summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/paging_tmpl.h
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2019-11-21 12:45:07 +0300
committerPaolo Bonzini <pbonzini@redhat.com>2019-11-21 14:03:50 +0300
commitc50d8ae3a1274f32c9033bbb0e1c5b3115da2112 (patch)
treeea3c1611243a67c029590a241f07bc5f0796962c /arch/x86/kvm/paging_tmpl.h
parent0155b2b91b263248fb5dd01c238439d4ab3731c5 (diff)
downloadlinux-c50d8ae3a1274f32c9033bbb0e1c5b3115da2112.tar.xz
KVM: x86: create mmu/ subdirectory
Preparatory work for shattering mmu.c into multiple files. Besides making it easier to follow, this will also make it possible to write unit tests for various parts. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'arch/x86/kvm/paging_tmpl.h')
-rw-r--r--arch/x86/kvm/paging_tmpl.h1090
1 files changed, 0 insertions, 1090 deletions
diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h
deleted file mode 100644
index 97b21e7fd013..000000000000
--- a/arch/x86/kvm/paging_tmpl.h
+++ /dev/null
@@ -1,1090 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0-only */
-/*
- * Kernel-based Virtual Machine driver for Linux
- *
- * This module enables machines with Intel VT-x extensions to run virtual
- * machines without emulation or binary translation.
- *
- * MMU support
- *
- * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affiliates.
- *
- * Authors:
- * Yaniv Kamay <yaniv@qumranet.com>
- * Avi Kivity <avi@qumranet.com>
- */
-
-/*
- * We need the mmu code to access both 32-bit and 64-bit guest ptes,
- * so the code in this file is compiled twice, once per pte size.
- */
-
-#if PTTYPE == 64
- #define pt_element_t u64
- #define guest_walker guest_walker64
- #define FNAME(name) paging##64_##name
- #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
- #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
- #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
- #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
- #define PT_LEVEL_BITS PT64_LEVEL_BITS
- #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
- #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
- #define PT_HAVE_ACCESSED_DIRTY(mmu) true
- #ifdef CONFIG_X86_64
- #define PT_MAX_FULL_LEVELS 4
- #define CMPXCHG cmpxchg
- #else
- #define CMPXCHG cmpxchg64
- #define PT_MAX_FULL_LEVELS 2
- #endif
-#elif PTTYPE == 32
- #define pt_element_t u32
- #define guest_walker guest_walker32
- #define FNAME(name) paging##32_##name
- #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
- #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
- #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
- #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
- #define PT_LEVEL_BITS PT32_LEVEL_BITS
- #define PT_MAX_FULL_LEVELS 2
- #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
- #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
- #define PT_HAVE_ACCESSED_DIRTY(mmu) true
- #define CMPXCHG cmpxchg
-#elif PTTYPE == PTTYPE_EPT
- #define pt_element_t u64
- #define guest_walker guest_walkerEPT
- #define FNAME(name) ept_##name
- #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
- #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
- #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
- #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
- #define PT_LEVEL_BITS PT64_LEVEL_BITS
- #define PT_GUEST_DIRTY_SHIFT 9
- #define PT_GUEST_ACCESSED_SHIFT 8
- #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
- #define CMPXCHG cmpxchg64
- #define PT_MAX_FULL_LEVELS 4
-#else
- #error Invalid PTTYPE value
-#endif
-
-#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
-#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
-
-#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
-#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
-
-/*
- * The guest_walker structure emulates the behavior of the hardware page
- * table walker.
