diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2019-03-05 20:09:55 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2019-03-05 20:09:55 +0300 |
commit | 63bdf4284c38a48af21745ceb148a087b190cd21 (patch) | |
tree | ffbf9e69ed457e776db0317903ccb0addbd1b276 /arch | |
parent | 6456300356433873309a1cae6aa05e77d6b59153 (diff) | |
parent | 0918f18c7179e8cdf718d01531a81b28130b4217 (diff) | |
download | linux-63bdf4284c38a48af21745ceb148a087b190cd21.tar.xz |
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto update from Herbert Xu:
"API:
- Add helper for simple skcipher modes.
- Add helper to register multiple templates.
- Set CRYPTO_TFM_NEED_KEY when setkey fails.
- Require neither or both of export/import in shash.
- AEAD decryption test vectors are now generated from encryption
ones.
- New option CONFIG_CRYPTO_MANAGER_EXTRA_TESTS that includes random
fuzzing.
Algorithms:
- Conversions to skcipher and helper for many templates.
- Add more test vectors for nhpoly1305 and adiantum.
Drivers:
- Add crypto4xx prng support.
- Add xcbc/cmac/ecb support in caam.
- Add AES support for Exynos5433 in s5p.
- Remove sha384/sha512 from artpec7 as hardware cannot do partial
hash"
[ There is a merge of the Freescale SoC tree in order to pull in changes
required by patches to the caam/qi2 driver. ]
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (174 commits)
crypto: s5p - add AES support for Exynos5433
dt-bindings: crypto: document Exynos5433 SlimSSS
crypto: crypto4xx - add missing of_node_put after of_device_is_available
crypto: cavium/zip - fix collision with generic cra_driver_name
crypto: af_alg - use struct_size() in sock_kfree_s()
crypto: caam - remove redundant likely/unlikely annotation
crypto: s5p - update iv after AES-CBC op end
crypto: x86/poly1305 - Clear key material from stack in SSE2 variant
crypto: caam - generate hash keys in-place
crypto: caam - fix DMA mapping xcbc key twice
crypto: caam - fix hash context DMA unmap size
hwrng: bcm2835 - fix probe as platform device
crypto: s5p-sss - Use AES_BLOCK_SIZE define instead of number
crypto: stm32 - drop pointless static qualifier in stm32_hash_remove()
crypto: chelsio - Fixed Traffic Stall
crypto: marvell - Remove set but not used variable 'ivsize'
crypto: ccp - Update driver messages to remove some confusion
crypto: adiantum - add 1536 and 4096-byte test vectors
crypto: nhpoly1305 - add a test vector with len % 16 != 0
crypto: arm/aes-ce - update IV after partial final CTR block
...
Diffstat (limited to 'arch')
-rw-r--r-- | arch/arm/crypto/aes-ce-core.S | 26 | ||||
-rw-r--r-- | arch/arm/crypto/crct10dif-ce-core.S | 568 | ||||
-rw-r--r-- | arch/arm/crypto/crct10dif-ce-glue.c | 25 | ||||
-rw-r--r-- | arch/arm64/crypto/aes-ce-ccm-core.S | 5 | ||||
-rw-r--r-- | arch/arm64/crypto/aes-ce-ccm-glue.c | 8 | ||||
-rw-r--r-- | arch/arm64/crypto/aes-modes.S | 3 | ||||
-rw-r--r-- | arch/arm64/crypto/aes-neonbs-core.S | 8 | ||||
-rw-r--r-- | arch/arm64/crypto/crct10dif-ce-core.S | 513 | ||||
-rw-r--r-- | arch/arm64/crypto/crct10dif-ce-glue.c | 75 | ||||
-rw-r--r-- | arch/arm64/crypto/ghash-ce-glue.c | 118 | ||||
-rw-r--r-- | arch/s390/crypto/des_s390.c | 4 | ||||
-rw-r--r-- | arch/sparc/crypto/des_glue.c | 4 | ||||
-rw-r--r-- | arch/x86/crypto/aegis128-aesni-glue.c | 38 | ||||
-rw-r--r-- | arch/x86/crypto/aegis128l-aesni-glue.c | 38 | ||||
-rw-r--r-- | arch/x86/crypto/aegis256-aesni-glue.c | 38 | ||||
-rw-r--r-- | arch/x86/crypto/aesni-intel_glue.c | 47 | ||||
-rw-r--r-- | arch/x86/crypto/crct10dif-pcl-asm_64.S | 782 | ||||
-rw-r--r-- | arch/x86/crypto/crct10dif-pclmul_glue.c | 12 | ||||
-rw-r--r-- | arch/x86/crypto/morus1280_glue.c | 40 | ||||
-rw-r--r-- | arch/x86/crypto/morus640_glue.c | 39 | ||||
-rw-r--r-- | arch/x86/crypto/poly1305-sse2-x86_64.S | 4 |
21 files changed, 1004 insertions, 1391 deletions
diff --git a/arch/arm/crypto/aes-ce-core.S b/arch/arm/crypto/aes-ce-core.S index ba8e6a32fdc9..bc53bcaa772e 100644 --- a/arch/arm/crypto/aes-ce-core.S +++ b/arch/arm/crypto/aes-ce-core.S @@ -317,25 +317,27 @@ ENTRY(ce_aes_ctr_encrypt) .Lctrloop: vmov q0, q6 bl aes_encrypt - subs r4, r4, #1 - bmi .Lctrtailblock @ blocks < 0 means tail block - vld1.8 {q3}, [r1]! - veor q3, q0, q3 - vst1.8 {q3}, [r0]! adds r6, r6, #1 @ increment BE ctr rev ip, r6 vmov s27, ip bcs .Lctrcarry - teq r4, #0 + +.Lctrcarrydone: + subs r4, r4, #1 + bmi .Lctrtailblock @ blocks < 0 means tail block + vld1.8 {q3}, [r1]! + veor q3, q0, q3 + vst1.8 {q3}, [r0]! bne .Lctrloop + .Lctrout: - vst1.8 {q6}, [r5] + vst1.8 {q6}, [r5] @ return next CTR value pop {r4-r6, pc} .Lctrtailblock: - vst1.8 {q0}, [r0, :64] @ return just the key stream - pop {r4-r6, pc} + vst1.8 {q0}, [r0, :64] @ return the key stream + b .Lctrout .Lctrcarry: .irp sreg, s26, s25, s24 @@ -344,11 +346,9 @@ ENTRY(ce_aes_ctr_encrypt) adds ip, ip, #1 rev ip, ip vmov \sreg, ip - bcc 0f + bcc .Lctrcarrydone .endr -0: teq r4, #0 - beq .Lctrout - b .Lctrloop + b .Lctrcarrydone ENDPROC(ce_aes_ctr_encrypt) /* diff --git a/arch/arm/crypto/crct10dif-ce-core.S b/arch/arm/crypto/crct10dif-ce-core.S index ce45ba0c0687..86be258a803f 100644 --- a/arch/arm/crypto/crct10dif-ce-core.S +++ b/arch/arm/crypto/crct10dif-ce-core.S @@ -2,12 +2,14 @@ // Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions // // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org> +// Copyright (C) 2019 Google LLC <ebiggers@google.com> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License version 2 as // published by the Free Software Foundation. // +// Derived from the x86 version: // // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions // @@ -54,19 +56,11 @@ // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // -// Function API: -// UINT16 crc_t10dif_pcl( -// UINT16 init_crc, //initial CRC value, 16 bits -// const unsigned char *buf, //buffer pointer to calculate CRC on -// UINT64 len //buffer length in bytes (64-bit data) -// ); -// // Reference paper titled "Fast CRC Computation for Generic // Polynomials Using PCLMULQDQ Instruction" // URL: http://www.intel.com/content/dam/www/public/us/en/documents // /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf // -// #include <linux/linkage.h> #include <asm/assembler.h> @@ -78,13 +72,14 @@ #endif .text + .arch armv7-a .fpu crypto-neon-fp-armv8 - arg1_low32 .req r0 - arg2 .req r1 - arg3 .req r2 + init_crc .req r0 + buf .req r1 + len .req r2 - qzr .req q13 + fold_consts_ptr .req ip q0l .req d0 q0h .req d1 @@ -102,82 +97,35 @@ q6h .req d13 q7l .req d14 q7h .req d15 - -ENTRY(crc_t10dif_pmull) - vmov.i8 qzr, #0 // init zero register - - // adjust the 16-bit initial_crc value, scale it to 32 bits - lsl arg1_low32, arg1_low32, #16 - - // check if smaller than 256 - cmp arg3, #256 - - // for sizes less than 128, we can't fold 64B at a time... - blt _less_than_128 - - // load the initial crc value - // crc value does not need to be byte-reflected, but it needs - // to be moved to the high part of the register. - // because data will be byte-reflected and will align with - // initial crc at correct place. - vmov s0, arg1_low32 // initial crc - vext.8 q10, qzr, q0, #4 - - // receive the initial 64B data, xor the initial crc value - vld1.64 {q0-q1}, [arg2, :128]! - vld1.64 {q2-q3}, [arg2, :128]! - vld1.64 {q4-q5}, [arg2, :128]! - vld1.64 {q6-q7}, [arg2, :128]! -CPU_LE( vrev64.8 q0, q0 ) -CPU_LE( vrev64.8 q1, q1 ) -CPU_LE( vrev64.8 q2, q2 ) -CPU_LE( vrev64.8 q3, q3 ) -CPU_LE( vrev64.8 q4, q4 ) -CPU_LE( vrev64.8 q5, q5 ) -CPU_LE( vrev64.8 q6, q6 ) -CPU_LE( vrev64.8 q7, q7 ) - - vswp d0, d1 - vswp d2, d3 - vswp d4, d5 - vswp d6, d7 - vswp d8, d9 - vswp d10, d11 - vswp d12, d13 - vswp d14, d15 - - // XOR the initial_crc value - veor.8 q0, q0, q10 - - adr ip, rk3 - vld1.64 {q10}, [ip, :128] // xmm10 has rk3 and rk4 - - // - // we subtract 256 instead of 128 to save one instruction from the loop - // - sub arg3, arg3, #256 - - // at this section of the code, there is 64*x+y (0<=y<64) bytes of - // buffer. The _fold_64_B_loop will fold 64B at a time - // until we have 64+y Bytes of buffer - - - // fold 64B at a time. This section of the code folds 4 vector - // registers in parallel -_fold_64_B_loop: - - .macro fold64, reg1, reg2 - vld1.64 {q11-q12}, [arg2, :128]! - - vmull.p64 q8, \reg1\()h, d21 - vmull.p64 \reg1, \reg1\()l, d20 - vmull.p64 q9, \reg2\()h, d21 - vmull.p64 \reg2, \reg2\()l, d20 - -CPU_LE( vrev64.8 q11, q11 ) -CPU_LE( vrev64.8 q12, q12 ) - vswp d22, d23 - vswp d24, d25 + q8l .req d16 + q8h .req d17 + q9l .req d18 + q9h .req d19 + q10l .req d20 + q10h .req d21 + q11l .req d22 + q11h .req d23 + q12l .req d24 + q12h .req d25 + + FOLD_CONSTS .req q10 + FOLD_CONST_L .req q10l + FOLD_CONST_H .req q10h + + // Fold reg1, reg2 into the next 32 data bytes, storing the result back + // into reg1, reg2. + .macro fold_32_bytes, reg1, reg2 + vld1.64 {q11-q12}, [buf]! + + vmull.p64 q8, \reg1\()h, FOLD_CONST_H + vmull.p64 \reg1, \reg1\()l, FOLD_CONST_L + vmull.p64 q9, \reg2\()h, FOLD_CONST_H + vmull.p64 \reg2, \reg2\()l, FOLD_CONST_L + +CPU_LE( vrev64.8 q11, q11 ) +CPU_LE( vrev64.8 q12, q12 ) + vswp q11l, q11h + vswp q12l, q12h veor.8 \reg1, \reg1, q8 veor.8 \reg2, \reg2, q9 @@ -185,242 +133,248 @@ CPU_LE( vrev64.8 q12, q12 ) veor.8 \reg2, \reg2, q12 .endm - fold64 q0, q1 - fold64 q2, q3 - fold64 q4, q5 - fold64 q6, q7 - - subs arg3, arg3, #128 - - // check if there is another 64B in the buffer to be able to fold - bge _fold_64_B_loop - - // at this point, the buffer pointer is pointing at the last y Bytes - // of the buffer the 64B of folded data is in 4 of the vector - // registers: v0, v1, v2, v3 - - // fold the 8 vector registers to 1 vector register with different - // constants - - adr ip, rk9 - vld1.64 {q10}, [ip, :128]! - - .macro fold16, reg, rk - vmull.p64 q8, \reg\()l, d20 - vmull.p64 \reg, \reg\()h, d21 - .ifnb \rk - vld1.64 {q10}, [ip, :128]! + // Fold src_reg into dst_reg, optionally loading the next fold constants + .macro fold_16_bytes, src_reg, dst_reg, load_next_consts + vmull.p64 q8, \src_reg\()l, FOLD_CONST_L + vmull.p64 \src_reg, \src_reg\()h, FOLD_CONST_H + .ifnb \load_next_consts + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! .endif - veor.8 q7, q7, q8 - veor.8 q7, q7, \reg + veor.8 \dst_reg, \dst_reg, q8 + veor.8 \dst_reg, \dst_reg, \src_reg .endm - fold16 q0, rk11 - fold16 q1, rk13 - fold16 q2, rk15 - fold16 q3, rk17 - fold16 q4, rk19 - fold16 q5, rk1 - fold16 q6 - - // instead of 64, we add 48 to the loop counter to save 1 instruction - // from the loop instead of a cmp instruction, we use the negative - // flag with the jl instruction - adds arg3, arg3, #(128-16) - blt _final_reduction_for_128 - - // now we have 16+y bytes left to reduce. 