diff options
author | Saeed Mahameed <saeedm@mellanox.com> | 2019-04-23 01:25:39 +0300 |
---|---|---|
committer | Saeed Mahameed <saeedm@mellanox.com> | 2019-04-23 01:25:39 +0300 |
commit | c3bdd5e65185f46150b3bac103b3854040487857 (patch) | |
tree | fa4424dac80b792f105dfcf94cce97d9878b8148 /drivers/misc/habanalabs/memory.c | |
parent | d9cb06759eca5a420072b937d2a2a670db474008 (diff) | |
parent | 9e98c678c2d6ae3a17cb2de55d17f69dddaa231b (diff) | |
download | linux-c3bdd5e65185f46150b3bac103b3854040487857.tar.xz |
Merge tag 'v5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux into mlx5-next
Linux 5.1-rc1
We forgot to reset the branch last merge window thus mlx5-next is outdated
and still based on 5.0-rc2. This merge commit is needed to sync mlx5-next
branch with 5.1-rc1.
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
Diffstat (limited to 'drivers/misc/habanalabs/memory.c')
-rw-r--r-- | drivers/misc/habanalabs/memory.c | 1723 |
1 files changed, 1723 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/memory.c b/drivers/misc/habanalabs/memory.c new file mode 100644 index 000000000000..3a12fd1a5274 --- /dev/null +++ b/drivers/misc/habanalabs/memory.c @@ -0,0 +1,1723 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2016-2019 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include <uapi/misc/habanalabs.h> +#include "habanalabs.h" +#include "include/hw_ip/mmu/mmu_general.h" + +#include <linux/uaccess.h> +#include <linux/slab.h> +#include <linux/genalloc.h> + +#define PGS_IN_2MB_PAGE (PAGE_SIZE_2MB >> PAGE_SHIFT) +#define HL_MMU_DEBUG 0 + +/* + * The va ranges in context object contain a list with the available chunks of + * device virtual memory. + * There is one range for host allocations and one for DRAM allocations. + * + * On initialization each range contains one chunk of all of its available + * virtual range which is a half of the total device virtual range. + * + * On each mapping of physical pages, a suitable virtual range chunk (with a + * minimum size) is selected from the list. If the chunk size equals the + * requested size, the chunk is returned. Otherwise, the chunk is split into + * two chunks - one to return as result and a remainder to stay in the list. + * + * On each Unmapping of a virtual address, the relevant virtual chunk is + * returned to the list. The chunk is added to the list and if its edges match + * the edges of the adjacent chunks (means a contiguous chunk can be created), + * the chunks are merged. + * + * On finish, the list is checked to have only one chunk of all the relevant + * virtual range (which is a half of the device total virtual range). + * If not (means not all mappings were unmapped), a warning is printed. + */ + +/* + * alloc_device_memory - allocate device memory + * + * @ctx : current context + * @args : host parameters containing the requested size + * @ret_handle : result handle + * + * This function does the following: + * - Allocate the requested size rounded up to 2MB pages + * - Return unique handle + */ +static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args, + u32 *ret_handle) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_pack; + u64 paddr = 0; + u32 total_size, num_pgs, num_curr_pgs, page_size, page_shift; + int handle, rc, i; + bool contiguous; + + num_curr_pgs = 0; + page_size = hdev->asic_prop.dram_page_size; + page_shift = __ffs(page_size); + num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift; + total_size = num_pgs << page_shift; + + contiguous = args->flags & HL_MEM_CONTIGUOUS; + + if (contiguous) { + paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size); + if (!paddr) { + dev_err(hdev->dev, + "failed to allocate %u huge contiguous pages\n", + num_pgs); + return -ENOMEM; + } + } + + phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); + if (!phys_pg_pack) { + rc = -ENOMEM; + goto pages_pack_err; + } + + phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK; + phys_pg_pack->asid = ctx->asid; + phys_pg_pack->npages = num_pgs; + phys_pg_pack->page_size = page_size; + phys_pg_pack->total_size = total_size; + phys_pg_pack->flags = args->flags; + phys_pg_pack->contiguous = contiguous; + + phys_pg_pack->pages = kcalloc(num_pgs, sizeof(u64), GFP_KERNEL); + if (!phys_pg_pack->pages) { + rc = -ENOMEM; + goto pages_arr_err; + } + + if (phys_pg_pack->contiguous) { + for (i = 0 ; i < num_pgs ; i++) + phys_pg_pack->pages[i] = paddr + i * page_size; + } else { + for (i = 0 ; i < num_pgs ; i++) { + phys_pg_pack->pages[i] = (u64) gen_pool_alloc( + vm->dram_pg_pool, + page_size); + if (!phys_pg_pack->pages[i]) { + dev_err(hdev->dev, + "ioctl failed to allocate page\n"); + rc = -ENOMEM; + goto page_err; + } + + num_curr_pgs++; + } + } + + spin_lock(&vm->idr_lock); + handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0, + GFP_ATOMIC); + spin_unlock(&vm->idr_lock); + + if (handle < 0) { + dev_err(hdev->dev, "Failed to get handle for page\n"); + rc = -EFAULT; + goto idr_err; + } + + for (i = 0 ; i < num_pgs ; i++) + kref_get(&vm->dram_pg_pool_refcount); + + phys_pg_pack->handle = handle; + + atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem); + atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem); + + *ret_handle = handle; + + return 0; + +idr_err: +page_err: + if (!phys_pg_pack->contiguous) + for (i = 0 ; i < num_curr_pgs ; i++) + gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], + page_size); + + kfree(phys_pg_pack->pages); +pages_arr_err: + kfree(phys_pg_pack); +pages_pack_err: + if (contiguous) + gen_pool_free(vm->dram_pg_pool, paddr, total_size); + + return rc; +} + +/* + * get_userptr_from_host_va - initialize userptr structure from given