- */
-struct guest_walker {
- int level;
- unsigned max_level;
- gfn_t table_gfn[PT_MAX_FULL_LEVELS];
- pt_element_t ptes[PT_MAX_FULL_LEVELS];
- pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
- gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
- pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
- bool pte_writable[PT_MAX_FULL_LEVELS];
- unsigned pt_access;
- unsigned pte_access;
- gfn_t gfn;
- struct x86_exception fault;
-};
-
-static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
-{
- return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
-}
-
-static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
- unsigned gpte)
-{
- unsigned mask;
-
- /* dirty bit is not supported, so no need to track it */
- if (!PT_HAVE_ACCESSED_DIRTY(mmu))
- return;
-
- BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
-
- mask = (unsigned)~ACC_WRITE_MASK;
- /* Allow write access to dirty gptes */
- mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
- PT_WRITABLE_MASK;
- *access &= mask;
-}
-
-static inline int FNAME(is_present_gpte)(unsigned long pte)
-{
-#if PTTYPE != PTTYPE_EPT
- return pte & PT_PRESENT_MASK;
-#else
- return pte & 7;
-#endif
-}
-
-static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
- pt_element_t __user *ptep_user, unsigned index,
- pt_element_t orig_pte, pt_element_t new_pte)
-{
- int npages;
- pt_element_t ret;
- pt_element_t *table;
- struct page *page;
-
- npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
- if (likely(npages == 1)) {
- table = kmap_atomic(page);
- ret = CMPXCHG(&table[index], orig_pte, new_pte);
- kunmap_atomic(table);
-
- kvm_release_page_dirty(page);
- } else {
- struct vm_area_struct *vma;
- unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
- unsigned long pfn;
- unsigned long paddr;
-
- down_read(&current->mm->mmap_sem);
- vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
- if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
- up_read(&current->mm->mmap_sem);
- return -EFAULT;
- }
- pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
- paddr = pfn << PAGE_SHIFT;
- table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
- if (!table) {
- up_read(&current->mm->mmap_sem);
- return -EFAULT;
- }
- ret = CMPXCHG(&table[index], orig_pte, new_pte);
- memunmap(table);
- up_read(&current->mm->mmap_sem);
- }
-
- return (ret != orig_pte);
-}
-
-static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp, u64 *spte,
- u64 gpte)
-{
- if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
- goto no_present;
-
- if (!FNAME(is_present_gpte)(gpte))
- goto no_present;
-
- /* if accessed bit is not supported prefetch non accessed gpte */
- if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
- !(gpte & PT_GUEST_ACCESSED_MASK))
- goto no_present;
-
- return false;
-
-no_present:
- drop_spte(vcpu->kvm, spte);
- return true;
-}
-
-/*
- * For PTTYPE_EPT, a page table can be executable but not readable
- * on supported processors. Therefore, set_spte does not automatically
- * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
- * to signify readability since it isn't used in the EPT case
- */
-static inline unsigned FNAME(gpte_access)(u64 gpte)
-{
- unsigned access;
-#if PTTYPE == PTTYPE_EPT
- access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
- ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
- ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
-#else
- BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
- BUILD_BUG_ON(ACC_EXEC_MASK != 1);
- access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
- /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
- access ^= (gpte >> PT64_NX_SHIFT);
-#endif
-
- return access;
-}
-
-static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
- struct kvm_mmu *mmu,
- struct guest_walker *walker,
- int write_fault)
-{
- unsigned level, index;
- pt_element_t pte, orig_pte;
- pt_element_t __user *ptep_user;
- gfn_t table_gfn;
- int ret;
-
- /* dirty/accessed bits are not supported, so no need to update them */
- if (!PT_HAVE_ACCESSED_DIRTY(mmu))
- return 0;
-
- for (level = walker->max_level; level >= walker->level; --level) {
- pte = orig_pte = walker->ptes[level - 1];
- table_gfn = walker->table_gfn[level - 1];
- ptep_user = walker->ptep_user[level - 1];
- index = offset_in_page(ptep_user) / sizeof(pt_element_t);
- if (!(pte & PT_GUEST_ACCESSED_MASK)) {
- trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
- pte |= PT_GUEST_ACCESSED_MASK;
- }
- if (level == walker->level && write_fault &&
- !(pte & PT_GUEST_DIRTY_MASK)) {
- trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
-#if PTTYPE == PTTYPE_EPT
- if (kvm_arch_write_log_dirty(vcpu))
- return -EINVAL;
-#endif
- pte |= PT_GUEST_DIRTY_MASK;
- }
- if (pte == orig_pte)
- continue;
-
- /*
- * If the slot is read-only, simply do not process the accessed
- * and dirty bits. This is the correct thing to do if the slot
- * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
- * are only supported if the accessed and dirty bits are already
- * set in the ROM (so that MMIO writes are never needed).
- *
- * Note that NPT does not allow this at all and faults, since
- * it always wants nested page table entries for the guest
- * page tables to be writable. And EPT works but will simply
- * overwrite the read-only memory to set the accessed and dirty
- * bits.