16 Bytes is in register v7 - // and the rest is in memory. We can fold 16 bytes at a time if y>=16 - // continue folding 16B at a time - -_16B_reduction_loop: - vmull.p64 q8, d14, d20 - vmull.p64 q7, d15, d21 - veor.8 q7, q7, q8 + .macro __adrl, out, sym + movw \out, #:lower16:\sym + movt \out, #:upper16:\sym + .endm - vld1.64 {q0}, [arg2, :128]! -CPU_LE( vrev64.8 q0, q0 ) - vswp d0, d1 - veor.8 q7, q7, q0 - subs arg3, arg3, #16 - - // instead of a cmp instruction, we utilize the flags with the - // jge instruction equivalent of: cmp arg3, 16-16 - // check if there is any more 16B in the buffer to be able to fold - bge _16B_reduction_loop - - // now we have 16+z bytes left to reduce, where 0<= z < 16. - // first, we reduce the data in the xmm7 register - -_final_reduction_for_128: - // check if any more data to fold. If not, compute the CRC of - // the final 128 bits - adds arg3, arg3, #16 - beq _128_done - - // here we are getting data that is less than 16 bytes. - // since we know that there was data before the pointer, we can - // offset the input pointer before the actual point, to receive - // exactly 16 bytes. after that the registers need to be adjusted. -_get_last_two_regs: - add arg2, arg2, arg3 - sub arg2, arg2, #16 - vld1.64 {q1}, [arg2] -CPU_LE( vrev64.8 q1, q1 ) - vswp d2, d3 - - // get rid of the extra data that was loaded before - // load the shift constant - adr ip, tbl_shf_table + 16 - sub ip, ip, arg3 - vld1.8 {q0}, [ip] - - // shift v2 to the left by arg3 bytes - vtbl.8 d4, {d14-d15}, d0 - vtbl.8 d5, {d14-d15}, d1 - - // shift v7 to the right by 16-arg3 bytes - vmov.i8 q9, #0x80 - veor.8 q0, q0, q9 - vtbl.8 d18, {d14-d15}, d0 - vtbl.8 d19, {d14-d15}, d1 - - // blend - vshr.s8 q0, q0, #7 // convert to 8-bit mask - vbsl.8 q0, q2, q1 - - // fold 16 Bytes - vmull.p64 q8, d18, d20 - vmull.p64 q7, d19, d21 +// +// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len); +// +// Assumes len >= 16. +// +ENTRY(crc_t10dif_pmull) + + // For sizes less than 256 bytes, we can't fold 128 bytes at a time. + cmp len, #256 + blt .Lless_than_256_bytes + + __adrl fold_consts_ptr, .Lfold_across_128_bytes_consts + + // Load the first 128 data bytes. Byte swapping is necessary to make + // the bit order match the polynomial coefficient order. + vld1.64 {q0-q1}, [buf]! + vld1.64 {q2-q3}, [buf]! + vld1.64 {q4-q5}, [buf]! + vld1.64 {q6-q7}, [buf]! +CPU_LE( vrev64.8 q0, q0 ) +CPU_LE( vrev64.8 q1, q1 ) +CPU_LE( vrev64.8 q2, q2 ) +CPU_LE( vrev64.8 q3, q3 ) +CPU_LE( vrev64.8 q4, q4 ) +CPU_LE( vrev64.8 q5, q5 ) +CPU_LE( vrev64.8 q6, q6 ) +CPU_LE( vrev64.8 q7, q7 ) + vswp q0l, q0h + vswp q1l, q1h + vswp q2l, q2h + vswp q3l, q3h + vswp q4l, q4h + vswp q5l, q5h + vswp q6l, q6h + vswp q7l, q7h + + // XOR the first 16 data *bits* with the initial CRC value. + vmov.i8 q8h, #0 + vmov.u16 q8h[3], init_crc + veor q0h, q0h, q8h + + // Load the constants for folding across 128 bytes. + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! + + // Subtract 128 for the 128 data bytes just consumed. Subtract another + // 128 to simplify the termination condition of the following loop. + sub len, len, #256 + + // While >= 128 data bytes remain (not counting q0-q7), fold the 128 + // bytes q0-q7 into them, storing the result back into q0-q7. +.Lfold_128_bytes_loop: + fold_32_bytes q0, q1 + fold_32_bytes q2, q3 + fold_32_bytes q4, q5 + fold_32_bytes q6, q7 + subs len, len, #128 + bge .Lfold_128_bytes_loop + + // Now fold the 112 bytes in q0-q6 into the 16 bytes in q7. + + // Fold across 64 bytes. + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! + fold_16_bytes q0, q4 + fold_16_bytes q1, q5 + fold_16_bytes q2, q6 + fold_16_bytes q3, q7, 1 + // Fold across 32 bytes. + fold_16_bytes q4, q6 + fold_16_bytes q5, q7, 1 + // Fold across 16 bytes. + fold_16_bytes q6, q7 + + // Add 128 to get the correct number of data bytes remaining in 0...127 + // (not counting q7), following the previous extra subtraction by 128. + // Then subtract 16 to simplify the termination condition of the + // following loop. + adds len, len, #(128-16) + + // While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7 + // into them, storing the result back into q7. + blt .Lfold_16_bytes_loop_done +.Lfold_16_bytes_loop: + vmull.p64 q8, q7l, FOLD_CONST_L + vmull.p64 q7, q7h, FOLD_CONST_H veor.8 q7, q7, q8 + vld1.64 {q0}, [buf]! +CPU_LE( vrev64.8 q0, q0 ) + vswp q0l, q0h veor.8 q7, q7, q0 - -_128_done: - // compute crc of a 128-bit value - vldr d20, rk5 - vldr d21, rk6 // rk5 and rk6 in xmm10 - - // 64b fold - vext.8 q0, qzr, q7, #8 - vmull.p64 q7, d15, d20 + subs len, len, #16 + bge .Lfold_16_bytes_loop + +.Lfold_16_bytes_loop_done: + // Add 16 to get the correct number of data bytes remaining in 0...15 + // (not counting q7), following the previous extra subtraction by 16. + adds len, len, #16 + beq .Lreduce_final_16_bytes + +.Lhandle_partial_segment: + // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first + // 16 bytes are in q7 and the rest are the remaining data in 'buf'. To + // do this without needing a fold constant for each possible 'len', + // redivide the bytes into a first chunk of 'len' bytes and a second + // chunk of 16 bytes, then fold the first chunk into the second. + + // q0 = last 16 original data bytes + add buf, buf, len + sub buf, buf, #16 + vld1.64 {q0}, [buf] +CPU_LE( vrev64.8 q0, q0 ) + vswp q0l, q0h + + // q1 = high order part of second chunk: q7 left-shifted by 'len' bytes. + __adrl r3, .Lbyteshift_table + 16 + sub r3, r3, len + vld1.8 {q2}, [r3] + vtbl.8 q1l, {q7l-q7h}, q2l + vtbl.8 q1h, {q7l-q7h}, q2h + + // q3 = first chunk: q7 right-shifted by '16-len' bytes. + vmov.i8 q3, #0x80 + veor.8 q2, q2, q3 + vtbl.8 q3l, {q7l-q7h}, q2l + vtbl.8 q3h, {q7l-q7h}, q2h + + // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes. + vshr.s8 q2, q2, #7 + + // q2 = second chunk: 'len' bytes from q0 (low-order bytes), + // then '16-len' bytes from q1 (high-order bytes). + vbsl.8 q2, q1, q0 + + // Fold the first chunk into the second chunk, storing the result in q7. + vmull.p64 q0, q3l, FOLD_CONST_L + vmull.p64 q7, q3h, FOLD_CONST_H veor.8 q7, q7, q0 + veor.8 q7, q7, q2 + +.Lreduce_final_16_bytes: + // Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC. + + // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'. + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! + + // Fold the high 64 bits into the low 64 bits, while also multiplying by + // x^64. This produces a 128-bit value congruent to x^64 * M(x) and + // whose low 48 bits are 0. + vmull.p64 q0, q7h, FOLD_CONST_H // high bits * x^48 * (x^80 mod G(x)) + veor.8 q0h, q0h, q7l // + low bits * x^64 + + // Fold the high 32 bits into the low 96 bits. This produces a 96-bit + // value congruent to x^64 * M(x) and whose low 48 bits are 0. + vmov.i8 q1, #0 + vmov s4, s3 // extract high 32 bits + vmov s3, s5 // zero high 32 bits + vmull.p64 q1, q1l, FOLD_CONST_L // high 32 bits * x^48 * (x^48 mod G(x)) + veor.8 q0, q0, q1 // + low bits + + // Load G(x) and floor(x^48 / G(x)). + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128] + + // Use Barrett reduction to compute the final CRC value. + vmull.p64 q1, q0h, FOLD_CONST_H // high 32 bits * floor(x^48 / G(x)) + vshr.u64 q1l, q1l, #32 // /= x^32 + vmull.p64 q1, q1l, FOLD_CONST_L // *= G(x) + vshr.u64 q0l, q0l, #48 + veor.8 q0l, q0l, q1l // + low 16 nonzero bits + // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0. + + vmov.u16 r0, q0l[0] + bx lr - // 32b fold - vext.8 q0, q7, qzr, #12 - vmov s31, s3 - vmull.p64 q0, d0, d21 - veor.8 q7, q0, q7 - - // barrett reduction -_barrett: - vldr d20, rk7 - vldr d21, rk8 - - vmull.p64 q0, d15, d20 - vext.8 q0, qzr, q0, #12 - vmull.p64 q0, d1, d21 - vext.8 q0, qzr, q0, #12 - veor.8 q7, q7, q0 - vmov r0, s29 +.Lless_than_256_bytes: + // Checksumming a buffer of length 16...255 bytes -_cleanup: - // scale the result back to 16 bits - lsr r0, r0, #16 - bx lr + __adrl fold_consts_ptr, .Lfold_across_16_bytes_consts -_less_than_128: - teq arg3, #0 - beq _cleanup + // Load the first 16 data bytes. + vld1.64 {q7}, [buf]! +CPU_LE( vrev64.8 q7, q7 ) + vswp q7l, q7h - vmov.i8 q0, #0 - vmov s3, arg1_low32 // get the initial crc value + // XOR the first 16 data *bits* with the initial CRC value. + vmov.i8 q0h, #0 + vmov.u16 q0h[3], init_crc + veor.8 q7h, q7h, q0h - vld1.64 {q7}, [arg2, :128]! -CPU_LE( vrev64.8 q7, q7 ) - vswp d14, d15 - veor.8 q7, q7, q0 + // Load the fold-across-16-bytes constants. + vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]! - cmp arg3, #16 - beq _128_done // exactly 16 left - blt _less_than_16_left - - // now if there is, load the constants - vldr d20, rk1 - vldr d21, rk2 // rk1 and rk2 in xmm10 - - // check if there is enough buffer to be able to fold 16B at a time - subs arg3, arg3, #32 - addlt arg3, arg3, #16 - blt _get_last_two_regs - b _16B_reduction_loop - -_less_than_16_left: - // shl r9, 4 - adr ip, tbl_shf_table + 16 - sub ip, ip, arg3 - vld1.8 {q0}, [ip] - vmov.i8 q9, #0x80 - veor.8 q0, q0, q9 - vtbl.8 d18, {d14-d15}, d0 - vtbl.8 d15, {d14-d15}, d1 - vmov d14, d18 - b _128_done + cmp len, #16 + beq .Lreduce_final_16_bytes // len == 16 + subs len, len, #32 + addlt len, len, #16 + blt .Lhandle_partial_segment // 17 <= len <= 31 + b .Lfold_16_bytes_loop // 32 <= len <= 255 ENDPROC(crc_t10dif_pmull) -// precomputed constants -// these constants are precomputed from the poly: -// 0x8bb70000 (0x8bb7 scaled to 32 bits) + .section ".rodata", "a" .align 4 -// Q = 0x18BB70000 -// rk1 = 2^(32*3) mod Q << 32 -// rk2 = 2^(32*5) mod Q << 32 -// rk3 = 2^(32*15) mod Q << 32 -// rk4 = 2^(32*17) mod Q << 32 -// rk5 = 2^(32*3) mod Q << 32 -// rk6 = 2^(32*2) mod Q << 32 -// rk7 = floor(2^64/Q) -// rk8 = Q - -rk3: .quad 0x9d9d000000000000 -rk4: .quad 0x7cf5000000000000 -rk5: .quad 0x2d56000000000000 -rk6: .quad 0x1368000000000000 -rk7: .quad 0x00000001f65a57f8 -rk8: .quad 0x000000018bb70000 -rk9: .quad 0xceae000000000000 -rk10: .quad 0xbfd6000000000000 -rk11: .quad 0x1e16000000000000 -rk12: .quad 0x713c000000000000 -rk13: .quad 0xf7f9000000000000 -rk14: .quad 0x80a6000000000000 -rk15: .quad 0x044c000000000000 -rk16: .quad 0xe658000000000000 -rk17: .quad 0xad18000000000000 -rk18: .quad 0xa497000000000000 -rk19: .quad 0x6ee3000000000000 -rk20: .quad 0xe7b5000000000000 -rk1: .quad 0x2d56000000000000 -rk2: .quad 0x06df000000000000 - -tbl_shf_table: -// use these values for shift constants for the tbl/tbx instruction -// different alignments result in values as shown: -// DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1 -// DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2 -// DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3 -// DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4 -// DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5 -// DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6 -// DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7 -// DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8 -// DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9 -// DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10 -// DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11 -// DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12 -// DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13 -// DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14 -// DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15 +// Fold constants precomputed from the polynomial 0x18bb7 +// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 +.Lfold_across_128_bytes_consts: + .quad 0x0000000000006123 // x^(8*128) mod G(x) + .quad 0x0000000000002295 // x^(8*128+64) mod G(x) +// .Lfold_across_64_bytes_consts: + .quad 0x0000000000001069 // x^(4*128) mod G(x) + .quad 0x000000000000dd31 // x^(4*128+64) mod G(x) +// .Lfold_across_32_bytes_consts: + .quad 0x000000000000857d // x^(2*128) mod G(x) + .quad 0x0000000000007acc // x^(2*128+64) mod G(x) +.Lfold_across_16_bytes_consts: + .quad 0x000000000000a010 // x^(1*128) mod G(x) + .quad 0x0000000000001faa // x^(1*128+64) mod G(x) +// .Lfinal_fold_consts: + .quad 0x1368000000000000 // x^48 * (x^48 mod G(x)) + .quad 0x2d56000000000000 // x^48 * (x^80 mod G(x)) +// .Lbarrett_reduction_consts: + .quad 0x0000000000018bb7 // G(x) + .quad 0x00000001f65a57f8 // floor(x^48 / G(x)) + +// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - +// len] is the index vector to shift left by 'len' bytes, and is also {0x80, +// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes. +.Lbyteshift_table: .