host + * virtual address + * + * @hdev : habanalabs device structure + * @args : parameters containing the virtual address and size + * @p_userptr : pointer to result userptr structure + * + * This function does the following: + * - Allocate userptr structure + * - Pin the given host memory using the userptr structure + * - Perform DMA mapping to have the DMA addresses of the pages + */ +static int get_userptr_from_host_va(struct hl_device *hdev, + struct hl_mem_in *args, struct hl_userptr **p_userptr) +{ + struct hl_userptr *userptr; + int rc; + + userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); + if (!userptr) { + rc = -ENOMEM; + goto userptr_err; + } + + rc = hl_pin_host_memory(hdev, args->map_host.host_virt_addr, + args->map_host.mem_size, userptr); + if (rc) { + dev_err(hdev->dev, "Failed to pin host memory\n"); + goto pin_err; + } + + rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl, + userptr->sgt->nents, DMA_BIDIRECTIONAL); + if (rc) { + dev_err(hdev->dev, "failed to map sgt with DMA region\n"); + goto dma_map_err; + } + + userptr->dma_mapped = true; + userptr->dir = DMA_BIDIRECTIONAL; + userptr->vm_type = VM_TYPE_USERPTR; + + *p_userptr = userptr; + + return 0; + +dma_map_err: + hl_unpin_host_memory(hdev, userptr); +pin_err: + kfree(userptr); +userptr_err: + + return rc; +} + +/* + * free_userptr - free userptr structure + * + * @hdev : habanalabs device structure + * @userptr : userptr to free + * + * This function does the following: + * - Unpins the physical pages + * - Frees the userptr structure + */ +static void free_userptr(struct hl_device *hdev, struct hl_userptr *userptr) +{ + hl_unpin_host_memory(hdev, userptr); + kfree(userptr); +} + +/* + * dram_pg_pool_do_release - free DRAM pages pool + * + * @ref : pointer to reference object + * + * This function does the following: + * - Frees the idr structure of physical pages handles + * - Frees the generic pool of DRAM physical pages + */ +static void dram_pg_pool_do_release(struct kref *ref) +{ + struct hl_vm *vm = container_of(ref, struct hl_vm, + dram_pg_pool_refcount); + + /* + * free the idr here as only here we know for sure that there are no + * allocated physical pages and hence there are no handles in use + */ + idr_destroy(&vm->phys_pg_pack_handles); + gen_pool_destroy(vm->dram_pg_pool); +} + +/* + * free_phys_pg_pack - free physical page pack + * + * @hdev : habanalabs device structure + * @phys_pg_pack : physical page pack to free + * + * This function does the following: + * - For DRAM memory only, iterate over the pack and free each physical block + * structure by returning it to the general pool + * - Free the hl_vm_phys_pg_pack structure + */ +static void free_phys_pg_pack(struct hl_device *hdev, + struct hl_vm_phys_pg_pack *phys_pg_pack) +{ + struct hl_vm *vm = &hdev->vm; + int i; + + if (!phys_pg_pack->created_from_userptr) { + if (phys_pg_pack->contiguous) { + gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0], + phys_pg_pack->total_size); + + for (i = 0; i < phys_pg_pack->npages ; i++) + kref_put(&vm->dram_pg_pool_refcount, + dram_pg_pool_do_release); + } else { + for (i = 0 ; i < phys_pg_pack->npages ; i++) { + gen_pool_free(vm->dram_pg_pool, + phys_pg_pack->pages[i], + phys_pg_pack->page_size); + kref_put(&vm->dram_pg_pool_refcount, + dram_pg_pool_do_release); + } + } + } + + kfree(phys_pg_pack->pages); + kfree(phys_pg_pack); +} + +/* + * free_device_memory - free device memory + * + * @ctx : current context + * @handle : handle of the memory chunk to free + * + * This function does the following: + * - Free the device memory related to the given handle + */ +static int free_device_memory(struct hl_ctx *ctx, u32 handle) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_pack; + + spin_lock(&vm->idr_lock); + phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); + if (phys_pg_pack) { + if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) { + dev_err(hdev->dev, "handle %u is mapped, cannot free\n", + handle); + spin_unlock(&vm->idr_lock); + return -EINVAL; + } + + /* + * must remove from idr before the freeing of the physical + * pages as the refcount of the pool is also the trigger of the + * idr destroy + */ + idr_remove(&vm->phys_pg_pack_handles, handle); + spin_unlock(&vm->idr_lock); + + atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem); + atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem); + + free_phys_pg_pack(hdev, phys_pg_pack); + } else { + spin_unlock(&vm->idr_lock); + dev_err(hdev->dev, + "free device memory failed, no match for handle %u\n", + handle); + return -EINVAL; + } + + return 0; +} + +/* + * clear_va_list_locked - free virtual addresses list + * + * @hdev : habanalabs device structure + * @va_list : list of virtual addresses to free + * + * This function does the following: + * - Iterate over the list and free each virtual addresses block + * + * This function should be called only when va_list lock is taken + */ +static void clear_va_list_locked(struct hl_device *hdev, + struct list_head *va_list) +{ + struct hl_vm_va_block *va_block, *tmp; + + list_for_each_entry_safe(va_block, tmp, va_list, node) { + list_del(&va_block->node); + kfree(va_block); + } +} + +/* + * print_va_list_locked - print virtual addresses list + * + * @hdev : habanalabs device structure + * @va_list : list of virtual addresses to print + * + * This function does the following: + * - Iterate over the list and print each virtual addresses block + * + * This function should be called only when va_list lock is taken + */ +static void print_va_list_locked(struct hl_device *hdev, + struct list_head *va_list) +{ +#if HL_MMU_DEBUG + struct hl_vm_va_block *va_block; + + dev_dbg(hdev->dev, "print va list:\n"); + + list_for_each_entry(va_block, va_list, node) + dev_dbg(hdev->dev, + "va block, start: 0x%llx, end: 0x%llx, size: %llu\n", + va_block->start, va_block->end, va_block->size); +#endif +} + +/* + * merge_va_blocks_locked - merge a virtual block if possible + * + * @hdev : pointer to the habanalabs device structure + * @va_list : pointer to the virtual addresses block list + * @va_block : virtual block to merge with adjacent blocks + * + * This function does the following: + * - Merge the given blocks with the adjacent blocks if their virtual ranges + * create a contiguous virtual range + * + * This Function should be called only when va_list lock is taken + */ +static void merge_va_blocks_locked(struct hl_device *hdev, + struct list_head *va_list, struct hl_vm_va_block *va_block) +{ + struct hl_vm_va_block *prev, *next; + + prev = list_prev_entry(va_block, node); + if (&prev->node != va_list && prev->end + 1 == va_block->start) { + prev->end = va_block->end; + prev->size = prev->end - prev->start; + list_del(&va_block->node); + kfree(va_block); + va_block = prev; + } + + next = list_next_entry(va_block, node); + if (&next->node != va_list && va_block->end + 1 == next->start) { + next->start = va_block->start; + next->size = next->end - next->start; + list_del(&va_block->node); + kfree(va_block); + } +} + +/* + * add_va_block_locked - add a virtual block to the virtual addresses list + * + * @hdev : pointer to the habanalabs device structure + * @va_list : pointer to the virtual addresses block list + * @start : start virtual address + * @end : end virtual address + * + * This function does the following: + * - Add the given block to the virtual blocks list and merge with other + * blocks if a contiguous virtual block can be created + * + * This Function should be called only when va_list lock is taken + */ +static int add_va_block_locked(struct hl_device *hdev, + struct list_head *va_list, u64 start, u64 end) +{ + struct hl_vm_va_block *va_block, *res = NULL; + u64 size = end - start; + + print_va_list_locked(hdev, va_list); + + list_for_each_entry(va_block, va_list, node) { + /* TODO: remove upon matureness */ + if (hl_mem_area_crosses_range(start, size, va_block->start, + va_block->end)) { + dev_err(hdev->dev, + "block crossing ranges at start 0x%llx, end 0x%llx\n", + va_block->start, va_block->end); + return -EINVAL; + } + + if (va_block->end < start) + res = va_block; + } + + va_block = kmalloc(sizeof(*va_block), GFP_KERNEL); + if (!va_block) + return -ENOMEM; + + va_block->start = start; + va_block->end = end; + va_block->size = size; + + if (!res) + list_add(&va_block->node, va_list); + else + list_add(&va_block->node, &res->node); + + merge_va_blocks_locked(hdev, va_list, va_block); + + print_va_list_locked(hdev, va_list); + + return 0; +} + +/* + * add_va_block - wrapper for add_va_block_locked + * + * @hdev : pointer to the habanalabs device structure + * @va_list : pointer to the virtual addresses block list + * @start : start virtual address + * @end : end virtual address + * + * This function does the following: + * - Takes the list lock and calls add_va_block_locked + */ +static inline int add_va_block(struct hl_device *hdev, + struct hl_va_range *va_range, u64 start, u64 end) +{ + int rc; + + mutex_lock(&va_range->lock); + rc = add_va_block_locked(hdev, &va_range->list, start, end); + mutex_unlock(&va_range->lock); + + return rc; +} + +/* + * get_va_block - get a virtual block with the requested size + * + * @hdev : pointer to the habanalabs device structure + * @va_range : pointer to the virtual addresses range + * @size : requested block size + * @hint_addr : hint for request address by the user + * @is_userptr : is host or DRAM memory + * + * This function does the following: + * - Iterate on the virtual block list to find a suitable virtual block for the + * requested size + * - Reserve the requested block and update the list + * - Return the start address of the virtual block + */ +static u64 get_va_block(struct hl_device *hdev, + struct hl_va_range *va_range, u32 size, u64 hint_addr, + bool is_userptr) +{ + struct hl_vm_va_block *va_block, *new_va_block = NULL; + u64 valid_start, valid_size, prev_start, prev_end, page_mask, + res_valid_start = 0, res_valid_size = 0; + u32 page_size; + bool add_prev = false; + + if (is_userptr) { + /* + * We cannot know if the user allocated memory with huge pages + * or not, hence we continue with the biggest possible + * granularity. + */ + page_size = PAGE_SIZE_2MB; + page_mask = PAGE_MASK_2MB; + } else { + page_size = hdev->asic_prop.dram_page_size; + page_mask = ~((u64)page_size - 1); + } + + mutex_lock(&va_range->lock); + + print_va_list_locked(hdev, &va_range->list); + + list_for_each_entry(va_block, &va_range->list, node) { + /* calc the first possible aligned addr */ + valid_start = va_block->start; + + + if (valid_start & (page_size - 1)) { + valid_start &= page_mask; + valid_start += page_size; + if (valid_start > va_block->end) + continue; + } + + valid_size = va_block->end - valid_start; + + if (valid_size >= size && + (!new_va_block || valid_size < res_valid_size)) { + + new_va_block = va_block; + res_valid_start = valid_start; + res_valid_size = valid_size; + } + + if (hint_addr && hint_addr >= valid_start && + ((hint_addr + size) <= va_block->end)) { + new_va_block = va_block; + res_valid_start = hint_addr; + res_valid_size = valid_size; + break; + } + } + + if (!new_va_block) { + dev_err(hdev->dev, "no available va block for size %u\n", size); + goto out; + } + + if (res_valid_start > new_va_block->start) { + prev_start = new_va_block->start; + prev_end = res_valid_start - 1; + + new_va_block->start = res_valid_start; + new_va_block->size = res_valid_size; + + add_prev = true; + } + + if (new_va_block->size > size) { + new_va_block->start += size; + new_va_block->size = new_va_block->end - new_va_block->start; + } else { + list_del(&new_va_block->node); + kfree(new_va_block); + } + + if (add_prev) + add_va_block_locked(hdev, &va_range->list, prev_start, + prev_end); + + print_va_list_locked(hdev, &va_range->list); +out: + mutex_unlock(&va_range->lock); + + return res_valid_start; +} + +/* + * get_sg_info - get number of pages and the DMA address from SG list + * + * @sg : the SG list + * @dma_addr : pointer to DMA address to return + * + * Calculate the number of consecutive pages described by the SG list. Take the + * offset of the address in the first page, add to it the length and round it up + * to the number of needed pages. + */ +static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) +{ + *dma_addr = sg_dma_address(sg); + + return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + + (PAGE_SIZE - 1)) >> PAGE_SHIFT; +} + +/* + * init_phys_pg_pack_from_userptr - initialize physical page pack from host + * memory + * + * @ctx : current context + * @userptr : userptr to initialize from + * @pphys_pg_pack : res pointer + * + * This function does the following: + * - Pin the physical pages related to the given virtual block + * - Create a physical page pack from the physical pages related to the given + * virtual block + */ +static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx, + struct hl_userptr *userptr, + struct hl_vm_phys_pg_pack **pphys_pg_pack) +{ + struct hl_vm_phys_pg_pack *phys_pg_pack; + struct scatterlist *sg; + dma_addr_t dma_addr; + u64 page_mask; + u32 npages, total_npages, page_size = PAGE_SIZE; + bool first = true, is_huge_page_opt = true; + int rc, i, j; + + phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); + if (!phys_pg_pack) + return -ENOMEM; + + phys_pg_pack->vm_type = userptr->vm_type; + phys_pg_pack->created_from_userptr = true; + phys_pg_pack->asid = ctx->asid; + atomic_set(&phys_pg_pack->mapping_cnt, 1); + + /* Only if all dma_addrs are aligned to 2MB and their + * sizes is at least 2MB, we can use huge page mapping. + * We limit the 2MB optimization to this condition, + * since later on we acquire the related VA range as one + * consecutive block. + */ + total_npages = 0; + for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) { + npages = get_sg_info(sg, &dma_addr); + + total_npages += npages; + + if (first) { + first = false; + dma_addr &= PAGE_MASK_2MB; + } + + if ((npages % PGS_IN_2MB_PAGE) || + (dma_addr & (PAGE_SIZE_2MB - 1))) + is_huge_page_opt = false; + } + + if (is_huge_page_opt) { + page_size = PAGE_SIZE_2MB; + total_npages /= PGS_IN_2MB_PAGE; + } + + page_mask = ~(((u64) page_size) - 1); + + phys_pg_pack->pages = kcalloc(total_npages, sizeof(u64), GFP_KERNEL); + if (!phys_pg_pack->pages) { + rc = -ENOMEM; + goto page_pack_arr_mem_err; + } + + phys_pg_pack->npages = total_npages; + phys_pg_pack->page_size = page_size; + phys_pg_pack->total_size = total_npages * page_size; + + j = 0; + first = true; + for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) { + npages = get_sg_info(sg, &dma_addr); + + /* align down to physical page size and save the offset */ + if (first) { + first = false; + phys_pg_pack->offset = dma_addr & (page_size - 1); + dma_addr &= page_mask; + } + + while (npages) { + phys_pg_pack->pages[j++] = dma_addr; + dma_addr += page_size; + + if (is_huge_page_opt) + npages -= PGS_IN_2MB_PAGE; + else + npages--; + } + } + + *pphys_pg_pack = phys_pg_pack; + + return 0; + +page_pack_arr_mem_err: + kfree(phys_pg_pack); + + return rc; +} + +/* + * map_phys_page_pack - maps the physical page pack + * + * @ctx : current context + * @vaddr : start address of the virtual area to map from + * @phys_pg_pack : the pack of physical pages to map to + * + * This function does the following: + * - Maps each chunk of virtual memory to matching physical chunk + * - Stores number of successful mappings in the given argument + * - Returns 0 on success, error code otherwise. + */ +static int map_phys_page_pack(struct hl_ctx *ctx, u64 vaddr, + struct hl_vm_phys_pg_pack *phys_pg_pack) +{ + struct hl_device *hdev = ctx->hdev; + u64 next_vaddr = vaddr, paddr; + u32 page_size = phys_pg_pack->page_size; + int i, rc = 0, mapped_pg_cnt = 0; + + for (i = 0 ; i < phys_pg_pack->npages ; i++) { + paddr = phys_pg_pack->pages[i]; + + /* For accessing the host we need to turn on bit 39 */ + if (phys_pg_pack->created_from_userptr) + paddr += hdev->asic_prop.host_phys_base_address; + + rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size); + if (rc) { + dev_err(hdev->dev, + "map failed for handle %u, npages: %d, mapped: %d", + phys_pg_pack->handle, phys_pg_pack->npages, + mapped_pg_cnt); + goto err; + } + + mapped_pg_cnt++; + next_vaddr += page_size; + } + + return 0; + +err: + next_vaddr = vaddr; + for (i = 0 ; i < mapped_pg_cnt ; i++) { + if (hl_mmu_unmap(ctx, next_vaddr, page_size)) + dev_warn_ratelimited(hdev->dev, + "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n", + phys_pg_pack->handle, next_vaddr, + phys_pg_pack->pages[i], page_size); + + next_vaddr += page_size; + } + + return rc; +} + +static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args, + u64 *paddr) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_pack; + u32 handle; + + handle = lower_32_bits(args->map_device.handle); + spin_lock(&vm->idr_lock); + phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); + if (!phys_pg_pack) { + spin_unlock(&vm->idr_lock); + dev_err(hdev->dev, "no