- */
- if (unlikely(!walker->pte_writable[level - 1]))
- continue;
-
- ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
- if (ret)
- return ret;
-
- kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
- walker->ptes[level - 1] = pte;
- }
- return 0;
-}
-
-static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
-{
- unsigned pkeys = 0;
-#if PTTYPE == 64
- pte_t pte = {.pte = gpte};
-
- pkeys = pte_flags_pkey(pte_flags(pte));
-#endif
- return pkeys;
-}
-
-/*
- * Fetch a guest pte for a guest virtual address
- */
-static int FNAME(walk_addr_generic)(struct guest_walker *walker,
- struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
- gva_t addr, u32 access)
-{
- int ret;
- pt_element_t pte;
- pt_element_t __user *uninitialized_var(ptep_user);
- gfn_t table_gfn;
- u64 pt_access, pte_access;
- unsigned index, accessed_dirty, pte_pkey;
- unsigned nested_access;
- gpa_t pte_gpa;
- bool have_ad;
- int offset;
- u64 walk_nx_mask = 0;
- const int write_fault = access & PFERR_WRITE_MASK;
- const int user_fault = access & PFERR_USER_MASK;
- const int fetch_fault = access & PFERR_FETCH_MASK;
- u16 errcode = 0;
- gpa_t real_gpa;
- gfn_t gfn;
-
- trace_kvm_mmu_pagetable_walk(addr, access);
-retry_walk:
- walker->level = mmu->root_level;
- pte = mmu->get_cr3(vcpu);
- have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
-
-#if PTTYPE == 64
- walk_nx_mask = 1ULL << PT64_NX_SHIFT;
- if (walker->level == PT32E_ROOT_LEVEL) {
- pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
- trace_kvm_mmu_paging_element(pte, walker->level);
- if (!FNAME(is_present_gpte)(pte))
- goto error;
- --walker->level;
- }
-#endif
- walker->max_level = walker->level;
- ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
-
- /*
- * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
- * by the MOV to CR instruction are treated as reads and do not cause the
- * processor to set the dirty flag in any EPT paging-structure entry.
- */
- nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
-
- pte_access = ~0;
- ++walker->level;
-
- do {
- gfn_t real_gfn;
- unsigned long host_addr;
-
- pt_access = pte_access;
- --walker->level;
-
- index = PT_INDEX(addr, walker->level);
- table_gfn = gpte_to_gfn(pte);
- offset = index * sizeof(pt_element_t);
- pte_gpa = gfn_to_gpa(table_gfn) + offset;
-
- BUG_ON(walker->level < 1);
- walker->table_gfn[walker->level - 1] = table_gfn;
- walker->pte_gpa[walker->level - 1] = pte_gpa;
-
- real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
- nested_access,
- &walker->fault);
-
- /*
- * FIXME: This can happen if emulation (for of an INS/OUTS
- * instruction) triggers a nested page fault. The exit
- * qualification / exit info field will incorrectly have
- * "guest page access" as the nested page fault's cause,
- * instead of "guest page structure access". To fix this,
- * the x86_exception struct should be augmented with enough
- * information to fix the exit_qualification or exit_info_1
- * fields.
- */
- if (unlikely(real_gfn == UNMAPPED_GVA))
- return 0;
-
- real_gfn = gpa_to_gfn(real_gfn);
-
- host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
- &walker->pte_writable[walker->level - 1]);
- if (unlikely(kvm_is_error_hva(host_addr)))
- goto error;
-
- ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
- if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
- goto error;
- walker->ptep_user[walker->level - 1] = ptep_user;
-
- trace_kvm_mmu_paging_element(pte, walker->level);
-
- /*
- * Inverting the NX it lets us AND it like other
- * permission bits.
- */
- pte_access = pt_access & (pte ^ walk_nx_mask);
-
- if (unlikely(!FNAME(is_present_gpte)(pte)))
- goto error;
-
- if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
- errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
- goto error;
- }
-
- walker->ptes[walker->level - 1] = pte;
- } while (!is_last_gpte(mmu, walker->level, pte));
-
- pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
- accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
-
- /* Convert to ACC_*_MASK flags for struct guest_walker. */
- walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
- walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
- errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
- if (unlikely(errcode))
- goto error;
-
- gfn = gpte_to_gfn_lvl(pte, walker->level);
- gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
-
- if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
- gfn += pse36_gfn_delta(pte);
-
- real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
- if (real_gpa == UNMAPPED_GVA)
- return 0;
-
- walker->gfn = real_gpa >> PAGE_SHIFT;
-
- if (!write_fault)
- FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
- else
- /*
- * On a write fault, fold the dirty bit into accessed_dirty.
- * For modes without A/D bits support accessed_dirty will be
- * always clear.