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 diff --git a/arch/arm/crypto/crct10dif-ce-glue.c b/arch/arm/crypto/crct10dif-ce-glue.c index d428355cf38d..3d6b800b8396 100644 --- a/arch/arm/crypto/crct10dif-ce-glue.c +++ b/arch/arm/crypto/crct10dif-ce-glue.c @@ -21,7 +21,7 @@ #define CRC_T10DIF_PMULL_CHUNK_SIZE 16U -asmlinkage u16 crc_t10dif_pmull(u16 init_crc, const u8 buf[], u32 len); +asmlinkage u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len); static int crct10dif_init(struct shash_desc *desc) { @@ -35,26 +35,15 @@ static int crct10dif_update(struct shash_desc *desc, const u8 *data, unsigned int length) { u16 *crc = shash_desc_ctx(desc); - unsigned int l; - if (!may_use_simd()) { - *crc = crc_t10dif_generic(*crc, data, length); + if (length >= CRC_T10DIF_PMULL_CHUNK_SIZE && may_use_simd()) { + kernel_neon_begin(); + *crc = crc_t10dif_pmull(*crc, data, length); + kernel_neon_end(); } else { - if (unlikely((u32)data % CRC_T10DIF_PMULL_CHUNK_SIZE)) { - l = min_t(u32, length, CRC_T10DIF_PMULL_CHUNK_SIZE - - ((u32)data % CRC_T10DIF_PMULL_CHUNK_SIZE)); - - *crc = crc_t10dif_generic(*crc, data, l); - - length -= l; - data += l; - } - if (length > 0) { - kernel_neon_begin(); - *crc = crc_t10dif_pmull(*crc, data, length); - kernel_neon_end(); - } + *crc = crc_t10dif_generic(*crc, data, length); } + return 0; } diff --git a/arch/arm64/crypto/aes-ce-ccm-core.S b/arch/arm64/crypto/aes-ce-ccm-core.S index e3a375c4cb83..1b151442dac1 100644 --- a/arch/arm64/crypto/aes-ce-ccm-core.S +++ b/arch/arm64/crypto/aes-ce-ccm-core.S @@ -74,12 +74,13 @@ ENTRY(ce_aes_ccm_auth_data) beq 10f ext v0.16b, v0.16b, v0.16b, #1 /* rotate out the mac bytes */ b 7b -8: mov w7, w8 +8: cbz w8, 91f + mov w7, w8 add w8, w8, #16 9: ext v1.16b, v1.16b, v1.16b, #1 adds w7, w7, #1 bne 9b - eor v0.16b, v0.16b, v1.16b +91: eor v0.16b, v0.16b, v1.16b st1 {v0.16b}, [x0] 10: str w8, [x3] ret diff --git a/arch/arm64/crypto/aes-ce-ccm-glue.c b/arch/arm64/crypto/aes-ce-ccm-glue.c index 68b11aa690e4..5fc6f51908fd 100644 --- a/arch/arm64/crypto/aes-ce-ccm-glue.c +++ b/arch/arm64/crypto/aes-ce-ccm-glue.c @@ -125,7 +125,7 @@ static void ccm_update_mac(struct crypto_aes_ctx *key, u8 mac[], u8 const in[], abytes -= added; } - while (abytes > AES_BLOCK_SIZE) { + while (abytes >= AES_BLOCK_SIZE) { __aes_arm64_encrypt(key->key_enc, mac, mac, num_rounds(key)); crypto_xor(mac, in, AES_BLOCK_SIZE); @@ -139,8 +139,6 @@ static void ccm_update_mac(struct crypto_aes_ctx *key, u8 mac[], u8 const in[], num_rounds(key)); crypto_xor(mac, in, abytes); *macp = abytes; - } else { - *macp = 0; } } } @@ -255,7 +253,7 @@ static int ccm_encrypt(struct aead_request *req) /* preserve the original iv for the final round */ memcpy(buf, req->iv, AES_BLOCK_SIZE); - err = skcipher_walk_aead_encrypt(&walk, req, true); + err = skcipher_walk_aead_encrypt(&walk, req, false); if (may_use_simd()) { while (walk.nbytes) { @@ -313,7 +311,7 @@ static int ccm_decrypt(struct aead_request *req) /* preserve the original iv for the final round */ memcpy(buf, req->iv, AES_BLOCK_SIZE); - err = skcipher_walk_aead_decrypt(&walk, req, true); + err = skcipher_walk_aead_decrypt(&walk, req, false); if (may_use_simd()) { while (walk.nbytes) { diff --git a/arch/arm64/crypto/aes-modes.S b/arch/arm64/crypto/aes-modes.S index 67700045a0e0..4c7ce231963c 100644 --- a/arch/arm64/crypto/aes-modes.S +++ b/arch/arm64/crypto/aes-modes.S @@ -320,8 +320,7 @@ AES_ENTRY(aes_ctr_encrypt) .Lctrtailblock: st1 {v0.16b}, [x0] - ldp x29, x30, [sp], #16 - ret + b .Lctrout .Lctrcarry: umov x7, v4.d[0] /* load upper word of ctr */ diff --git a/arch/arm64/crypto/aes-neonbs-core.S b/arch/arm64/crypto/aes-neonbs-core.S index e613a87f8b53..8432c8d0dea6 100644 --- a/arch/arm64/crypto/aes-neonbs-core.S +++ b/arch/arm64/crypto/aes-neonbs-core.S @@ -971,18 +971,22 @@ CPU_LE( rev x8, x8 ) 8: next_ctr v0 st1 {v0.16b}, [x24] - cbz x23, 0f + cbz x23, .Lctr_done cond_yield_neon 98b b 99b -0: frame_pop +.Lctr_done: + frame_pop ret /* * If we are handling the tail of the input (x6 != NULL), return the * final keystream block back to the caller. */ +0: cbz x25, 8b + st1 {v0.16b}, [x25] + b 8b 1: cbz x25, 8b st1 {v1.16b}, [x25] b 8b diff --git a/arch/arm64/crypto/crct10dif-ce-core.S b/arch/arm64/crypto/crct10dif-ce-core.S index 9e82e8e8ed05..e545b42e6a46 100644 --- a/arch/arm64/crypto/crct10dif-ce-core.S +++ b/arch/arm64/crypto/crct10dif-ce-core.S @@ -2,12 +2,14 @@ // Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions // // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org> +// Copyright (C) 2019 Google LLC <ebiggers@google.com> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License version 2 as // published by the Free Software Foundation. // +// Derived from the x86 version: // // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions // @@ -54,19 +56,11 @@ // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // -// Function API: -// UINT16 crc_t10dif_pcl( -// UINT16 init_crc, //initial CRC value, 16 bits -// const unsigned char *buf, //buffer pointer to calculate CRC on -// UINT64 len //buffer length in bytes (64-bit data) -// ); -// // Reference paper titled "Fast CRC Computation for Generic // Polynomials Using PCLMULQDQ Instruction" // URL: http://www.intel.com/content/dam/www/public/us/en/documents // /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf // -// #include <linux/linkage.h> #include <asm/assembler.h> @@ -74,14 +68,14 @@ .text .cpu generic+crypto - arg1_low32 .req w19 - arg2 .req x20 - arg3 .req x21 + init_crc .req w19 + buf .req x20 + len .req x21 + fold_consts_ptr .req x22 - vzr .req v13 + fold_consts .req v10 ad .req v14 - bd .req v10 k00_16 .req v15 k32_48 .req v16 @@ -143,11 +137,11 @@ __pmull_p8_core: ext t5.8b, ad.8b, ad.8b, #2 // A2 ext t6.8b, ad.8b, ad.8b, #3 // A3 - pmull t4.8h, t4.8b, bd.8b // F = A1*B + pmull t4.8h, t4.8b, fold_consts.8b // F = A1*B pmull t8.8h, ad.8b, bd1.8b // E = A*B1 - pmull t5.8h, t5.8b, bd.8b // H = A2*B + pmull t5.8h, t5.8b, fold_consts.8b // H = A2*B pmull t7.8h, ad.8b, bd2.8b // G = A*B2 - pmull t6.8h, t6.8b, bd.8b // J = A3*B + pmull t6.8h, t6.8b, fold_consts.8b // J = A3*B pmull t9.8h, ad.8b, bd3.8b // I = A*B3 pmull t3.8h, ad.8b, bd4.8b // K = A*B4 b 0f @@ -157,11 +151,11 @@ __pmull_p8_core: tbl t5.16b, {ad.16b}, perm2.16b // A2 tbl t6.16b, {ad.16b}, perm3.16b // A3 - pmull2 t4.8h, t4.16b, bd.16b // F = A1*B + pmull2 t4.8h, t4.16b, fold_consts.16b // F = A1*B pmull2 t8.8h, ad.16b, bd1.16b // E = A*B1 - pmull2 t5.8h, t5.16b, bd.16b // H = A2*B + pmull2 t5.8h, t5.16b, fold_consts.16b // H = A2*B pmull2 t7.8h, ad.16b, bd2.16b // G = A*B2 - pmull2 t6.8h, t6.16b, bd.16b // J = A3*B + pmull2 t6.8h, t6.16b, fold_consts.16b // J = A3*B pmull2 t9.8h, ad.16b, bd3.16b // I = A*B3 pmull2 t3.8h, ad.16b, bd4.16b // K = A*B4 @@ -203,14 +197,14 @@ __pmull_p8_core: ENDPROC(__pmull_p8_core) .macro __pmull_p8, rq, ad, bd, i - .ifnc \bd, v10 + .ifnc \bd, fold_consts .err .endif mov ad.16b, \ad\().16b .ifb \i - pmull \rq\().8h, \ad\().8b, bd.8b // D = A*B + pmull \rq\().8h, \ad\().8b, \bd\().8b // D = A*B .else - pmull2 \rq\().8h, \ad\().16b, bd.16b // D = A*B + pmull2 \rq\().8h, \ad\().16b, \bd\().16b // D = A*B .endif bl .L__pmull_p8_core\i @@ -219,17 +213,19 @@ ENDPROC(__pmull_p8_core) eor \rq\().16b, \rq\().16b, t6.16b .endm - .macro fold64, p, reg1, reg2 - ldp q11, q12, [arg2], #0x20 + // Fold reg1, reg2 into the next 32 data bytes, storing the result back + // into reg1, reg2. + .macro fold_32_bytes, p, reg1, reg2 + ldp q11, q12, [buf], #0x20 - __pmull_\p v8, \reg1, v10, 2 - __pmull_\p \reg1, \reg1, v10 + __pmull_\p v8, \reg1, fold_consts, 2 + __pmull_\p \reg1, \reg1, fold_consts CPU_LE( rev64 v11.16b, v11.16b ) CPU_LE( rev64 v12.16b, v12.16b ) - __pmull_\p v9, \reg2, v10, 2 - __pmull_\p \reg2, \reg2, v10 + __pmull_\p v9, \reg2, fold_consts, 2 + __pmull_\p \reg2, \reg2, fold_consts CPU_LE( ext v11.16b, v11.16b, v11.16b, #8 ) CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 ) @@ -240,15 +236,16 @@ CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 ) eor \reg2\().16b, \reg2\().16b, v12.16b .endm - .macro fold16, p, reg, rk - __pmull_\p v8, \reg, v10 - __pmull_\p \reg, \reg, v10, 2 - .ifnb \rk - ldr_l q10, \rk, x8 - __pmull_pre_\p v10 + // Fold src_reg into dst_reg, optionally loading the next fold constants + .macro fold_16_bytes, p, src_reg, dst_reg, load_next_consts + __pmull_\p v8, \src_reg, fold_consts + __pmull_\p \src_reg, \src_reg, fold_consts, 2 + .ifnb \load_next_consts + ld1 {fold_consts.2d}, [fold_consts_ptr], #16 + __pmull_pre_\p fold_consts .endif - eor v7.16b, v7.16b, v8.16b - eor v7.16b, v7.16b, \reg\().16b + eor \dst_reg\().16b, \dst_reg\().16b, v8.16b + eor \dst_reg\().16b, \dst_reg\().16b, \src_reg\().16b .endm .macro __pmull_p64, rd, rn, rm, n @@ -260,40 +257,27 @@ CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 ) .endm .macro crc_t10dif_pmull, p - frame_push 3, 128 + frame_push 4, 128 - mov arg1_low32, w0 - mov arg2, x1 - mov arg3, x2 - - movi vzr.16b, #0 // init zero register + mov init_crc, w0 + mov buf, x1 + mov len, x2 __pmull_init_\p - // adjust the 16-bit initial_crc value, scale it to 32 bits - lsl arg1_low32, arg1_low32, #16 - - // check if smaller than 256 - cmp arg3, #256 - - // for sizes less than 128, we can't fold 64B at a time... - b.lt .L_less_than_128_\@ + // For sizes less than 256 bytes, we can't fold 128 bytes at a time. + cmp len, #256 + b.lt .Lless_than_256_bytes_\@ - // load the initial crc value - // crc value does not need to be byte-reflected, but it needs - // to be moved to the high part of the register. - // because data will be byte-reflected and will align with - // initial crc at correct place. - movi v10.16b, #0 - mov v10.s[3], arg1_low32 // initial crc - - // receive the initial 64B data, xor the initial crc value - ldp q0, q1, [arg2] - ldp q2, q3, [arg2, #0x20] - ldp q4, q5, [arg2, #0x40] - ldp q6, q7, [arg2, #0x60] - add arg2, arg2, #0x80 + adr_l fold_consts_ptr, .Lfold_across_128_bytes_consts + // Load the first 128 data bytes. Byte swapping is necessary to make + // the bit order match the polynomial coefficient order. + ldp q0, q1, [buf] + ldp q2, q3, [buf, #0x20] + ldp q4, q5, [buf, #0x40] + ldp q6, q7, [buf, #0x60] + add buf, buf, #0x80 CPU_LE( rev64 v0.16b, v0.16b ) CPU_LE( rev64 v1.16b, v1.16b ) CPU_LE( rev64 v2.16b, v2.16b ) @@ -302,7 +286,6 @@ CPU_LE( rev64 v4.16b, v4.16b ) CPU_LE( rev64 v5.16b, v5.16b ) CPU_LE( rev64 v6.16b, v6.16b ) CPU_LE( rev64 v7.16b, v7.16b ) - CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 ) CPU_LE( ext v2.16b, v2.16b, v2.16b, #8 ) @@ -312,36 +295,29 @@ CPU_LE( ext v5.16b, v5.16b, v5.16b, #8 ) CPU_LE( ext v6.16b, v6.16b, v6.16b, #8 ) CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) - // XOR the initial_crc value - eor v0.16b, v0.16b, v10.16b - - ldr_l q10, rk3, x8 // xmm10 has rk3 and rk4 - // type of pmull instruction - // will determine which constant to use - __pmull_pre_\p v10 + // XOR the first 16 data *bits* with the initial CRC value. + movi v8.16b, #0 + mov v8.h[7], init_crc + eor v0.16b, v0.16b, v8.16b - // - // we subtract 256 instead of 128 to save one instruction from the loop - // - sub arg3, arg3, #256 + // Load the constants for folding across 128 bytes. + ld1 {fold_consts.2d}, [fold_consts_ptr] + __pmull_pre_\p fold_consts - // at this section of the code, there is 64*x+y (0<=y<64) bytes of - // buffer. The _fold_64_B_loop will fold 64B at a time - // until we have 64+y Bytes of buffer + // Subtract 128 for the 128 data bytes just consumed. Subtract another + // 128 to simplify the termination condition of the following loop. + sub len, len, #256 - // fold 64B at a time. This section of the code folds 4 vector - // registers in parallel -.L_fold_64_B_loop_\@: + // While >= 128 data bytes remain (not counting v0-v7), fold the 128 + // bytes v0-v7 into them, storing the result back into v0-v7. +.Lfold_128_bytes_loop_\@: + fold_32_bytes \p, v0, v1 + fold_32_bytes \p, v2, v3 + fold_32_bytes \p, v4, v5 + fold_32_bytes \p, v6, v7 - fold64 \p, v0, v1 - fold64 \p, v2, v3 - fold64 \p, v4, v5 - fold64 \p, v6, v7 - - subs arg3, arg3, #128 - - // check if there is another 64B in the buffer to be able to fold - b.lt .L_fold_64_B_end_\@ + subs len, len, #128 + b.lt .Lfold_128_bytes_loop_done_\@ if_will_cond_yield_neon stp q0, q1, [sp, #.Lframe_local_offset] @@ -353,228 +329,207 @@ CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) ldp q2, q3, [sp, #.Lframe_local_offset + 32] ldp q4, q5, [sp, #.Lframe_local_offset + 64] ldp q6, q7, [sp, #.Lframe_local_offset + 96] - ldr_l q10, rk3, x8 - movi vzr.16b, #0 // init zero register + ld1 {fold_consts.2d}, [fold_consts_ptr] __pmull_init_\p - __pmull_pre_\p v10 + __pmull_pre_\p fold_consts endif_yield_neon - b .L_fold_64_B_loop_\@ - -.L_fold_64_B_end_\@: - // at this point, the buffer pointer is pointing at the last y Bytes - // of the buffer the 64B of folded data is in 4 of the vector - // registers: v0, v1, v2, v3 - - // fold the 8 vector registers to 1 vector register with different - // constants - - ldr_l q10, rk9, x8 - __pmull_pre_\p v10 - - fold16 \p, v0, rk11 - fold16 \p, v1, rk13 - fold16 \p, v2, rk15 - fold16 \p, v3, rk17 - fold16 \p, v4, rk19 - fold16 \p, v5, rk1 - fold16 \p, v6 - - // instead of 64, we add 48 to the loop counter to save 1 instruction - // from the loop instead of a cmp instruction, we use the negative - // flag with the jl instruction - adds arg3, arg3, #(128-16) - b.lt .L_final_reduction_for_128_\@ - - // now we have 16+y bytes left to reduce. 