match for handle %u\n", handle); + return -EINVAL; + } + + *paddr = phys_pg_pack->pages[0]; + + spin_unlock(&vm->idr_lock); + + return 0; +} + +/* + * map_device_va - map the given memory + * + * @ctx : current context + * @args : host parameters with handle/host virtual address + * @device_addr : pointer to result device virtual address + * + * This function does the following: + * - If given a physical device memory handle, map to a device virtual block + * and return the start address of this block + * - If given a host virtual address and size, find the related physical pages, + * map a device virtual block to this pages and return the start address of + * this block + */ +static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, + u64 *device_addr) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_pack; + struct hl_userptr *userptr = NULL; + struct hl_vm_hash_node *hnode; + enum vm_type_t *vm_type; + u64 ret_vaddr, hint_addr; + u32 handle = 0; + int rc; + bool is_userptr = args->flags & HL_MEM_USERPTR; + + /* Assume failure */ + *device_addr = 0; + + if (is_userptr) { + rc = get_userptr_from_host_va(hdev, args, &userptr); + if (rc) { + dev_err(hdev->dev, "failed to get userptr from va\n"); + return rc; + } + + rc = init_phys_pg_pack_from_userptr(ctx, userptr, + &phys_pg_pack); + if (rc) { + dev_err(hdev->dev, + "unable to init page pack for vaddr 0x%llx\n", + args->map_host.host_virt_addr); + goto init_page_pack_err; + } + + vm_type = (enum vm_type_t *) userptr; + hint_addr = args->map_host.hint_addr; + } else { + handle = lower_32_bits(args->map_device.handle); + + spin_lock(&vm->idr_lock); + phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); + if (!phys_pg_pack) { + spin_unlock(&vm->idr_lock); + dev_err(hdev->dev, + "no match for handle %u\n", handle); + return -EINVAL; + } + + /* increment now to avoid freeing device memory while mapping */ + atomic_inc(&phys_pg_pack->mapping_cnt); + + spin_unlock(&vm->idr_lock); + + vm_type = (enum vm_type_t *) phys_pg_pack; + + hint_addr = args->map_device.hint_addr; + } + + /* + * relevant for mapping device physical memory only, as host memory is + * implicitly shared + */ + if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) && + phys_pg_pack->asid != ctx->asid) { + dev_err(hdev->dev, + "Failed to map memory, handle %u is not shared\n", + handle); + rc = -EPERM; + goto shared_err; + } + + hnode = kzalloc(sizeof(*hnode), GFP_KERNEL); + if (!hnode) { + rc = -ENOMEM; + goto hnode_err; + } + + ret_vaddr = get_va_block(hdev, + is_userptr ? &ctx->host_va_range : &ctx->dram_va_range, + phys_pg_pack->total_size, hint_addr, is_userptr); + if (!ret_vaddr) { + dev_err(hdev->dev, "no available va block for handle %u\n", + handle); + rc = -ENOMEM; + goto va_block_err; + } + + mutex_lock(&ctx->mmu_lock); + + rc = map_phys_page_pack(ctx, ret_vaddr, phys_pg_pack); + if (rc) { + mutex_unlock(&ctx->mmu_lock); + dev_err(hdev->dev, "mapping page pack failed for handle %u\n", + handle); + goto map_err; + } + + hdev->asic_funcs->mmu_invalidate_cache(hdev, false); + + mutex_unlock(&ctx->mmu_lock); + + ret_vaddr += phys_pg_pack->offset; + + hnode->ptr = vm_type; + hnode->vaddr = ret_vaddr; + + mutex_lock(&ctx->mem_hash_lock); + hash_add(ctx->mem_hash, &hnode->node, ret_vaddr); + mutex_unlock(&ctx->mem_hash_lock); + + *device_addr = ret_vaddr; + + if (is_userptr) + free_phys_pg_pack(hdev, phys_pg_pack); + + return 0; + +map_err: + if (add_va_block(hdev, + is_userptr ? &ctx->host_va_range : &ctx->dram_va_range, + ret_vaddr, + ret_vaddr + phys_pg_pack->total_size - 1)) + dev_warn(hdev->dev, + "release va block failed for handle 0x%x, vaddr: 0x%llx\n", + handle, ret_vaddr); + +va_block_err: + kfree(hnode); +hnode_err: +shared_err: + atomic_dec(&phys_pg_pack->mapping_cnt); + if (is_userptr) + free_phys_pg_pack(hdev, phys_pg_pack); +init_page_pack_err: + if (is_userptr) + free_userptr(hdev, userptr); + + return rc; +} + +/* + * unmap_device_va - unmap the given device virtual address + * + * @ctx : current context + * @vaddr : device virtual address to unmap + * + * This function does the following: + * - Unmap the physical pages related to the given virtual address + * - return the device virtual block to the virtual block list + */ +static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; + struct hl_vm_hash_node *hnode = NULL; + struct hl_userptr *userptr = NULL; + enum vm_type_t *vm_type; + u64 next_vaddr; + u32 page_size; + bool is_userptr; + int i, rc; + + /* protect from double entrance */ + mutex_lock(&ctx->mem_hash_lock); + hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr) + if (vaddr == hnode->vaddr) + break; + + if (!hnode) { + mutex_unlock(&ctx->mem_hash_lock); + dev_err(hdev->dev, + "unmap failed, no mem hnode for vaddr 0x%llx\n", + vaddr); + return -EINVAL; + } + + hash_del(&hnode->node); + mutex_unlock(&ctx->mem_hash_lock); + + vm_type = hnode->ptr; + + if (*vm_type == VM_TYPE_USERPTR) { + is_userptr = true; + userptr = hnode->ptr; + rc = init_phys_pg_pack_from_userptr(ctx, userptr, + &phys_pg_pack); + if (rc) { + dev_err(hdev->dev, + "unable to init page pack for vaddr 0x%llx\n", + vaddr); + goto vm_type_err; + } + } else if (*vm_type == VM_TYPE_PHYS_PACK) { + is_userptr = false; + phys_pg_pack = hnode->ptr; + } else { + dev_warn(hdev->dev, + "unmap failed, unknown vm desc for vaddr 0x%llx\n", + vaddr); + rc = -EFAULT; + goto vm_type_err; + } + + if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) { + dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr); + rc = -EINVAL; + goto mapping_cnt_err; + } + + page_size = phys_pg_pack->page_size; + vaddr &= ~(((u64) page_size) - 1); + + next_vaddr = vaddr; + + mutex_lock(&ctx->mmu_lock); + + for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) + if (hl_mmu_unmap(ctx, next_vaddr, page_size)) + dev_warn_ratelimited(hdev->dev, + "unmap failed for vaddr: 0x%llx\n", next_vaddr); + + hdev->asic_funcs->mmu_invalidate_cache(hdev, true); + + mutex_unlock(&ctx->mmu_lock); + + if (add_va_block(hdev, + is_userptr ? &ctx->host_va_range : &ctx->dram_va_range, + vaddr, + vaddr + phys_pg_pack->total_size - 1)) + dev_warn(hdev->dev, "add va block failed for vaddr: 0x%llx\n", + vaddr); + + atomic_dec(&phys_pg_pack->mapping_cnt); + kfree(hnode); + + if (is_userptr) { + free_phys_pg_pack(hdev, phys_pg_pack); + free_userptr(hdev, userptr); + } + + return 0; + +mapping_cnt_err: + if (is_userptr) + free_phys_pg_pack(hdev, phys_pg_pack); +vm_type_err: + mutex_lock(&ctx->mem_hash_lock); + hash_add(ctx->mem_hash, &hnode->node, vaddr); + mutex_unlock(&ctx->mem_hash_lock); + + return rc; +} + +int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data) +{ + union hl_mem_args *args = data; + struct hl_device *hdev = hpriv->hdev; + struct hl_ctx *ctx = hpriv->ctx; + u64 device_addr = 0; + u32 handle = 0; + int rc; + + if (hl_device_disabled_or_in_reset(hdev)) { + dev_warn_ratelimited(hdev->dev, + "Device is disabled or in reset. Can't execute memory IOCTL\n"); + return -EBUSY; + } + + if (hdev->mmu_enable) { + switch (args->in.op) { + case HL_MEM_OP_ALLOC: + if (!hdev->dram_supports_virtual_memory) { + dev_err(hdev->dev, + "DRAM alloc is not supported\n"); + rc = -EINVAL; + goto out; + } + if (args->in.alloc.mem_size == 0) { + dev_err(hdev->dev, + "alloc size must be larger than 0\n"); + rc = -EINVAL; + goto out; + } + rc = alloc_device_memory(ctx, &args->in, &handle); + + memset(args, 0, sizeof(*args)); + args->out.handle = (__u64) handle; + break; + + case HL_MEM_OP_FREE: + if (!hdev->dram_supports_virtual_memory) { + dev_err(hdev->dev, + "DRAM free is not supported\n"); + rc = -EINVAL; + goto out; + } + rc = free_device_memory(ctx, args->in.free.handle); + break; + + case HL_MEM_OP_MAP: + rc = map_device_va(ctx, &args->in, &device_addr); + + memset(args, 0, sizeof(*args)); + args->out.device_virt_addr = device_addr; + break; + + case HL_MEM_OP_UNMAP: + rc = unmap_device_va(ctx, + args->in.unmap.device_virt_addr); + break; + + default: + dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); + rc = -ENOTTY; + break; + } + } else { + switch (args->in.op) { + case HL_MEM_OP_ALLOC: + if (args->in.alloc.mem_size == 0) { + dev_err(hdev->dev, + "alloc size must be larger than 0\n"); + rc = -EINVAL; + goto out; + } + + /* Force contiguous as there are no real MMU + * translations to overcome physical memory gaps + */ + args->in.flags |= HL_MEM_CONTIGUOUS; + rc = alloc_device_memory(ctx, &args->in, &handle); + + memset(args, 0, sizeof(*args)); + args->out.handle = (__u64) handle; + break; + + case HL_MEM_OP_FREE: + rc = free_device_memory(ctx, args->in.free.handle); + break; + + case HL_MEM_OP_MAP: + if (args->in.flags & HL_MEM_USERPTR) { + device_addr = args->in.map_host.host_virt_addr; + rc = 0; + } else { + rc = get_paddr_from_handle(ctx, &args->in, + &device_addr); + } + + memset(args, 0, sizeof(*args)); + args->out.device_virt_addr = device_addr; + break; + + case HL_MEM_OP_UNMAP: + rc = 0; + break; + + default: + dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); + rc = -ENOTTY; + break; + } + } + +out: + return rc; +} + +/* + * hl_pin_host_memory - pins a chunk of host memory + * + * @hdev : pointer to the habanalabs device structure + * @addr : the user-space virtual address of the memory area + * @size : the size of the memory area + * @userptr : pointer to hl_userptr structure + * + * This function does the following: + * - Pins the physical pages + * - Create a SG list from those pages + */ +int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, + struct hl_userptr *userptr) +{ + u64 start, end; + u32 npages, offset; + int rc; + + if (!size) { + dev_err(hdev->dev, "size to pin is invalid - %llu\n", size); + return -EINVAL; + } + + if (!access_ok((void __user *) (uintptr_t) addr, size)) { + dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr); + return -EFAULT; + } + + /* + * If the combination of the address and size requested for this memory + * region causes an integer overflow, return error. + */ + if (((addr + size) < addr) || + PAGE_ALIGN(addr + size) < (addr + size)) { + dev_err(hdev->dev, + "user pointer 0x%llx + %llu causes integer overflow\n", + addr, size); + return -EINVAL; + } + + start = addr & PAGE_MASK; + offset = addr & ~PAGE_MASK; + end = PAGE_ALIGN(addr + size); + npages = (end - start) >> PAGE_SHIFT; + + userptr->size = size; + userptr->addr = addr; + userptr->dma_mapped = false; + INIT_LIST_HEAD(&userptr->job_node); + + userptr->vec = frame_vector_create(npages); + if (!userptr->vec) { + dev_err(hdev->dev, "Failed to create frame vector\n"); + return -ENOMEM; + } + + rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE, + userptr->vec); + + if (rc != npages) { + dev_err(hdev->dev, + "Failed to map host memory, user ptr probably wrong\n"); + if (rc < 0) + goto destroy_framevec; + rc = -EFAULT; + goto put_framevec; + } + + if (frame_vector_to_pages(userptr->vec) < 0) { + dev_err(hdev->dev, + "Failed to translate frame vector to pages\n"); + rc = -EFAULT; + goto put_framevec; + } + + userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC); + if (!userptr->sgt) { + rc = -ENOMEM; + goto put_framevec; + } + + rc = sg_alloc_table_from_pages(userptr->sgt, + frame_vector_pages(userptr->vec), + npages, offset, size, GFP_ATOMIC); + if (rc < 0) { + dev_err(hdev->dev, "failed to create SG table from