- */
- accessed_dirty &= pte >>
- (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
-
- if (unlikely(!accessed_dirty)) {
- ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
- if (unlikely(ret < 0))
- goto error;
- else if (ret)
- goto retry_walk;
- }
-
- pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
- __func__, (u64)pte, walker->pte_access, walker->pt_access);
- return 1;
-
-error:
- errcode |= write_fault | user_fault;
- if (fetch_fault && (mmu->nx ||
- kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
- errcode |= PFERR_FETCH_MASK;
-
- walker->fault.vector = PF_VECTOR;
- walker->fault.error_code_valid = true;
- walker->fault.error_code = errcode;
-
-#if PTTYPE == PTTYPE_EPT
- /*
- * Use PFERR_RSVD_MASK in error_code to to tell if EPT
- * misconfiguration requires to be injected. The detection is
- * done by is_rsvd_bits_set() above.
- *
- * We set up the value of exit_qualification to inject:
- * [2:0] - Derive from the access bits. The exit_qualification might be
- * out of date if it is serving an EPT misconfiguration.
- * [5:3] - Calculated by the page walk of the guest EPT page tables
- * [7:8] - Derived from [7:8] of real exit_qualification
- *
- * The other bits are set to 0.
- */
- if (!(errcode & PFERR_RSVD_MASK)) {
- vcpu->arch.exit_qualification &= 0x180;
- if (write_fault)
- vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
- if (user_fault)
- vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
- if (fetch_fault)
- vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
- vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
- }
-#endif
- walker->fault.address = addr;
- walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
-
- trace_kvm_mmu_walker_error(walker->fault.error_code);
- return 0;
-}
-
-static int FNAME(walk_addr)(struct guest_walker *walker,
- struct kvm_vcpu *vcpu, gva_t addr, u32 access)
-{
- return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
- access);
-}
-
-#if PTTYPE != PTTYPE_EPT
-static int FNAME(walk_addr_nested)(struct guest_walker *walker,
- struct kvm_vcpu *vcpu, gva_t addr,
- u32 access)
-{
- return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
- addr, access);
-}
-#endif
-
-static bool
-FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
- u64 *spte, pt_element_t gpte, bool no_dirty_log)
-{
- unsigned pte_access;
- gfn_t gfn;
- kvm_pfn_t pfn;
-
- if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
- return false;
-
- pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
-
- gfn = gpte_to_gfn(gpte);
- pte_access = sp->role.access & FNAME(gpte_access)(gpte);
- FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
- pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
- no_dirty_log && (pte_access & ACC_WRITE_MASK));
- if (is_error_pfn(pfn))
- return false;
-
- /*
- * we call mmu_set_spte() with host_writable = true because
- * pte_prefetch_gfn_to_pfn always gets a writable pfn.
- */
- mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
- true, true);
-
- kvm_release_pfn_clean(pfn);
- return true;
-}
-
-static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
- u64 *spte, const void *pte)
-{
- pt_element_t gpte = *(const pt_element_t *)pte;
-
- FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
-}
-
-static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
- struct guest_walker *gw, int level)
-{
- pt_element_t curr_pte;
- gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
- u64 mask;
- int r, index;
-
- if (level == PT_PAGE_TABLE_LEVEL) {
- mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
- base_gpa = pte_gpa & ~mask;
- index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
-
- r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
- gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
- curr_pte = gw->prefetch_ptes[index];
- } else
- r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
- &curr_pte, sizeof(curr_pte));
-
- return r || curr_pte != gw->ptes[level - 1];
-}
-
-static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
- u64 *sptep)
-{
- struct kvm_mmu_page *sp;
- pt_element_t *gptep = gw->prefetch_ptes;
- u64 *spte;
- int i;
-
- sp = page_header(__pa(sptep));
-
- if (sp->role.level > PT_PAGE_TABLE_LEVEL)
- return;
-
- if (sp->role.direct)
- return __direct_pte_prefetch(vcpu, sp, sptep);
-
- i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
- spte = sp->spt + i;
-
- for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
- if (spte == sptep)
- continue;
-
- if (is_shadow_present_pte(*spte))
- continue;
-
- if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
- break;
- }
-}
-
-/*
- * Fetch a shadow pte for a specific level in the paging hierarchy.
- * If the guest tries to write a write-protected page, we need to
- * emulate this operation, return 1 to indicate this case.