16 Bytes is in register v7 - // and the rest is in memory. We can fold 16 bytes at a time if y>=16 - // continue folding 16B at a time - -.L_16B_reduction_loop_\@: - __pmull_\p v8, v7, v10 - __pmull_\p v7, v7, v10, 2 + b .Lfold_128_bytes_loop_\@ + +.Lfold_128_bytes_loop_done_\@: + + // Now fold the 112 bytes in v0-v6 into the 16 bytes in v7. + + // Fold across 64 bytes. + add fold_consts_ptr, fold_consts_ptr, #16 + ld1 {fold_consts.2d}, [fold_consts_ptr], #16 + __pmull_pre_\p fold_consts + fold_16_bytes \p, v0, v4 + fold_16_bytes \p, v1, v5 + fold_16_bytes \p, v2, v6 + fold_16_bytes \p, v3, v7, 1 + // Fold across 32 bytes. + fold_16_bytes \p, v4, v6 + fold_16_bytes \p, v5, v7, 1 + // Fold across 16 bytes. + fold_16_bytes \p, v6, v7 + + // Add 128 to get the correct number of data bytes remaining in 0...127 + // (not counting v7), following the previous extra subtraction by 128. + // Then subtract 16 to simplify the termination condition of the + // following loop. + adds len, len, #(128-16) + + // While >= 16 data bytes remain (not counting v7), fold the 16 bytes v7 + // into them, storing the result back into v7. + b.lt .Lfold_16_bytes_loop_done_\@ +.Lfold_16_bytes_loop_\@: + __pmull_\p v8, v7, fold_consts + __pmull_\p v7, v7, fold_consts, 2 eor v7.16b, v7.16b, v8.16b - - ldr q0, [arg2], #16 + ldr q0, [buf], #16 CPU_LE( rev64 v0.16b, v0.16b ) CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) eor v7.16b, v7.16b, v0.16b - subs arg3, arg3, #16 - - // instead of a cmp instruction, we utilize the flags with the - // jge instruction equivalent of: cmp arg3, 16-16 - // check if there is any more 16B in the buffer to be able to fold - b.ge .L_16B_reduction_loop_\@ - - // now we have 16+z bytes left to reduce, where 0<= z < 16. - // first, we reduce the data in the xmm7 register - -.L_final_reduction_for_128_\@: - // check if any more data to fold. If not, compute the CRC of - // the final 128 bits - adds arg3, arg3, #16 - b.eq .L_128_done_\@ - - // here we are getting data that is less than 16 bytes. - // since we know that there was data before the pointer, we can - // offset the input pointer before the actual point, to receive - // exactly 16 bytes. after that the registers need to be adjusted. -.L_get_last_two_regs_\@: - add arg2, arg2, arg3 - ldr q1, [arg2, #-16] -CPU_LE( rev64 v1.16b, v1.16b ) -CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 ) - - // get rid of the extra data that was loaded before - // load the shift constant - adr_l x4, tbl_shf_table + 16 - sub x4, x4, arg3 - ld1 {v0.16b}, [x4] - - // shift v2 to the left by arg3 bytes - tbl v2.16b, {v7.16b}, v0.16b - - // shift v7 to the right by 16-arg3 bytes - movi v9.16b, #0x80 - eor v0.16b, v0.16b, v9.16b - tbl v7.16b, {v7.16b}, v0.16b - - // blend - sshr v0.16b, v0.16b, #7 // convert to 8-bit mask - bsl v0.16b, v2.16b, v1.16b - - // fold 16 Bytes - __pmull_\p v8, v7, v10 - __pmull_\p v7, v7, v10, 2 - eor v7.16b, v7.16b, v8.16b - eor v7.16b, v7.16b, v0.16b + subs len, len, #16 + b.ge .Lfold_16_bytes_loop_\@ + +.Lfold_16_bytes_loop_done_\@: + // Add 16 to get the correct number of data bytes remaining in 0...15 + // (not counting v7), following the previous extra subtraction by 16. + adds len, len, #16 + b.eq .Lreduce_final_16_bytes_\@ + +.Lhandle_partial_segment_\@: + // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first + // 16 bytes are in v7 and the rest are the remaining data in 'buf'. To + // do this without needing a fold constant for each possible 'len', + // redivide the bytes into a first chunk of 'len' bytes and a second + // chunk of 16 bytes, then fold the first chunk into the second. + + // v0 = last 16 original data bytes + add buf, buf, len + ldr q0, [buf, #-16] +CPU_LE( rev64 v0.16b, v0.16b ) +CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) -.L_128_done_\@: - // compute crc of a 128-bit value - ldr_l q10, rk5, x8 // rk5 and rk6 in xmm10 - __pmull_pre_\p v10 + // v1 = high order part of second chunk: v7 left-shifted by 'len' bytes. + adr_l x4, .Lbyteshift_table + 16 + sub x4, x4, len + ld1 {v2.16b}, [x4] + tbl v1.16b, {v7.16b}, v2.16b - // 64b fold - ext v0.16b, vzr.16b, v7.16b, #8 - mov v7.d[0], v7.d[1] - __pmull_\p v7, v7, v10 - eor v7.16b, v7.16b, v0.16b + // v3 = first chunk: v7 right-shifted by '16-len' bytes. + movi v3.16b, #0x80 + eor v2.16b, v2.16b, v3.16b + tbl v3.16b, {v7.16b}, v2.16b - // 32b fold - ext v0.16b, v7.16b, vzr.16b, #4 - mov v7.s[3], vzr.s[0] - __pmull_\p v0, v0, v10, 2 - eor v7.16b, v7.16b, v0.16b + // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes. + sshr v2.16b, v2.16b, #7 - // barrett reduction - ldr_l q10, rk7, x8 - __pmull_pre_\p v10 - mov v0.d[0], v7.d[1] + // v2 = second chunk: 'len' bytes from v0 (low-order bytes), + // then '16-len' bytes from v1 (high-order bytes). + bsl v2.16b, v1.16b, v0.16b - __pmull_\p v0, v0, v10 - ext v0.16b, vzr.16b, v0.16b, #12 - __pmull_\p v0, v0, v10, 2 - ext v0.16b, vzr.16b, v0.16b, #12 + // Fold the first chunk into the second chunk, storing the result in v7. + __pmull_\p v0, v3, fold_consts + __pmull_\p v7, v3, fold_consts, 2 eor v7.16b, v7.16b, v0.16b - mov w0, v7.s[1] - -.L_cleanup_\@: - // scale the result back to 16 bits - lsr x0, x0, #16 + eor v7.16b, v7.16b, v2.16b + +.Lreduce_final_16_bytes_\@: + // Reduce the 128-bit value M(x), stored in v7, to the final 16-bit CRC. + + movi v2.16b, #0 // init zero register + + // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'. + ld1 {fold_consts.2d}, [fold_consts_ptr], #16 + __pmull_pre_\p fold_consts + + // Fold the high 64 bits into the low 64 bits, while also multiplying by + // x^64. This produces a 128-bit value congruent to x^64 * M(x) and + // whose low 48 bits are 0. + ext v0.16b, v2.16b, v7.16b, #8 + __pmull_\p v7, v7, fold_consts, 2 // high bits * x^48 * (x^80 mod G(x)) + eor v0.16b, v0.16b, v7.16b // + low bits * x^64 + + // Fold the high 32 bits into the low 96 bits. This produces a 96-bit + // value congruent to x^64 * M(x) and whose low 48 bits are 0. + ext v1.16b, v0.16b, v2.16b, #12 // extract high 32 bits + mov v0.s[3], v2.s[0] // zero high 32 bits + __pmull_\p v1, v1, fold_consts // high 32 bits * x^48 * (x^48 mod G(x)) + eor v0.16b, v0.16b, v1.16b // + low bits + + // Load G(x) and floor(x^48 / G(x)). + ld1 {fold_consts.2d}, [fold_consts_ptr] + __pmull_pre_\p fold_consts + + // Use Barrett reduction to compute the final CRC value. + __pmull_\p v1, v0, fold_consts, 2 // high 32 bits * floor(x^48 / G(x)) + ushr v1.2d, v1.2d, #32 // /= x^32 + __pmull_\p v1, v1, fold_consts // *= G(x) + ushr v0.2d, v0.2d, #48 + eor v0.16b, v0.16b, v1.16b // + low 16 nonzero bits + // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of v0. + + umov w0, v0.h[0] frame_pop ret -.L_less_than_128_\@: - cbz arg3, .L_cleanup_\@ +.Lless_than_256_bytes_\@: + // Checksumming a buffer of length 16...255 bytes - movi v0.16b, #0 - mov v0.s[3], arg1_low32 // get the initial crc value + adr_l fold_consts_ptr, .Lfold_across_16_bytes_consts - ldr q7, [arg2], #0x10 + // Load the first 16 data bytes. + ldr q7, [buf], #0x10 CPU_LE( rev64 v7.16b, v7.16b ) CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) - eor v7.16b, v7.16b, v0.16b // xor the initial crc value - - cmp arg3, #16 - b.eq .L_128_done_\@ // exactly 16 left - b.lt .L_less_than_16_left_\@ - - ldr_l q10, rk1, x8 // rk1 and rk2 in xmm10 - __pmull_pre_\p v10 - - // update the counter. subtract 32 instead of 16 to save one - // instruction from the loop - subs arg3, arg3, #32 - b.ge .L_16B_reduction_loop_\@ - - add arg3, arg3, #16 - b .L_get_last_two_regs_\@ - -.L_less_than_16_left_\@: - // shl r9, 4 - adr_l x0, tbl_shf_table + 16 - sub x0, x0, arg3 - ld1 {v0.16b}, [x0] - movi v9.16b, #0x80 - eor v0.16b, v0.16b, v9.16b - tbl v7.16b, {v7.16b}, v0.16b - b .L_128_done_\@ + + // XOR the first 16 data *bits* with the initial CRC value. + movi v0.16b, #0 + mov v0.h[7], init_crc + eor v7.16b, v7.16b, v0.16b + + // Load the fold-across-16-bytes constants. + ld1 {fold_consts.2d}, [fold_consts_ptr], #16 + __pmull_pre_\p fold_consts + + cmp len, #16 + b.eq .Lreduce_final_16_bytes_\@ // len == 16 + subs len, len, #32 + b.ge .Lfold_16_bytes_loop_\@ // 32 <= len <= 255 + add len, len, #16 + b .Lhandle_partial_segment_\@ // 17 <= len <= 31 .endm +// +// u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len); +// +// Assumes len >= 16. +// ENTRY(crc_t10dif_pmull_p8) crc_t10dif_pmull p8 ENDPROC(crc_t10dif_pmull_p8) .align 5 +// +// u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len); +// +// Assumes len >= 16. +// ENTRY(crc_t10dif_pmull_p64) crc_t10dif_pmull p64 ENDPROC(crc_t10dif_pmull_p64) -// precomputed constants -// these constants are precomputed from the poly: -// 0x8bb70000 (0x8bb7 scaled to 32 bits) .section ".rodata", "a" .align 4 -// Q = 0x18BB70000 -// rk1 = 2^(32*3) mod Q << 32 -// rk2 = 2^(32*5) mod Q << 32 -// rk3 = 2^(32*15) mod Q << 32 -// rk4 = 2^(32*17) mod Q << 32 -// rk5 = 2^(32*3) mod Q << 32 -// rk6 = 2^(32*2) mod Q << 32 -// rk7 = floor(2^64/Q) -// rk8 = Q - -rk1: .octa 0x06df0000000000002d56000000000000 -rk3: .octa 0x7cf50000000000009d9d000000000000 -rk5: .octa 0x13680000000000002d56000000000000 -rk7: .octa 0x000000018bb7000000000001f65a57f8 -rk9: .octa 0xbfd6000000000000ceae000000000000 -rk11: .octa 0x713c0000000000001e16000000000000 -rk13: .octa 0x80a6000000000000f7f9000000000000 -rk15: .octa 0xe658000000000000044c000000000000 -rk17: .octa 0xa497000000000000ad18000000000000 -rk19: .octa 0xe7b50000000000006ee3000000000000 - -tbl_shf_table: -// use these values for shift constants for the tbl/tbx instruction -// different alignments result in values as shown: -// DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1 -// DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2 -// DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3 -// DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4 -// DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5 -// DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6 -// DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7 -// DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8 -// DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9 -// DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10 -// DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11 -// DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12 -// DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13 -// DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14 -// DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15 +// Fold constants precomputed from the polynomial 0x18bb7 +// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 +.Lfold_across_128_bytes_consts: + .quad 0x0000000000006123 // x^(8*128) mod G(x) + .quad 0x0000000000002295 // x^(8*128+64) mod G(x) +// .Lfold_across_64_bytes_consts: + .quad 0x0000000000001069 // x^(4*128) mod G(x) + .quad 0x000000000000dd31 // x^(4*128+64) mod G(x) +// .Lfold_across_32_bytes_consts: + .quad 0x000000000000857d // x^(2*128) mod G(x) + .quad 0x0000000000007acc // x^(2*128+64) mod G(x) +.Lfold_across_16_bytes_consts: + .quad 0x000000000000a010 // x^(1*128) mod G(x) + .quad 0x0000000000001faa // x^(1*128+64) mod G(x) +// .Lfinal_fold_consts: + .quad 0x1368000000000000 // x^48 * (x^48 mod G(x)) + .quad 0x2d56000000000000 // x^48 * (x^80 mod G(x)) +// .Lbarrett_reduction_consts: + .quad 0x0000000000018bb7 // G(x) + .quad 0x00000001f65a57f8 // floor(x^48 / G(x)) + +// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - +// len] is the index vector to shift left by 'len' bytes, and is also {0x80, +// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes. +.Lbyteshift_table: .