pages\n"); + goto free_sgt; + } + + hl_debugfs_add_userptr(hdev, userptr); + + return 0; + +free_sgt: + kfree(userptr->sgt); +put_framevec: + put_vaddr_frames(userptr->vec); +destroy_framevec: + frame_vector_destroy(userptr->vec); + return rc; +} + +/* + * hl_unpin_host_memory - unpins a chunk of host memory + * + * @hdev : pointer to the habanalabs device structure + * @userptr : pointer to hl_userptr structure + * + * This function does the following: + * - Unpins the physical pages related to the host memory + * - Free the SG list + */ +int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr) +{ + struct page **pages; + + hl_debugfs_remove_userptr(hdev, userptr); + + if (userptr->dma_mapped) + hdev->asic_funcs->hl_dma_unmap_sg(hdev, + userptr->sgt->sgl, + userptr->sgt->nents, + userptr->dir); + + pages = frame_vector_pages(userptr->vec); + if (!IS_ERR(pages)) { + int i; + + for (i = 0; i < frame_vector_count(userptr->vec); i++) + set_page_dirty_lock(pages[i]); + } + put_vaddr_frames(userptr->vec); + frame_vector_destroy(userptr->vec); + + list_del(&userptr->job_node); + + sg_free_table(userptr->sgt); + kfree(userptr->sgt); + + return 0; +} + +/* + * hl_userptr_delete_list - clear userptr list + * + * @hdev : pointer to the habanalabs device structure + * @userptr_list : pointer to the list to clear + * + * This function does the following: + * - Iterates over the list and unpins the host memory and frees the userptr + * structure. + */ +void hl_userptr_delete_list(struct hl_device *hdev, + struct list_head *userptr_list) +{ + struct hl_userptr *userptr, *tmp; + + list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) { + hl_unpin_host_memory(hdev, userptr); + kfree(userptr); + } + + INIT_LIST_HEAD(userptr_list); +} + +/* + * hl_userptr_is_pinned - returns whether the given userptr is pinned + * + * @hdev : pointer to the habanalabs device structure + * @userptr_list : pointer to the list to clear + * @userptr : pointer to userptr to check + * + * This function does the following: + * - Iterates over the list and checks if the given userptr is in it, means is + * pinned. If so, returns true, otherwise returns false. + */ +bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, + u32 size, struct list_head *userptr_list, + struct hl_userptr **userptr) +{ + list_for_each_entry((*userptr), userptr_list, job_node) { + if ((addr == (*userptr)->addr) && (size == (*userptr)->size)) + return true; + } + + return false; +} + +/* + * hl_va_range_init - initialize virtual addresses range + * + * @hdev : pointer to the habanalabs device structure + * @va_range : pointer to the range to initialize + * @start : range start address + * @end : range end address + * + * This function does the following: + * - Initializes the virtual addresses list of the given range with the given + * addresses. + */ +static int hl_va_range_init(struct hl_device *hdev, + struct hl_va_range *va_range, u64 start, u64 end) +{ + int rc; + + INIT_LIST_HEAD(&va_range->list); + + /* PAGE_SIZE alignment */ + + if (start & (PAGE_SIZE - 1)) { + start &= PAGE_MASK; + start += PAGE_SIZE; + } + + if (end & (PAGE_SIZE - 1)) + end &= PAGE_MASK; + + if (start >= end) { + dev_err(hdev->dev, "too small vm range for va list\n"); + return -EFAULT; + } + + rc = add_va_block(hdev, va_range, start, end); + + if (rc) { + dev_err(hdev->dev, "Failed to init host va list\n"); + return rc; + } + + va_range->start_addr = start; + va_range->end_addr = end; + + return 0; +} + +/* + * hl_vm_ctx_init_with_ranges - initialize virtual memory for context + * + * @ctx : pointer to the habanalabs context structure + * @host_range_start : host virtual addresses range start + * @host_range_end : host virtual addresses range end + * @dram_range_start : dram virtual addresses range start + * @dram_range_end : dram virtual addresses range end + * + * This function initializes the following: + * - MMU for context + * - Virtual address to area descriptor hashtable + * - Virtual block list of available virtual memory + */ +static int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start, + u64 host_range_end, u64 dram_range_start, + u64 dram_range_end) +{ + struct hl_device *hdev = ctx->hdev; + int rc; + + rc = hl_mmu_ctx_init(ctx); + if (rc) { + dev_err(hdev->dev, "failed to init context %d\n", ctx->asid); + return rc; + } + + mutex_init(&ctx->mem_hash_lock); + hash_init(ctx->mem_hash); + + mutex_init(&ctx->host_va_range.lock); + + rc = hl_va_range_init(hdev, &ctx->host_va_range, host_range_start, + host_range_end); + if (rc) { + dev_err(hdev->dev, "failed to init host vm range\n"); + goto host_vm_err; + } + + mutex_init(&ctx->dram_va_range.lock); + + rc = hl_va_range_init(hdev, &ctx->dram_va_range, dram_range_start, + dram_range_end); + if (rc) { + dev_err(hdev->dev, "failed to init dram vm range\n"); + goto dram_vm_err; + } + + hl_debugfs_add_ctx_mem_hash(hdev, ctx); + + return 0; + +dram_vm_err: + mutex_destroy(&ctx->dram_va_range.lock); + + mutex_lock(&ctx->host_va_range.lock); + clear_va_list_locked(hdev, &ctx->host_va_range.list); + mutex_unlock(&ctx->host_va_range.lock); +host_vm_err: + mutex_destroy(&ctx->host_va_range.lock); + mutex_destroy(&ctx->mem_hash_lock); + hl_mmu_ctx_fini(ctx); + + return rc; +} + +int hl_vm_ctx_init(struct hl_ctx *ctx) +{ + struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; + u64 host_range_start, host_range_end, dram_range_start, + dram_range_end; + + atomic64_set(&ctx->dram_phys_mem, 0); + + /* + * - If MMU is enabled, init the ranges as usual. + * - If MMU is disabled, in case of host mapping, the returned address + * is the given one. + * In case of DRAM mapping, the returned address is the