB and its cycle bit. */
+ ep_ring->enqueue = preq->td.first_trb;
+ ep_ring->enq_seg = preq->td.start_seg;
+ ep_ring->cycle_state = start_cycle;
+ return ret;
+}
+
+int cdnsp_queue_isoc_tx_prepare(struct cdnsp_device *pdev,
+ struct cdnsp_request *preq)
+{
+ struct cdnsp_ring *ep_ring;
+ u32 ep_state;
+ int num_trbs;
+ int ret;
+
+ ep_ring = preq->pep->ring;
+ ep_state = GET_EP_CTX_STATE(preq->pep->out_ctx);
+ num_trbs = count_isoc_trbs_needed(preq);
+
+ /*
+ * Check the ring to guarantee there is enough room for the whole
+ * request. Do not insert any td of the USB Request to the ring if the
+ * check failed.
+ */
+ ret = cdnsp_prepare_ring(pdev, ep_ring, ep_state, num_trbs, GFP_ATOMIC);
+ if (ret)
+ return ret;
+
+ return cdnsp_queue_isoc_tx(pdev, preq);
+}
+
+/**** Command Ring Operations ****/
+/*
+ * Generic function for queuing a command TRB on the command ring.
+ * Driver queue only one command to ring in the moment.
+ */
+static void cdnsp_queue_command(struct cdnsp_device *pdev,
+ u32 field1,
+ u32 field2,
+ u32 field3,
+ u32 field4)
+{
+ cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1,
+ GFP_ATOMIC);
+
+ pdev->cmd.command_trb = pdev->cmd_ring->enqueue;
+
+ cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2,
+ field3, field4 | pdev->cmd_ring->cycle_state);
+}
+
+/* Queue a slot enable or disable request on the command ring */
+void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type)
+{
+ cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) |
+ SLOT_ID_FOR_TRB(pdev->slot_id));
+}
+
+/* Queue an address device command TRB */
+void cdnsp_queue_address_device(struct cdnsp_device *pdev,
+ dma_addr_t in_ctx_ptr,
+ enum cdnsp_setup_dev setup)
+{
+ cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
+ upper_32_bits(in_ctx_ptr), 0,
+ TRB_TYPE(TRB_ADDR_DEV) |
+ SLOT_ID_FOR_TRB(pdev->slot_id) |
+ (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0));
+}
+
+/* Queue a reset device command TRB */
+void cdnsp_queue_reset_device(struct cdnsp_device *pdev)
+{
+ cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) |
+ SLOT_ID_FOR_TRB(pdev->slot_id));
+}
+
+/* Queue a configure endpoint command TRB */
+void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev,
+ dma_addr_t in_ctx_ptr)
+{
+ cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
+ upper_32_bits(in_ctx_ptr), 0,
+ TRB_TYPE(TRB_CONFIG_EP) |
+ SLOT_ID_FOR_TRB(pdev->slot_id));
+}
+
+/*
+ * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
+ * activity on an endpoint that is about to be suspended.
+ */
+void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
+{
+ cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) |
+ EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING));
+}
+
+/* Set Transfer Ring Dequeue Pointer command. */
+void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev,
+ struct cdnsp_ep *pep,
+ struct cdnsp_dequeue_state *deq_state)
+{
+ u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
+ u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id);
+ u32 type = TRB_TYPE(TRB_SET_DEQ);
+ u32 trb_sct = 0;
+ dma_addr_t addr;
+
+ addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg,
+ deq_state->new_deq_ptr);
+
+ if (deq_state->stream_id)
+ trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
+
+ cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct |
+ deq_state->new_cycle_state, upper_32_bits(addr),
+ trb_stream_id, trb_slot_id |
+ EP_ID_FOR_TRB(pep->idx) | type);
+}
+
+void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index)
+{
+ return cdnsp_queue_command(pdev, 0, 0, 0,
+ SLOT_ID_FOR_TRB(pdev->slot_id) |
+ EP_ID_FOR_TRB(ep_index) |
+ TRB_TYPE(TRB_RESET_EP));
+}
+
+/*
+ * Queue a halt endpoint request on the command ring.
+ */
+void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
+{
+ cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) |
+ SLOT_ID_FOR_TRB(pdev->slot_id) |
+ EP_ID_FOR_TRB(ep_index));
+}
+
+/*
+ * Queue a flush endpoint request on the command ring.
+ */
+void cdnsp_queue_flush_endpoint(struct cdnsp_device *pdev,
+ unsigned int ep_index)
+{
+ cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_FLUSH_ENDPOINT) |
+ SLOT_ID_FOR_TRB(pdev->slot_id) |
+ EP_ID_FOR_TRB(ep_index));
+}
+
+void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num)
+{
+ u32 lo, mid;
+
+ lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) |
+ TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address);
+ mid = TRB_FH_TR_PACKET_DEV_NOT |
+ TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) |
+ TRB_FH_TO_INTERFACE(intf_num);
+
+ cdnsp_queue_command(pdev, lo, mid, 0,
+ TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2));
+}