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 diff --git a/arch/arm64/crypto/crct10dif-ce-glue.c b/arch/arm64/crypto/crct10dif-ce-glue.c index b461d62023f2..dd325829ee44 100644 --- a/arch/arm64/crypto/crct10dif-ce-glue.c +++ b/arch/arm64/crypto/crct10dif-ce-glue.c @@ -22,10 +22,8 @@ #define CRC_T10DIF_PMULL_CHUNK_SIZE 16U -asmlinkage u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 buf[], u64 len); -asmlinkage u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 buf[], u64 len); - -static u16 (*crc_t10dif_pmull)(u16 init_crc, const u8 buf[], u64 len); +asmlinkage u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len); +asmlinkage u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len); static int crct10dif_init(struct shash_desc *desc) { @@ -35,30 +33,33 @@ static int crct10dif_init(struct shash_desc *desc) return 0; } -static int crct10dif_update(struct shash_desc *desc, const u8 *data, +static int crct10dif_update_pmull_p8(struct shash_desc *desc, const u8 *data, unsigned int length) { u16 *crc = shash_desc_ctx(desc); - unsigned int l; - if (unlikely((u64)data % CRC_T10DIF_PMULL_CHUNK_SIZE)) { - l = min_t(u32, length, CRC_T10DIF_PMULL_CHUNK_SIZE - - ((u64)data % CRC_T10DIF_PMULL_CHUNK_SIZE)); + if (length >= CRC_T10DIF_PMULL_CHUNK_SIZE && may_use_simd()) { + kernel_neon_begin(); + *crc = crc_t10dif_pmull_p8(*crc, data, length); + kernel_neon_end(); + } else { + *crc = crc_t10dif_generic(*crc, data, length); + } - *crc = crc_t10dif_generic(*crc, data, l); + return 0; +} - length -= l; - data += l; - } +static int crct10dif_update_pmull_p64(struct shash_desc *desc, const u8 *data, + unsigned int length) +{ + u16 *crc = shash_desc_ctx(desc); - if (length > 0) { - if (may_use_simd()) { - kernel_neon_begin(); - *crc = crc_t10dif_pmull(*crc, data, length); - kernel_neon_end(); - } else { - *crc = crc_t10dif_generic(*crc, data, length); - } + if (length >= CRC_T10DIF_PMULL_CHUNK_SIZE && may_use_simd()) { + kernel_neon_begin(); + *crc = crc_t10dif_pmull_p64(*crc, data, length); + kernel_neon_end(); + } else { + *crc = crc_t10dif_generic(*crc, data, length); } return 0; @@ -72,10 +73,22 @@ static int crct10dif_final(struct shash_desc *desc, u8 *out) return 0; } -static struct shash_alg crc_t10dif_alg = { +static struct shash_alg crc_t10dif_alg[] = {{ .digestsize = CRC_T10DIF_DIGEST_SIZE, .init = crct10dif_init, - .update = crct10dif_update, + .update = crct10dif_update_pmull_p8, + .final = crct10dif_final, + .descsize = CRC_T10DIF_DIGEST_SIZE, + + .base.cra_name = "crct10dif", + .base.cra_driver_name = "crct10dif-arm64-neon", + .base.cra_priority = 100, + .base.cra_blocksize = CRC_T10DIF_BLOCK_SIZE, + .base.cra_module = THIS_MODULE, +}, { + .digestsize = CRC_T10DIF_DIGEST_SIZE, + .init = crct10dif_init, + .update = crct10dif_update_pmull_p64, .final = crct10dif_final, .descsize = CRC_T10DIF_DIGEST_SIZE, @@ -84,21 +97,25 @@ static struct shash_alg crc_t10dif_alg = { .base.cra_priority = 200, .base.cra_blocksize = CRC_T10DIF_BLOCK_SIZE, .base.cra_module = THIS_MODULE, -}; +}}; static int __init crc_t10dif_mod_init(void) { if (elf_hwcap & HWCAP_PMULL) - crc_t10dif_pmull = crc_t10dif_pmull_p64; + return crypto_register_shashes(crc_t10dif_alg, + ARRAY_SIZE(crc_t10dif_alg)); else - crc_t10dif_pmull = crc_t10dif_pmull_p8; - - return crypto_register_shash(&crc_t10dif_alg); + /* only register the first array element */ + return crypto_register_shash(crc_t10dif_alg); } static void __exit crc_t10dif_mod_exit(void) { - crypto_unregister_shash(&crc_t10dif_alg); + if (elf_hwcap & HWCAP_PMULL) + crypto_unregister_shashes(crc_t10dif_alg, + ARRAY_SIZE(crc_t10dif_alg)); + else + crypto_unregister_shash(crc_t10dif_alg); } module_cpu_feature_match(ASIMD, crc_t10dif_mod_init); diff --git a/arch/arm64/crypto/ghash-ce-glue.c b/arch/arm64/crypto/ghash-ce-glue.c index 067d8937d5af..791ad422c427 100644 --- a/arch/arm64/crypto/ghash-ce-glue.c +++ b/arch/arm64/crypto/ghash-ce-glue.c @@ -60,10 +60,6 @@ asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src, struct ghash_key const *k, const char *head); -static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src, - struct ghash_key const *k, - const char *head); - asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[], const u8 src[], struct ghash_key const *k, u8 ctr[], u32 const rk[], int rounds, @@ -87,11 +83,15 @@ static int ghash_init(struct shash_desc *desc) } static void ghash_do_update(int blocks, u64 dg[], const char *src, - struct ghash_key *key, const char *head) + struct ghash_key *key, const char *head, + void (*simd_update)(int blocks, u64 dg[], + const char *src, + struct ghash_key const *k, + const char *head)) { if (likely(may_use_simd())) { kernel_neon_begin(); - pmull_ghash_update(blocks, dg, src, key, head); + simd_update(blocks, dg, src, key, head); kernel_neon_end(); } else { be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) }; @@ -119,8 +119,12 @@ static void ghash_do_update(int blocks, u64 dg[], const char *src, /* avoid hogging the CPU for too long */ #define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE) -static int ghash_update(struct shash_desc *desc, const u8 *src, - unsigned int len) +static int __ghash_update(struct shash_desc *desc, const u8 *src, + unsigned int len, + void (*simd_update)(int blocks, u64 dg[], + const char *src, + struct ghash_key const *k, + const char *head)) { struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; @@ -146,7 +150,8 @@ static int ghash_update(struct shash_desc *desc, const u8 *src, int chunk = min(blocks, MAX_BLOCKS); ghash_do_update(chunk, ctx->digest, src, key, - partial ? ctx->buf : NULL); + partial ? ctx->buf : NULL, + simd_update); blocks -= chunk; src += chunk * GHASH_BLOCK_SIZE; @@ -158,7 +163,19 @@ static int ghash_update(struct shash_desc *desc, const u8 *src, return 0; } -static int ghash_final(struct shash_desc *desc, u8 *dst) +static int ghash_update_p8(struct shash_desc *desc, const u8 *src, + unsigned int len) +{ + return __ghash_update(desc, src, len, pmull_ghash_update_p8); +} + +static int ghash_update_p64(struct shash_desc *desc, const u8 *src, + unsigned int len) +{ + return __ghash_update(desc, src, len, pmull_ghash_update_p64); +} + +static int ghash_final_p8(struct shash_desc *desc, u8 *dst) { struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; @@ -168,7 +185,28 @@ static int ghash_final(struct shash_desc *desc, u8 *dst) memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); - ghash_do_update(1, ctx->digest, ctx->buf, key, NULL); + ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, + pmull_ghash_update_p8); + } + put_unaligned_be64(ctx->digest[1], dst); + put_unaligned_be64(ctx->digest[0], dst + 8); + + *ctx = (struct ghash_desc_ctx){}; + return 0; +} + +static int ghash_final_p64(struct shash_desc *desc, u8 *dst) +{ + struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); + unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; + + if (partial) { + struct ghash_key *key = crypto_shash_ctx(desc->tfm); + + memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); + + ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, + pmull_ghash_update_p64); } put_unaligned_be64(ctx->digest[1], dst); put_unaligned_be64(ctx->digest[0], dst + 8); @@ -224,7 +262,21 @@ static int ghash_setkey(struct crypto_shash *tfm, return __ghash_setkey(key, inkey, keylen); } -static struct shash_alg ghash_alg = { +static struct shash_alg ghash_alg[] = {{ + .base.cra_name = "ghash", + .base.cra_driver_name = "ghash-neon", + .base.cra_priority = 100, + .base.cra_blocksize = GHASH_BLOCK_SIZE, + .base.cra_ctxsize = sizeof(struct ghash_key), + .base.cra_module = THIS_MODULE, + + .digestsize = GHASH_DIGEST_SIZE, + .init = ghash_init, + .update = ghash_update_p8, + .final = ghash_final_p8, + .setkey = ghash_setkey, + .descsize = sizeof(struct ghash_desc_ctx), +}, { .base.cra_name = "ghash", .base.cra_driver_name = "ghash-ce", .base.cra_priority = 200, @@ -234,11 +286,11 @@ static struct shash_alg ghash_alg = { .digestsize = GHASH_DIGEST_SIZE, .init = ghash_init, - .update = ghash_update, - .final = ghash_final, + .update = ghash_update_p64, + .final = ghash_final_p64, .setkey = ghash_setkey, .descsize = sizeof(struct ghash_desc_ctx), -}; +}}; static int num_rounds(struct crypto_aes_ctx *ctx) { @@ -301,7 +353,8 @@ static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[], int blocks = count / GHASH_BLOCK_SIZE; ghash_do_update(blocks, dg, src, &ctx->ghash_key, - *buf_count ? buf : NULL); + *buf_count ? buf : NULL, + pmull_ghash_update_p64); src += blocks * GHASH_BLOCK_SIZE; count %= GHASH_BLOCK_SIZE; @@ -345,7 +398,8 @@ static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[]) if (buf_count) { memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count); - ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL); + ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL, + pmull_ghash_update_p64); } } @@ -358,7 +412,8 @@ static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx, lengths.a = cpu_to_be64(req->assoclen * 8); lengths.b = cpu_to_be64(cryptlen * 8); - ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL); + ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL, + pmull_ghash_update_p64); put_unaligned_be64(dg[1], mac); put_unaligned_be64(dg[0], mac + 8); @@ -434,7 +489,7 @@ static int gcm_encrypt(struct aead_request *req) ghash_do_update(walk.nbytes / AES_BLOCK_SIZE, dg, walk.dst.virt.addr, &ctx->ghash_key, - NULL); + NULL, pmull_ghash_update_p64); err = skcipher_walk_done(&walk, walk.nbytes % (2 * AES_BLOCK_SIZE)); @@ -469,7 +524,8 @@ static int gcm_encrypt(struct aead_request *req) memcpy(buf, dst, nbytes); memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); - ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head); + ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head, + pmull_ghash_update_p64); err = skcipher_walk_done(&walk, 0); } @@ -558,7 +614,8 @@ static int gcm_decrypt(struct aead_request *req) u8 *src = walk.src.virt.addr; ghash_do_update(blocks, dg, walk.src.virt.addr, - &ctx->ghash_key, NULL); + &ctx->ghash_key, NULL, + pmull_ghash_update_p64); do { __aes_arm64_encrypt(ctx->aes_key.key_enc, @@ -602,7 +659,8 @@ static int gcm_decrypt(struct aead_request *req) memcpy(buf, src, nbytes); memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); - ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head); + ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head, + pmull_ghash_update_p64); crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv, walk.nbytes); @@ -650,26 +708,30 @@ static int __init ghash_ce_mod_init(void) return -ENODEV; if (elf_hwcap & HWCAP_PMULL) - pmull_ghash_update = pmull_ghash_update_p64; - + ret = crypto_register_shashes(ghash_alg, + ARRAY_SIZE(ghash_alg)); else - pmull_ghash_update = pmull_ghash_update_p8; + /* only register the first array element */ + ret = crypto_register_shash(ghash_alg); - ret = crypto_register_shash(&ghash_alg); if (ret) return ret; if (elf_hwcap & HWCAP_PMULL) { ret = crypto_register_aead(&gcm_aes_alg); if (ret) - crypto_unregister_shash(&ghash_alg); + crypto_unregister_shashes(ghash_alg, + ARRAY_SIZE(ghash_alg)); } return ret; } static void __exit ghash_ce_mod_exit(void) { - crypto_unregister_shash(&ghash_alg); + if (elf_hwcap & HWCAP_PMULL) + crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg)); + else + crypto_unregister_shash(ghash_alg); crypto_unregister_aead(&gcm_aes_alg); } diff --git a/arch/s390/crypto/des_s390.c b/arch/s390/crypto/des_s390.c index 5346b5a80bb6..0d15383d0ff1 100644 --- a/arch/s390/crypto/des_s390.c +++ b/arch/s390/crypto/des_s390.c @@ -38,7 +38,7 @@ static int des_setkey(struct crypto_tfm *tfm, const u8 *key, /* check for weak keys */ if (!des_ekey(tmp, key) && - (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { + (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) { tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; return -EINVAL; } @@ -228,7 +228,7 @@ static int des3_setkey(struct crypto_tfm *tfm, const u8 *key, if (!(crypto_memneq(key, &key[DES_KEY_SIZE], DES_KEY_SIZE) && crypto_memneq(&key[DES_KEY_SIZE], &key[DES_KEY_SIZE * 2], DES_KEY_SIZE)) && - (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { + (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) { tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; return -EINVAL; } diff --git a/arch/sparc/crypto/des_glue.c b/arch/sparc/crypto/des_glue.c index 56499ea39fd3..4884315daff4 100644 --- a/arch/sparc/crypto/des_glue.c +++ b/arch/sparc/crypto/des_glue.c @@ -53,7 +53,7 @@ static int des_set_key(struct crypto_tfm *tfm, const u8 *key, * weak key detection code. */ ret = des_ekey(tmp, key); - if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) { + if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) { *flags |= CRYPTO_TFM_RES_WEAK_KEY; return -EINVAL; } @@ -209,7 +209,7 @@ static int des3_ede_set_key(struct crypto_tfm *tfm, const u8 *key, if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) || !