physical + * address of the memory related to the given handle. + */ + if (ctx->hdev->mmu_enable) { + dram_range_start = prop->va_space_dram_start_address; + dram_range_end = prop->va_space_dram_end_address; + host_range_start = prop->va_space_host_start_address; + host_range_end = prop->va_space_host_end_address; + } else { + dram_range_start = prop->dram_user_base_address; + dram_range_end = prop->dram_end_address; + host_range_start = prop->dram_user_base_address; + host_range_end = prop->dram_end_address; + } + + return hl_vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end, + dram_range_start, dram_range_end); +} + +/* + * hl_va_range_fini - clear a virtual addresses range + * + * @hdev : pointer to the habanalabs structure + * va_range : pointer to virtual addresses range + * + * This function initializes the following: + * - Checks that the given range contains the whole initial range + * - Frees the virtual addresses block list and its lock + */ +static void hl_va_range_fini(struct hl_device *hdev, + struct hl_va_range *va_range) +{ + struct hl_vm_va_block *va_block; + + if (list_empty(&va_range->list)) { + dev_warn(hdev->dev, + "va list should not be empty on cleanup!\n"); + goto out; + } + + if (!list_is_singular(&va_range->list)) { + dev_warn(hdev->dev, + "va list should not contain multiple blocks on cleanup!\n"); + goto free_va_list; + } + + va_block = list_first_entry(&va_range->list, typeof(*va_block), node); + + if (va_block->start != va_range->start_addr || + va_block->end != va_range->end_addr) { + dev_warn(hdev->dev, + "wrong va block on cleanup, from 0x%llx to 0x%llx\n", + va_block->start, va_block->end); + goto free_va_list; + } + +free_va_list: + mutex_lock(&va_range->lock); + clear_va_list_locked(hdev, &va_range->list); + mutex_unlock(&va_range->lock); + +out: + mutex_destroy(&va_range->lock); +} + +/* + * hl_vm_ctx_fini - virtual memory teardown of context + * + * @ctx : pointer to the habanalabs context structure + * + * This function perform teardown the following: + * - Virtual block list of available virtual memory + * - Virtual address to area descriptor hashtable + * - MMU for context + * + * In addition this function does the following: + * - Unmaps the existing hashtable nodes if the hashtable is not empty. The + * hashtable should be empty as no valid mappings should exist at this + * point. + * - Frees any existing physical page list from the idr which relates to the + * current context asid. + * - This function checks the virtual block list for correctness. At this point + * the list should contain one element which describes the whole virtual + * memory range of the context. Otherwise, a warning is printed. + */ +void hl_vm_ctx_fini(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_list; + struct hl_vm_hash_node *hnode; + struct hlist_node *tmp_node; + int i; + + hl_debugfs_remove_ctx_mem_hash(hdev, ctx); + + if (!hash_empty(ctx->mem_hash)) + dev_notice(hdev->dev, "ctx is freed while it has va in use\n"); + + hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) { + dev_dbg(hdev->dev, + "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n", + hnode->vaddr, ctx->asid); + unmap_device_va(ctx, hnode->vaddr); + } + + spin_lock(&vm->idr_lock); + idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i) + if (phys_pg_list->asid == ctx->asid) { + dev_dbg(hdev->dev, + "page list 0x%p of asid %d is still alive\n", + phys_pg_list, ctx->asid); + free_phys_pg_pack(hdev, phys_pg_list); + idr_remove(&vm->phys_pg_pack_handles, i); + } + spin_unlock(&vm->idr_lock); + + hl_va_range_fini(hdev, &ctx->dram_va_range); + hl_va_range_fini(hdev, &ctx->host_va_range); + + mutex_destroy(&ctx->mem_hash_lock); + hl_mmu_ctx_fini(ctx); +} + +/* + * hl_vm_init - initialize virtual memory module + * + * @hdev : pointer to the habanalabs device structure + * + * This function initializes the following: + * - MMU module + * - DRAM physical pages pool of 2MB + * - Idr for device memory allocation handles + */ +int hl_vm_init(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_vm *vm = &hdev->vm; + int rc; + + rc = hl_mmu_init(hdev); + if (rc) { + dev_err(hdev->dev, "Failed to init MMU\n"); + return rc; + } + + vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1); + if (!vm->dram_pg_pool) { + dev_err(hdev->dev, "Failed to create dram page pool\n"); + rc = -ENOMEM; + goto pool_create_err; + } + + kref_init(&vm->dram_pg_pool_refcount); + + rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address, + prop->dram_end_address - prop->dram_user_base_address, + -1); + + if (rc) { + dev_err(hdev->dev, + "Failed to add memory to dram page pool %d\n", rc); + goto pool_add_err; + } + + spin_lock_init(&vm->idr_lock); + idr_init(&vm->phys_pg_pack_handles); + + atomic64_set(&hdev->dram_used_mem, 0); + + vm->init_done = true; + + return 0; + +pool_add_err: + gen_pool_destroy(vm->dram_pg_pool); +pool_create_err: + hl_mmu_fini(hdev); + + return rc; +} + +/* + * hl_vm_fini - virtual memory module teardown + * + * @hdev : pointer to the habanalabs device structure + * + * This function perform teardown to the following: + * - Idr for device memory allocation handles + * - DRAM physical pages pool of 2MB + * - MMU module + */ +void hl_vm_fini(struct hl_device *hdev) +{ + struct hl_vm *vm = &hdev->vm; + + if (!vm->init_done) + return; + + /* + * At this point all the contexts should be freed and hence no DRAM + * memory should be in use. Hence the DRAM pool should be freed here. + */ + if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1) + dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n", + __func__); + + hl_mmu_fini(hdev); + + vm->init_done = false; +} |