((K[2] ^ K[4]) | (K[3] ^ K[5]))) && - (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) { + (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) { *flags |= CRYPTO_TFM_RES_WEAK_KEY; return -EINVAL; } diff --git a/arch/x86/crypto/aegis128-aesni-glue.c b/arch/x86/crypto/aegis128-aesni-glue.c index 2a356b948720..3ea71b871813 100644 --- a/arch/x86/crypto/aegis128-aesni-glue.c +++ b/arch/x86/crypto/aegis128-aesni-glue.c @@ -119,31 +119,20 @@ static void crypto_aegis128_aesni_process_ad( } static void crypto_aegis128_aesni_process_crypt( - struct aegis_state *state, struct aead_request *req, + struct aegis_state *state, struct skcipher_walk *walk, const struct aegis_crypt_ops *ops) { - struct skcipher_walk walk; - u8 *src, *dst; - unsigned int chunksize, base; - - ops->skcipher_walk_init(&walk, req, false); - - while (walk.nbytes) { - src = walk.src.virt.addr; - dst = walk.dst.virt.addr; - chunksize = walk.nbytes; - - ops->crypt_blocks(state, chunksize, src, dst); - - base = chunksize & ~(AEGIS128_BLOCK_SIZE - 1); - src += base; - dst += base; - chunksize &= AEGIS128_BLOCK_SIZE - 1; - - if (chunksize > 0) - ops->crypt_tail(state, chunksize, src, dst); + while (walk->nbytes >= AEGIS128_BLOCK_SIZE) { + ops->crypt_blocks(state, + round_down(walk->nbytes, AEGIS128_BLOCK_SIZE), + walk->src.virt.addr, walk->dst.virt.addr); + skcipher_walk_done(walk, walk->nbytes % AEGIS128_BLOCK_SIZE); + } - skcipher_walk_done(&walk, 0); + if (walk->nbytes) { + ops->crypt_tail(state, walk->nbytes, walk->src.virt.addr, + walk->dst.virt.addr); + skcipher_walk_done(walk, 0); } } @@ -186,13 +175,16 @@ static void crypto_aegis128_aesni_crypt(struct aead_request *req, { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aegis_ctx *ctx = crypto_aegis128_aesni_ctx(tfm); + struct skcipher_walk walk; struct aegis_state state; + ops->skcipher_walk_init(&walk, req, true); + kernel_fpu_begin(); crypto_aegis128_aesni_init(&state, ctx->key.bytes, req->iv); crypto_aegis128_aesni_process_ad(&state, req->src, req->assoclen); - crypto_aegis128_aesni_process_crypt(&state, req, ops); + crypto_aegis128_aesni_process_crypt(&state, &walk, ops); crypto_aegis128_aesni_final(&state, tag_xor, req->assoclen, cryptlen); kernel_fpu_end(); diff --git a/arch/x86/crypto/aegis128l-aesni-glue.c b/arch/x86/crypto/aegis128l-aesni-glue.c index dbe8bb980da1..1b1b39c66c5e 100644 --- a/arch/x86/crypto/aegis128l-aesni-glue.c +++ b/arch/x86/crypto/aegis128l-aesni-glue.c @@ -119,31 +119,20 @@ static void crypto_aegis128l_aesni_process_ad( } static void crypto_aegis128l_aesni_process_crypt( - struct aegis_state *state, struct aead_request *req, + struct aegis_state *state, struct skcipher_walk *walk, const struct aegis_crypt_ops *ops) { - struct skcipher_walk walk; - u8 *src, *dst; - unsigned int chunksize, base; - - ops->skcipher_walk_init(&walk, req, false); - - while (walk.nbytes) { - src = walk.src.virt.addr; - dst = walk.dst.virt.addr; - chunksize = walk.nbytes; - - ops->crypt_blocks(state, chunksize, src, dst); - - base = chunksize & ~(AEGIS128L_BLOCK_SIZE - 1); - src += base; - dst += base; - chunksize &= AEGIS128L_BLOCK_SIZE - 1; - - if (chunksize > 0) - ops->crypt_tail(state, chunksize, src, dst); + while (walk->nbytes >= AEGIS128L_BLOCK_SIZE) { + ops->crypt_blocks(state, round_down(walk->nbytes, + AEGIS128L_BLOCK_SIZE), + walk->src.virt.addr, walk->dst.virt.addr); + skcipher_walk_done(walk, walk->nbytes % AEGIS128L_BLOCK_SIZE); + } - skcipher_walk_done(&walk, 0); + if (walk->nbytes) { + ops->crypt_tail(state, walk->nbytes, walk->src.virt.addr, + walk->dst.virt.addr); + skcipher_walk_done(walk, 0); } } @@ -186,13 +175,16 @@ static void crypto_aegis128l_aesni_crypt(struct aead_request *req, { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aegis_ctx *ctx = crypto_aegis128l_aesni_ctx(tfm); + struct skcipher_walk walk; struct aegis_state state; + ops->skcipher_walk_init(&walk, req, true); + kernel_fpu_begin(); crypto_aegis128l_aesni_init(&state, ctx->key.bytes, req->iv); crypto_aegis128l_aesni_process_ad(&state, req->src, req->assoclen); - crypto_aegis128l_aesni_process_crypt(&state, req, ops); + crypto_aegis128l_aesni_process_crypt(&state, &walk, ops); crypto_aegis128l_aesni_final(&state, tag_xor, req->assoclen, cryptlen); kernel_fpu_end(); diff --git a/arch/x86/crypto/aegis256-aesni-glue.c b/arch/x86/crypto/aegis256-aesni-glue.c index 8bebda2de92f..6227ca3220a0 100644 --- a/arch/x86/crypto/aegis256-aesni-glue.c +++ b/arch/x86/crypto/aegis256-aesni-glue.c @@ -119,31 +119,20 @@ static void crypto_aegis256_aesni_process_ad( } static void crypto_aegis256_aesni_process_crypt( - struct aegis_state *state, struct aead_request *req, + struct aegis_state *state, struct skcipher_walk *walk, const struct aegis_crypt_ops *ops) { - struct skcipher_walk walk; - u8 *src, *dst; - unsigned int chunksize, base; - - ops->skcipher_walk_init(&walk, req, false); - - while (walk.nbytes) { - src = walk.src.virt.addr; - dst = walk.dst.virt.addr; - chunksize = walk.nbytes; - - ops->crypt_blocks(state, chunksize, src, dst); - - base = chunksize & ~(AEGIS256_BLOCK_SIZE - 1); - src += base; - dst += base; - chunksize &= AEGIS256_BLOCK_SIZE - 1; - - if (chunksize > 0) - ops->crypt_tail(state, chunksize, src, dst); + while (walk->nbytes >= AEGIS256_BLOCK_SIZE) { + ops->crypt_blocks(state, + round_down(walk->nbytes, AEGIS256_BLOCK_SIZE), + walk->src.virt.addr, walk->dst.virt.addr); + skcipher_walk_done(walk, walk->nbytes % AEGIS256_BLOCK_SIZE); + } - skcipher_walk_done(&walk, 0); + if (walk->nbytes) { + ops->crypt_tail(state, walk->nbytes, walk->src.virt.addr, + walk->dst.virt.addr); + skcipher_walk_done(walk, 0); } } @@ -186,13 +175,16 @@ static void crypto_aegis256_aesni_crypt(struct aead_request *req, { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aegis_ctx *ctx = crypto_aegis256_aesni_ctx(tfm); + struct skcipher_walk walk; struct aegis_state state; + ops->skcipher_walk_init(&walk, req, true); + kernel_fpu_begin(); crypto_aegis256_aesni_init(&state, ctx->key, req->iv); crypto_aegis256_aesni_process_ad(&state, req->src, req->assoclen); - crypto_aegis256_aesni_process_crypt(&state, req, ops); + crypto_aegis256_aesni_process_crypt(&state, &walk, ops); crypto_aegis256_aesni_final(&state, tag_xor, req->assoclen, cryptlen); kernel_fpu_end(); diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c index 1321700d6647..1e3d2102033a 100644 --- a/arch/x86/crypto/aesni-intel_glue.c +++ b/arch/x86/crypto/aesni-intel_glue.c @@ -175,26 +175,18 @@ asmlinkage void aesni_gcm_finalize(void *ctx, struct gcm_context_data *gdata, u8 *auth_tag, unsigned long auth_tag_len); -static struct aesni_gcm_tfm_s { -void (*init)(void *ctx, - struct gcm_context_data *gdata, - u8 *iv, - u8 *hash_subkey, const u8 *aad, - unsigned long aad_len); -void (*enc_update)(void *ctx, - struct gcm_context_data *gdata, u8 *out, - const u8 *in, - unsigned long plaintext_len); -void (*dec_update)(void *ctx, - struct gcm_context_data *gdata, u8 *out, - const u8 *in, - unsigned long ciphertext_len); -void (*finalize)(void *ctx, - struct gcm_context_data *gdata, - u8 *auth_tag, unsigned long auth_tag_len); +static const struct aesni_gcm_tfm_s { + void (*init)(void *ctx, struct gcm_context_data *gdata, u8 *iv, + u8 *hash_subkey, const u8 *aad, unsigned long aad_len); + void (*enc_update)(void *ctx, struct gcm_context_data *gdata, u8 *out, + const u8 *in, unsigned long plaintext_len); + void (*dec_update)(void *ctx, struct gcm_context_data *gdata, u8 *out, + const u8 *in, unsigned long ciphertext_len); + void (*finalize)(void *ctx, struct gcm_context_data *gdata, + u8 *auth_tag, unsigned long auth_tag_len); } *aesni_gcm_tfm; -struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = { +static const struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = { .init = &aesni_gcm_init, .enc_update = &aesni_gcm_enc_update, .dec_update = &aesni_gcm_dec_update, @@ -243,7 +235,7 @@ asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); -struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = { +static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = { .init = &aesni_gcm_init_avx_gen2, .enc_update = &aesni_gcm_enc_update_avx_gen2, .dec_update = &aesni_gcm_dec_update_avx_gen2, @@ -288,7 +280,7 @@ asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); -struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = { +static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = { .init = &aesni_gcm_init_avx_gen4, .enc_update = &aesni_gcm_enc_update_avx_gen4, .dec_update = &aesni_gcm_dec_update_avx_gen4, @@ -778,7 +770,7 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, { struct crypto_aead *tfm = crypto_aead_reqtfm(req); unsigned long auth_tag_len = crypto_aead_authsize(tfm); - struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm; + const struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm; struct gcm_context_data data AESNI_ALIGN_ATTR; struct scatter_walk dst_sg_walk = {}; unsigned long left = req->cryptlen; @@ -821,11 +813,14 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0); } - src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen); - scatterwalk_start(&src_sg_walk, src_sg); - if (req->src != req->dst) { - dst_sg = scatterwalk_ffwd(dst_start, req->dst, req->assoclen); - scatterwalk_start(&dst_sg_walk, dst_sg); + if (left) { + src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen); + scatterwalk_start(&src_sg_walk, src_sg); + if (req->src != req->dst) { + dst_sg = scatterwalk_ffwd(dst_start, req->dst, + req->assoclen); + scatterwalk_start(&dst_sg_walk, dst_sg); + } } kernel_fpu_begin(); diff --git a/arch/x86/crypto/crct10dif-pcl-asm_64.S b/arch/x86/crypto/crct10dif-pcl-asm_64.S index de04d3e98d8d..3d873e67749d 100644 --- a/arch/x86/crypto/crct10dif-pcl-asm_64.S +++ b/arch/x86/crypto/crct10dif-pcl-asm_64.S @@ -43,609 +43,291 @@ # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -######################################################################## -# Function API: -# UINT16 crc_t10dif_pcl( -# UINT16 init_crc, //initial CRC value, 16 bits -# const unsigned char *buf, //buffer pointer to calculate CRC on -# UINT64 len //buffer length in bytes (64-bit data) -# ); # # Reference paper titled "Fast CRC Computation for Generic # Polynomials Using PCLMULQDQ Instruction" # URL: http://www.intel.com/content/dam/www/public/us/en/documents # /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf # -# #include <linux/linkage.h> .text -#define arg1 %rdi -#define arg2 %rsi -#define arg3 %rdx - -#define arg1_low32 %edi +#define init_crc %edi +#define buf %rsi +#define len %rdx + +#define FOLD_CONSTS %xmm10 +#define BSWAP_MASK %xmm11 + +# Fold reg1, reg2 into the next 32 data bytes, storing the result back into +# reg1, reg2. +.macro fold_32_bytes offset, reg1, reg2 + movdqu \offset(buf), %xmm9 + movdqu \offset+16(buf), %xmm12 + pshufb BSWAP_MASK, %xmm9 + pshufb BSWAP_MASK, %xmm12 + movdqa \reg1, %xmm8 + movdqa \reg2, %xmm13 + pclmulqdq $0x00, FOLD_CONSTS, \reg1 + pclmulqdq $0x11, FOLD_CONSTS, %xmm8 + pclmulqdq $0x00, FOLD_CONSTS, \reg2 + pclmulqdq $0x11, FOLD_CONSTS, %xmm13 + pxor %xmm9 , \reg1 + xorps %xmm8 , \reg1 + pxor %xmm12, \reg2 + xorps %xmm13, \reg2 +.endm + +# Fold src_reg into dst_reg. +.macro fold_16_bytes src_reg, dst_reg + movdqa \src_reg, %xmm8 + pclmulqdq $0x11, FOLD_CONSTS, \src_reg + pclmulqdq $0x00, FOLD_CONSTS, %xmm8 + pxor %xmm8, \dst_reg + xorps \src_reg, \dst_reg +.endm -ENTRY(crc_t10dif_pcl) +# +# u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len); +# +# Assumes len >= 16. +# .align 16 +ENTRY(crc_t10dif_pcl) - # adjust the 16-bit initial_crc value, scale it to 32 bits - shl $16, arg1_low32 - - # Allocate Stack Space - mov %rsp, %rcx - sub $16*2, %rsp - # align stack to 16 byte boundary - and $~(0x10 - 1), %rsp - - # check if smaller than 256 - cmp $256, arg3 - - # for sizes less than 128, we can't fold 64B at a time... - jl _less_than_128 - - - # load the initial crc value - movd arg1_low32, %xmm10 # initial crc - - # crc value does not need to be byte-reflected, but it needs - # to be moved to the high part of the register. - # because data will be byte-reflected and will align with - # initial crc at correct place. - pslldq $12, %xmm10 - - movdqa SHUF_MASK(%rip), %xmm11 - # receive the initial 64B data, xor the initial crc value - movdqu 16*0(arg2), %xmm0 - movdqu 16*1(arg2), %xmm1 - movdqu 16*2(arg2), %xmm2 - movdqu 16*3(arg2), %xmm3 - movdqu 16*4(arg2), %xmm4 - movdqu 16*5(arg2), %xmm5 - movdqu 16*6(arg2), %xmm6 - movdqu 16*7(arg2), %xmm7 - - pshufb %xmm11, %xmm0 - # XOR the initial_crc value - pxor %xmm10, %xmm0 - pshufb %xmm11, %xmm1 - pshufb %xmm11, %xmm2 - pshufb %xmm11, %xmm3 - pshufb %xmm11, %xmm4 - pshufb %xmm11, %xmm5 - pshufb %xmm11, %xmm6 - pshufb %xmm11, %xmm7 - - movdqa rk3(%rip), %xmm10 #xmm10 has rk3 and rk4 - #imm value of pclmulqdq instruction - #will determine which constant to use - - ################################################################# - # we subtract 256 instead of 128 to save one instruction from the loop - sub $256, arg3 - - # at this section of the code, there is 64*x+y (0<=y<64) bytes of - # buffer. The _fold_64_B_loop will fold 64B at a time - # until we have 64+y Bytes of buffer - - - # fold 64B at a time. This section of the code folds 4 xmm - # registers in parallel -_fold_64_B_loop: - - # update the buffer pointer - add $128, arg2 # buf += 64# - - movdqu 16*0(arg2), %xmm9 - movdqu 16*1(arg2), %xmm12 - pshufb %xmm11, %xmm9 - pshufb %xmm11, %xmm12 - movdqa %xmm0, %xmm8 - movdqa %xmm1, %xmm13 - pclmulqdq $0x0 , %xmm10, %xmm0 - pclmulqdq $0x11, %xmm10, %xmm8 - pclmulqdq $0x0 , %xmm10, %xmm1 - pclmulqdq $0x11, %xmm10, %xmm13 - pxor %xmm9 , %xmm0 - xorps %xmm8 , %xmm0 - pxor %xmm12, %xmm1 - xorps %xmm13, %xmm1 - - movdqu 16*2(arg2), %xmm9 - movdqu 16*3(arg2), %xmm12 - pshufb %xmm11, %xmm9 - pshufb %xmm11, %xmm12 - movdqa %xmm2, %xmm8 - movdqa %xmm3, %xmm13 - pclmulqdq $0x0, %xmm10, %xmm2 - pclmulqdq $0x11, %xmm10, %xmm8 - pclmulqdq $0x0, %xmm10, %xmm3 - pclmulqdq $0x11, %xmm10, %xmm13 - pxor %xmm9 , %xmm2 - xorps %xmm8 , %xmm2 - pxor %xmm12, %xmm3 - xorps %xmm13, %xmm3 - - movdqu 16*4(arg2), %xmm9 - movdqu 16*5(arg2), %xmm12 - pshufb %xmm11, %xmm9 - pshufb %xmm11, %xmm12 - movdqa %xmm4, %xmm8 - movdqa %xmm5, %xmm13 - pclmulqdq $0x0, %xmm10, %xmm4 - pclmulqdq $0x11, %xmm10, %xmm8 - pclmulqdq $0x0, %xmm10, %xmm5 - pclmulqdq $0x11, %xmm10, %xmm13 - pxor %xmm9 , %xmm4 - xorps %xmm8 , %xmm4 - pxor %xmm12, %xmm5 - xorps %xmm13, %xmm5 - - movdqu 16*6(arg2), %xmm9 - movdqu 16*7(arg2), %xmm12 - pshufb %xmm11, %xmm9 - pshufb %xmm11, %xmm12 - movdqa %xmm6 , %xmm8 - movdqa %xmm7 , %xmm13 - pclmulqdq $0x0 , %xmm10, %xmm6 - pclmulqdq $0x11, %xmm10, %xmm8 - pclmulqdq $0x0 , %xmm10, %xmm7 - pclmulqdq $0x11, %xmm10, %xmm13 - pxor %xmm9 , %xmm6 - xorps %xmm8 , %xmm6 - pxor %xmm12, %xmm7 - xorps %xmm13, %xmm7 - - sub $128, arg3 - - # check if there is another 64B in the buffer to be able to fold - jge _fold_64_B_loop - ################################################################## - - - add $128, arg2 - # at this point, the buffer pointer is pointing at the last y Bytes - # of the buffer the 64B of folded data is in 4 of the xmm - # registers: xmm0, xmm1, xmm2, xmm3 - - - # fold the 8 xmm registers to 1 xmm register with different constants - - movdqa rk9(%rip), %xmm10 - movdqa %xmm0, %xmm8 - pclmulqdq $0x11, %xmm10, %xmm0 - pclmulqdq $0x0 , %xmm10, %xmm8 - pxor %xmm8, %xmm7 - xorps %xmm0, %xmm7 - - movdqa rk11(%rip), %xmm10 - movdqa %xmm1, %xmm8 - pclmulqdq $0x11, %xmm10, %xmm1 - pclmulqdq $0x0 , %xmm10, %xmm8 - pxor %xmm8, %xmm7 - xorps %xmm1, %xmm7 - - movdqa rk13(%rip), %xmm10 - movdqa %xmm2, %xmm8 - pclmulqdq $0x11, %xmm10, %xmm2 - pclmulqdq $0x0 , %xmm10, %xmm8 - pxor %xmm8, %xmm7 - pxor %xmm2, %xmm7 - - movdqa rk15(%rip), %xmm10 - movdqa %xmm3, %xmm8 - pclmulqdq $0x11, %xmm10, %xmm3 - pclmulqdq $0x0 , %xmm10, %xmm8 - pxor %xmm8, %xmm7 - xorps %xmm3, %xmm7 - - movdqa rk17(%rip), %xmm10 - movdqa %xmm4, %xmm8 - pclmulqdq $0x11, %xmm10, %xmm4 - pclmulqdq $0x0 , %xmm10, %xmm8 - pxor %xmm8, %xmm7 - pxor %xmm4, %xmm7 - - movdqa rk19(%rip), %xmm10 - movdqa %xmm5, %xmm8 - pclmulqdq $0x11, %xmm10, %xmm5 - pclmulqdq $0x0 , %xmm10, %xmm8 - pxor %xmm8, %xmm7 - xorps %xmm5, %xmm7 - - movdqa rk1(%rip), %xmm10 #xmm10 has rk1 and rk2 - #imm value of pclmulqdq instruction - #will determine which constant to use - movdqa %xmm6, %xmm8 - pclmulqdq $0x11, %xmm10, %xmm6 - pclmulqdq $0x0 , %xmm10, %xmm8 - pxor %xmm8, %xmm7 - pxor %xmm6, %xmm7 - - - # instead of 64, we add 48 to the loop counter to save 1 instruction - # from the loop instead of a cmp instruction, we use the negative - # flag with the jl instruction - add $128-16, arg3 - jl _final_reduction_for_128 - - # now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 - # and the rest is in memory. We can fold 16 bytes at a time if y>=16 - # continue folding 16B at a time - -_16B_reduction_loop: + movdqa .Lbswap_mask(%rip), BSWAP_MASK + + # For sizes less than 256 bytes, we can't fold 128 bytes at a time. + cmp $256, len + jl .Lless_than_256_bytes + + # Load the first 128 data bytes. Byte swapping is necessary to make the + # bit order match the polynomial coefficient order. + movdqu 16*0(buf), %xmm0 + movdqu 16*1(buf), %xmm1 + movdqu 16*2(buf), %xmm2 + movdqu 16*3(buf), %xmm3 + movdqu 16*4(buf), %xmm4 + movdqu 16*5(buf), %xmm5 + movdqu 16*6(buf), %xmm6 + movdqu 16*7(buf), %xmm7 + add $128, buf + pshufb BSWAP_MASK, %xmm0 + pshufb BSWAP_MASK, %xmm1 + pshufb BSWAP_MASK, %xmm2 + pshufb BSWAP_MASK, %xmm3 + pshufb BSWAP_MASK, %xmm4 + pshufb BSWAP_MASK, %xmm5 + pshufb BSWAP_MASK, %xmm6 + pshufb BSWAP_MASK, %xmm7 + + # XOR the first 16 data *bits* with the initial CRC value. + pxor %xmm8, %xmm8 + pinsrw $7, init_crc, %xmm8 + pxor %xmm8, %xmm0 + + movdqa .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS + + # Subtract 128 for the 128 data bytes just consumed. Subtract another + # 128 to simplify the termination condition of the following loop. + sub $256, len + + # While >= 128 data bytes remain (not counting xmm0-7), fold the 128 + # bytes xmm0-7 into them, storing the result back into xmm0-7. +.Lfold_128_bytes_loop: + fold_32_bytes 0, %xmm0, %xmm1 + fold_32_bytes 32, %xmm2, %xmm3 + fold_32_bytes 64, %xmm4, %xmm5 + fold_32_bytes 96, %xmm6, %xmm7 + add $128, buf + sub $128, len + jge .Lfold_128_bytes_loop + + # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7. + + # Fold across 64 bytes. + movdqa .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS + fold_16_bytes %xmm0, %xmm4 + fold_16_bytes %xmm1, %xmm5 + fold_16_bytes %xmm2, %xmm6 + fold_16_bytes %xmm3, %xmm7 + # Fold across 32 bytes. + movdqa .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS + fold_16_bytes %xmm4, %xmm6 + fold_16_bytes %xmm5, %xmm7 + # Fold across 16 bytes. + movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS + fold_16_bytes %xmm6, %xmm7 + + # Add 128 to get the correct number of data bytes remaining in 0...127 + # (not counting xmm7), following the previous extra subtraction by 128. + # Then subtract 16 to simplify the termination condition of the + # following loop. + add $128-16, len + + # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes + # xmm7 into them, storing the result back into xmm7. + jl .Lfold_16_bytes_loop_done +.Lfold_16_bytes_loop: movdqa %xmm7, %xmm8 - pclmulqdq $0x11, %xmm10, %xmm7 - pclmulqdq $0x0 , %xmm10, %xmm8 + pclmulqdq $0x11, FOLD_CONSTS, %xmm7 + pclmulqdq $0x00, FOLD_CONSTS, %xmm8 pxor %xmm8, %xmm7 - movdqu (arg2), %xmm0 - pshufb %xmm11, %xmm0 + movdqu (buf), %xmm0 + pshufb BSWAP_MASK, %xmm0 pxor %xmm0 , %xmm7 - add $16, arg2 - sub $16, arg3 - # instead of a cmp instruction, we utilize the flags with the - # jge instruction equivalent of: cmp arg3, 16-16 - # check if there is any more 16B in the buffer to be able to fold - jge _16B_reduction_loop - - #now we have 16+z bytes left to reduce, where 0<= z < 16. - #first, we reduce the data in the xmm7 register - - -_final_reduction_for_128: - # check if any more data to fold. If not, compute the CRC of - # the final 128 bits - add $16, arg3 - je _128_done - - # here we are getting data that is less than 16 bytes. - # since we know that there was data before the pointer, we can - # offset the input pointer before the actual point, to receive - # exactly 16 bytes. after that the registers need to be adjusted. -_get_last_two_xmms: + add $16, buf + sub $16, len + jge .Lfold_16_bytes_loop + +.Lfold_16_bytes_loop_done: + # Add 16 to get the correct number of data bytes remaining in 0...15 + # (not counting xmm7), following the previous extra subtraction by 16. + add $16, len + je .Lreduce_final_16_bytes + +.Lhandle_partial_segment: + # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16 + # bytes are in xmm7 and the rest are the remaining data in 'buf'. To do + # this without needing a fold constant for each possible 'len', redivide + # the bytes into a first chunk of 'len' bytes and a second chunk of 16 + # bytes, then fold the first chunk into the second. + movdqa %xmm7, %xmm2 - movdqu -16(arg2, arg3), %xmm1 - pshufb %xmm11, %xmm1 + # xmm1 = last 16 original data bytes + movdqu -16(buf, len), %xmm1 + pshufb BSWAP_MASK, %xmm1 - # get rid of the extra data that was loaded before - # load the shift constant - lea pshufb_shf_table+16(%rip), %rax - sub arg3, %rax + # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes. + lea .Lbyteshift_table+16(%rip), %rax + sub len, %rax movdqu (%rax), %xmm0 - - # shift xmm2 to the left by arg3 bytes pshufb %xmm0, %xmm2 - # shift xmm7 to the right by 16-arg3 bytes - pxor mask1(%rip), %xmm0 + # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes. + pxor .Lmask1(%rip), %xmm0 pshufb %xmm0, %xmm7 + + # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes), + # then '16-len' bytes from xmm2 (high-order bytes). pblendvb %xmm2, %xmm1 #xmm0 is implicit - # fold 16 Bytes - movdqa %xmm1, %xmm2 + # Fold the first chunk into the second chunk, storing the result in xmm7. movdqa %xmm7, %xmm8 - pclmulqdq $0x11, %xmm10, %xmm7 - pclmulqdq $0x0 , %xmm10, %xmm8 + pclmulqdq $0x11, FOLD_CONSTS, %xmm7 + pclmulqdq $0x00, FOLD_CONSTS, %xmm8 pxor %xmm8, %xmm7 - pxor %xmm2, %xmm7 + pxor %xmm1, %xmm7 -_128_done: - # compute crc of a 128-bit value - movdqa rk5(%rip), %xmm10 # rk5 and rk6 in xmm10 - movdqa %xmm7, %xmm0 +.Lreduce_final_16_bytes: + # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC - #64b fold - pclmulqdq $0x1, %xmm10, %xmm7 - pslldq $8 , %xmm0 - pxor %xmm0, %xmm7 + # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'. + movdqa .Lfinal_fold_consts(%rip), FOLD_CONSTS - #32b fold + # Fold the high 64 bits into the low 64 bits, while also multiplying by + # x^64. This produces a 128-bit value congruent to x^64 * M(x) and + # whose low 48 bits are 0. movdqa %xmm7, %xmm0 + pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x)) + pslldq $8, %xmm0 + pxor %xmm0, %xmm7 # + low bits * x^64 - pand mask2(%rip), %xmm0 - - psrldq $12, %xmm7 - pclmulqdq $0x10, %xmm10, %xmm7 - pxor %xmm0, %xmm7 - - #barrett reduction -_barrett: - movdqa rk7(%rip), %xmm10 # rk7 and rk8 in xmm10 + # Fold the high 32 bits into the low 96 bits. This produces a 96-bit + # value congruent to x^64 * M(x) and whose low 48 bits are 0. movdqa %xmm7, %xmm0 - pclmulqdq $0x01, %xmm10, %xmm7 - pslldq $4, %xmm7 - pclmulqdq $0x11, %xmm10, %xmm7 + pand .Lmask2(%rip), %xmm0 # zero high 32 bits + psrldq $12, %xmm7 # extract high 32 bits + pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x)) + pxor %xmm0, %xmm7 # + low bits - pslldq $4, %xmm7 - pxor %xmm0, %xmm7 - pextrd $1, %xmm7, %eax + # Load G(x) and floor(x^48 / G(x)). + movdqa .Lbarrett_reduction_consts(%rip), FOLD_CONSTS -_cleanup: - # scale the result back to 16 bits - shr $16, %eax - mov %rcx, %rsp + # Use Barrett reduction to compute the final CRC value. + movdqa %xmm7, %xmm0 + pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x)) + psrlq $32, %xmm7 # /= x^32 + pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x) + psrlq $48, %xmm0 + pxor %xmm7, %xmm0 # + low 16 nonzero bits + # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0. + + pextrw $0, %xmm0, %eax ret -######################################################################## - .align 16 -_less_than_128: - - # check if there is enough buffer to be able to fold 16B at a time - cmp $32, arg3 - jl _less_than_32 - movdqa SHUF_MASK(%rip), %xmm11 +.Lless_than_256_bytes: + # Checksumming a buffer of length 16...255 bytes - # now if there is, load the constants - movdqa rk1(%rip), %xmm10 # rk1 and rk2 in xmm10 + # Load the first 16 data bytes. + movdqu (buf), %xmm7 + pshufb BSWAP_MASK, %xmm7 + add $16, buf - movd arg1_low32, %xmm0 # get the initial crc value - pslldq $12, %xmm0 # align it to its correct place - movdqu (arg2), %xmm7 # load the plaintext - pshufb %xmm11, %xmm7 # byte-reflect the plaintext + # XOR the first 16 data *bits* with the initial CRC value. + pxor %xmm0, %xmm0 + pinsrw $7, init_crc, %xmm0 pxor %xmm0, %xmm7 - - # update the buffer pointer - add $16, arg2 - - # update the counter. subtract 32 instead of 16 to save one - # instruction from the loop - sub $32, arg3 - - jmp _16B_reduction_loop - - -.align 16 -_less_than_32: - # mov initial crc to the return value. this is necessary for - # zero-length buffers. - mov arg1_low32, %eax - test arg3, arg3 - je _cleanup - - movdqa SHUF_MASK(%rip), %xmm11 - - movd arg1_low32, %xmm0 # get the initial crc value - pslldq $12, %xmm0 # align it to its correct place - - cmp $16, arg3 - je _exact_16_left - jl _less_than_16_left - - movdqu (arg2), %xmm7 # load the plaintext - pshufb %xmm11, %xmm7 # byte-reflect the plaintext - pxor %xmm0 , %xmm7 # xor the initial crc value - add $16, arg2 - sub $16, arg3 - movdqa rk1(%rip), %xmm10 # rk1 and rk2 in xmm10 - jmp _get_last_two_xmms - - -.align 16 -_less_than_16_left: - # use stack space to load data less than 16 bytes, zero-out - # the 16B in memory first. - - pxor %xmm1, %xmm1 - mov %rsp, %r11 - movdqa %xmm1, (%r11) - - cmp $4, arg3 - jl _only_less_than_4 - - # backup the counter value - mov arg3, %r9 - cmp $8, arg3 - jl _less_than_8_left - - # load 8 Bytes - mov (arg2), %rax - mov %rax, (%r11) - add $8, %r11 - sub $8, arg3 - add $8, arg2 -_less_than_8_left: - - cmp $4, arg3 - jl _less_than_4_left - - # load 4 Bytes - mov (arg2), %eax - mov %eax, (%r11) - add $4, %r11 - sub $4, arg3 - add $4, arg2 -_less_than_4_left: - - cmp $2, arg3 - jl _less_than_2_left - - # load 2 Bytes - mov (arg2), %ax - mov %ax, (%r11) - add $2, %r11 - sub $2, arg3 - add $2, arg2 -_less_than_2_left: - cmp $1, arg3 - jl _zero_left - - # load 1 Byte - mov (arg2), %al - mov %al, (%r11) -_zero_left: - movdqa (%rsp), %xmm7 - pshufb %xmm11, %xmm7 - pxor %xmm0 , %xmm7 # xor the initial crc value - - # shl r9, 4 - lea pshufb_shf_table+16(%rip), %rax - sub %r9, %rax - movdqu (%rax), %xmm0 - pxor mask1(%rip), %xmm0 - - pshufb %xmm0, %xmm7 - jmp _128_done - -.align 16 -_exact_16_left: - movdqu (arg2), %xmm7 - pshufb %xmm11, %xmm7 - pxor %xmm0 , %xmm7 # xor the initial crc value - - jmp _128_done - -_only_less_than_4: - cmp $3, arg3 - jl _only_less_than_3 - - # load 3 Bytes - mov (arg2), %al - mov %al, (%r11) - - mov 1(arg2), %al - mov %al, 1(%r11) - - mov 2(arg2), %al - mov %al, 2(%r11) - - movdqa (%rsp), %xmm7 - pshufb %xmm11, %xmm7 - pxor %xmm0 , %xmm7 # xor the initial crc value - - psrldq $5, %xmm7 - - jmp _barrett -_only_less_than_3: - cmp $2, arg3 - jl _only_less_than_2 - - # load 2 Bytes - mov (arg2), %al - mov %al, (%r11) - - mov 1(arg2), %al - mov %al, 1(%r11) - - movdqa (%rsp), %xmm7 - pshufb %xmm11, %xmm7 - pxor %xmm0 , %xmm7 # xor the initial crc value - - psrldq $6, %xmm7 - - jmp _barrett -_only_less_than_2: - - # load 1 Byte - mov (arg2), %al - mov %al, (%r11) - - movdqa (%rsp), %xmm7 - pshufb %xmm11, %xmm7 - pxor %xmm0 , %xmm7 # xor the initial crc value - - psrldq $7, %xmm7 - - jmp _barrett - + movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS + cmp $16, len + je .Lreduce_final_16_bytes # len == 16 + sub $32, len + jge .Lfold_16_bytes_loop # 32 <= len <= 255 + add $16, len + jmp .Lhandle_partial_segment # 17 <= len <= 31 ENDPROC(crc_t10dif_pcl) .section .rodata, "a", @progbits .align 16 -# precomputed constants -# these constants are precomputed from the poly: -# 0x8bb70000 (0x8bb7 scaled to 32 bits) -# Q = 0x18BB70000 -# rk1 = 2^(32*3) mod Q << 32 -# rk2 = 2^(32*5) mod Q << 32 -# rk3 = 2^(32*15) mod Q << 32 -# rk4 = 2^(32*17) mod Q << 32 -# rk5 = 2^(32*3) mod Q << 32 -# rk6 = 2^(32*2) mod Q << 32 -# rk7 = floor(2^64/Q) -# rk8 = Q -rk1: -.quad 0x2d56000000000000 -rk2: -.quad 0x06df000000000000 -rk3: -.quad 0x9d9d000000000000 -rk4: -.quad 0x7cf5000000000000 -rk5: -.quad 0x2d56000000000000 -rk6: -.quad 0x1368000000000000 -rk7: -.quad 0x00000001f65a57f8 -rk8: -.quad 0x000000018bb70000 - -rk9: -.quad 0xceae000000000000 -rk10: -.quad 0xbfd6000000000000 -rk11: -.quad 0x1e16000000000000 -rk12: -.quad 0x713c000000000000 -rk13: -.quad 0xf7f9000000000000 -rk14: -.quad 0x80a6000000000000 -rk15: -.quad 0x044c000000000000 -rk16: -.quad 0xe658000000000000 -rk17: -.quad 0xad18000000000000 -rk18: -.quad 0xa497000000000000 -rk19: -.quad 0x6ee3000000000000 -rk20: -.quad 0xe7b5000000000000 - +# Fold constants precomputed from the polynomial 0x18bb7 +# G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 +.Lfold_across_128_bytes_consts: + .quad 0x0000000000006123 # x^(8*128) mod G(x) + .quad 0x0000000000002295 # x^(8*128+64) mod G(x) +.Lfold_across_64_bytes_consts: + .quad 0x0000000000001069 # x^(4*128) mod G(x) + .quad 0x000000000000dd31 # x^(4*128+64) mod G(x) +.Lfold_across_32_bytes_consts: + .quad 0x000000000000857d # x^(2*128) mod G(x) + .quad 0x0000000000007acc # x^(2*128+64) mod G(x) +.Lfold_across_16_bytes_consts: + .quad 0x000000000000a010 # x^(1*128) mod G(x) + .quad 0x0000000000001faa # x^(1*128+64) mod G(x) +.Lfinal_fold_consts: + .quad 0x1368000000000000 # x^48 * (x^48 mod G(x)) + .quad 0x2d56000000000000 # x^48 * (x^80 mod G(x)) +.Lbarrett_reduction_consts: + .quad 0x0000000000018bb7 # G(x) + .quad 0x00000001f65a57f8 # floor(x^48 / G(x)) .section .rodata.cst16.mask1, "aM", @progbits, 16 .align 16 -mask1: -.octa 0x80808080808080808080808080808080 +.Lmask1: + .octa 0x80808080808080808080808080808080 .section .rodata.cst16.mask2, "aM", @progbits, 16 .align 16 -mask2: -.octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF +.Lmask2: + .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF + +.section .rodata.cst16.bswap_mask, "aM", @progbits, 16 +.align 16 +.Lbswap_mask: + .octa 0x000102030405060708090A0B0C0D0E0F -.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 +.section .rodata.cst32.byteshift_table, "aM", @progbits, 32 .align 16 -SHUF_MASK: -.octa 0x000102030405060708090A0B0C0D0E0F - -.section .rodata.cst32.pshufb_shf_table, "aM", @progbits, 32 -.align 32 -pshufb_shf_table: -# use these values for shift constants for the pshufb instruction -# different alignments result in values as shown: -# DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1 -# DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2 -# DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3 -# DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4 -# DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5 -# DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6 -# DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7 -# DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8 -# DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9 -# DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10 -# DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11 -# DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12 -# DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13 -# DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14 -# DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15 -.octa 0x8f8e8d8c8b8a89888786858483828100 -.octa 0x000e0d0c0b0a09080706050403020100 +# For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len] +# is the index vector to shift left by 'len' bytes, and is also {0x80, ..., +# 0x80} XOR the index vector to shift right by '16 - len' bytes. +.Lbyteshift_table: + .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 + .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f + .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 + .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0 diff --git a/arch/x86/crypto/crct10dif-pclmul_glue.c b/arch/x86/crypto/crct10dif-pclmul_glue.c index cd4df9322501..0e785c0b2354 100644 --- a/arch/x86/crypto/crct10dif-pclmul_glue.c +++ b/arch/x86/crypto/crct10dif-pclmul_glue.c @@ -33,18 +33,12 @@ #include <asm/cpufeatures.h> #include <asm/cpu_device_id.h> -asmlinkage __u16 crc_t10dif_pcl(__u16 crc, const unsigned char *buf, - size_t len); +asmlinkage u16 crc_t10dif_pcl(u16 init_crc, const u8 *buf, size_t len); struct chksum_desc_ctx { __u16 crc; }; -/* - * Steps through buffer one byte at at time, calculates reflected - * crc using table. - */ - static int chksum_init(struct shash_desc *desc) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); @@ -59,7 +53,7 @@ static int chksum_update(struct shash_desc *desc, const u8 *data, { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); - if (irq_fpu_usable()) { + if (length >= 16 && irq_fpu_usable()) { kernel_fpu_begin(); ctx->crc = crc_t10dif_pcl(ctx->crc, data, length); kernel_fpu_end(); @@ -79,7 +73,7 @@ static int chksum_final(struct shash_desc *desc, u8 *out) static int __chksum_finup(__u16 *crcp, const u8 *data, unsigned int len, u8 *out) { - if (irq_fpu_usable()) { + if (len >= 16 && irq_fpu_usable()) { kernel_fpu_begin(); *(__u16 *)out = crc_t10dif_pcl(*crcp, data, len); kernel_fpu_end(); diff --git a/arch/x86/crypto/morus1280_glue.c b/arch/x86/crypto/morus1280_glue.c index 0dccdda1eb3a..7e600f8bcdad 100644 --- a/arch/x86/crypto/morus1280_glue.c +++ b/arch/x86/crypto/morus1280_glue.c @@ -85,31 +85,20 @@ static void crypto_morus1280_glue_process_ad( static void crypto_morus1280_glue_process_crypt(struct morus1280_state *state, struct morus1280_ops ops, - struct aead_request *req) + struct skcipher_walk *walk) { - struct skcipher_walk walk; - u8 *cursor_src, *cursor_dst; - unsigned int chunksize, base; - - ops.skcipher_walk_init(&walk, req, false); - - while (walk.nbytes) { - cursor_src = walk.src.virt.addr; - cursor_dst = walk.dst.virt.addr; - chunksize = walk.nbytes; - - ops.crypt_blocks(state, cursor_src, cursor_dst, chunksize); - - base = chunksize & ~(MORUS1280_BLOCK_SIZE - 1); - cursor_src += base; - cursor_dst += base; - chunksize &= MORUS1280_BLOCK_SIZE - 1; - - if (chunksize > 0) - ops.crypt_tail(state, cursor_src, cursor_dst, - chunksize); + while (walk->nbytes >= MORUS1280_BLOCK_SIZE) { + ops.crypt_blocks(state, walk->src.virt.addr, + walk->dst.virt.addr, + round_down(walk->nbytes, + MORUS1280_BLOCK_SIZE)); + skcipher_walk_done(walk, walk->nbytes % MORUS1280_BLOCK_SIZE); + } - skcipher_walk_done(&walk, 0); + if (walk->nbytes) { + ops.crypt_tail(state, walk->src.virt.addr, walk->dst.virt.addr, + walk->nbytes); + skcipher_walk_done(walk, 0); } } @@ -147,12 +136,15 @@ static void crypto_morus1280_glue_crypt(struct aead_request *req, struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct morus1280_ctx *ctx = crypto_aead_ctx(tfm); struct morus1280_state state; + struct skcipher_walk walk; + + ops.skcipher_walk_init(&walk, req, true); kernel_fpu_begin(); ctx->ops->init(&state, &ctx->key, req->iv); crypto_morus1280_glue_process_ad(&state, ctx->ops, req->src, req->assoclen); - crypto_morus1280_glue_process_crypt(&state, ops, req); + crypto_morus1280_glue_process_crypt(&state, ops, &walk); ctx->ops->final(&state, tag_xor, req->assoclen, cryptlen); kernel_fpu_end(); diff --git a/arch/x86/crypto/morus640_glue.c b/arch/x86/crypto/morus640_glue.c index 7b58fe4d9bd1..cb3a81732016 100644 --- a/arch/x86/crypto/morus640_glue.c +++ b/arch/x86/crypto/morus640_glue.c @@ -85,31 +85,19 @@ static void crypto_morus640_glue_process_ad( static void crypto_morus640_glue_process_crypt(struct morus640_state *state, struct morus640_ops ops, - struct aead_request *req) + struct skcipher_walk *walk) { - struct skcipher_walk walk; - u8 *cursor_src, *cursor_dst; - unsigned int chunksize, base; - - ops.skcipher_walk_init(&walk, req, false); - - while (walk.nbytes) { - cursor_src = walk.src.virt.addr; - cursor_dst = walk.dst.virt.addr; - chunksize = walk.nbytes; - - ops.crypt_blocks(state, cursor_src, cursor_dst, chunksize); - - base = chunksize & ~(MORUS640_BLOCK_SIZE - 1); - cursor_src += base; - cursor_dst += base; - chunksize &= MORUS640_BLOCK_SIZE - 1; - - if (chunksize > 0) - ops.crypt_tail(state, cursor_src, cursor_dst, - chunksize); + while (walk->nbytes >= MORUS640_BLOCK_SIZE) { + ops.crypt_blocks(state, walk->src.virt.addr, + walk->dst.virt.addr, + round_down(walk->nbytes, MORUS640_BLOCK_SIZE)); + skcipher_walk_done(walk, walk->nbytes % MORUS640_BLOCK_SIZE); + } - skcipher_walk_done(&walk, 0); + if (walk->nbytes) { + ops.crypt_tail(state, walk->src.virt.addr, walk->dst.virt.addr, + walk->nbytes); + skcipher_walk_done(walk, 0); } } @@ -143,12 +131,15 @@ static void crypto_morus640_glue_crypt(struct aead_request *req, struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct morus640_ctx *ctx = crypto_aead_ctx(tfm); struct morus640_state state; + struct skcipher_walk walk; + + ops.skcipher_walk_init(&walk, req, true); kernel_fpu_begin(); ctx->ops->init(&state, &ctx->key, req->iv); crypto_morus640_glue_process_ad(&state, ctx->ops, req->src, req->assoclen); - crypto_morus640_glue_process_crypt(&state, ops, req); + crypto_morus640_glue_process_crypt(&state, ops, &walk); ctx->ops->final(&state, tag_xor, req->assoclen, cryptlen); kernel_fpu_end(); diff --git a/arch/x86/crypto/poly1305-sse2-x86_64.S b/arch/x86/crypto/poly1305-sse2-x86_64.S index c88c670cb5fc..e6add74d78a5 100644 --- a/arch/x86/crypto/poly1305-sse2-x86_64.S +++ b/arch/x86/crypto/poly1305-sse2-x86_64.S @@ -272,6 +272,10 @@ ENTRY(poly1305_block_sse2) dec %rcx jnz .Ldoblock + # Zeroing of key material + mov %rcx,0x00(%rsp) + mov %rcx,0x08(%rsp) + add $0x10,%rsp pop %r12 pop %rbx |