- */
-static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
- struct guest_walker *gw,
- int write_fault, int hlevel,
- kvm_pfn_t pfn, bool map_writable, bool prefault,
- bool lpage_disallowed)
-{
- struct kvm_mmu_page *sp = NULL;
- struct kvm_shadow_walk_iterator it;
- unsigned direct_access, access = gw->pt_access;
- int top_level, ret;
- gfn_t gfn, base_gfn;
-
- direct_access = gw->pte_access;
-
- top_level = vcpu->arch.mmu->root_level;
- if (top_level == PT32E_ROOT_LEVEL)
- top_level = PT32_ROOT_LEVEL;
- /*
- * Verify that the top-level gpte is still there. Since the page
- * is a root page, it is either write protected (and cannot be
- * changed from now on) or it is invalid (in which case, we don't
- * really care if it changes underneath us after this point).
- */
- if (FNAME(gpte_changed)(vcpu, gw, top_level))
- goto out_gpte_changed;
-
- if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
- goto out_gpte_changed;
-
- for (shadow_walk_init(&it, vcpu, addr);
- shadow_walk_okay(&it) && it.level > gw->level;
- shadow_walk_next(&it)) {
- gfn_t table_gfn;
-
- clear_sp_write_flooding_count(it.sptep);
- drop_large_spte(vcpu, it.sptep);
-
- sp = NULL;
- if (!is_shadow_present_pte(*it.sptep)) {
- table_gfn = gw->table_gfn[it.level - 2];
- sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
- false, access);
- }
-
- /*
- * Verify that the gpte in the page we've just write
- * protected is still there.
- */
- if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
- goto out_gpte_changed;
-
- if (sp)
- link_shadow_page(vcpu, it.sptep, sp);
- }
-
- /*
- * FNAME(page_fault) might have clobbered the bottom bits of
- * gw->gfn, restore them from the virtual address.
- */
- gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
- base_gfn = gfn;
-
- trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
-
- for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
- clear_sp_write_flooding_count(it.sptep);
-
- /*
- * We cannot overwrite existing page tables with an NX
- * large page, as the leaf could be executable.
- */
- disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
-
- base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
- if (it.level == hlevel)
- break;
-
- validate_direct_spte(vcpu, it.sptep, direct_access);
-
- drop_large_spte(vcpu, it.sptep);
-
- if (!is_shadow_present_pte(*it.sptep)) {
- sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
- it.level - 1, true, direct_access);
- link_shadow_page(vcpu, it.sptep, sp);
- if (lpage_disallowed)
- account_huge_nx_page(vcpu->kvm, sp);
- }
- }
-
- ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
- it.level, base_gfn, pfn, prefault, map_writable);
- FNAME(pte_prefetch)(vcpu, gw, it.sptep);
- ++vcpu->stat.pf_fixed;
- return ret;
-
-out_gpte_changed:
- return RET_PF_RETRY;
-}
-
- /*
- * To see whether the mapped gfn can write its page table in the current
- * mapping.
- *
- * It is the helper function of FNAME(page_fault). When guest uses large page
- * size to map the writable gfn which is used as current page table, we should
- * force kvm to use small page size to map it because new shadow page will be
- * created when kvm establishes shadow page table that stop kvm using large
- * page size. Do it early can avoid unnecessary #PF and emulation.
- *
- * @write_fault_to_shadow_pgtable will return true if the fault gfn is
- * currently used as its page table.
- *
- * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
- * since the PDPT is always shadowed, that means, we can not use large page
- * size to map the gfn which is used as PDPT.
- */
-static bool
-FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
- struct guest_walker *walker, int user_fault,
- bool *write_fault_to_shadow_pgtable)
-{
- int level;
- gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
- bool self_changed = false;
-
- if (!(walker->pte_access & ACC_WRITE_MASK ||
- (!is_write_protection(vcpu) && !user_fault)))
- return false;
-
- for (level = walker->level; level <= walker->max_level; level++) {
- gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
-
- self_changed |= !(gfn & mask);
- *write_fault_to_shadow_pgtable |= !gfn;
- }
-
- return self_changed;
-}
-
-/*
- * Page fault handler. There are several causes for a page fault:
- * - there is no shadow pte for the guest pte
- * - write access through a shadow pte marked read only so that we can set
- * the dirty bit
- * - write access to a shadow pte marked read only so we can update the page
- * dirty bitmap, when userspace requests it
- * - mmio access; in this case we will never install a present shadow pte
- * - normal guest page fault due to the guest pte marked not present, not
- * writable, or not executable
- *
- * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
- * a negative value on error.
- */
-static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
- bool prefault)
-{
- int write_fault = error_code & PFERR_WRITE_MASK;
- int user_fault = error_code & PFERR_USER_MASK;
- struct guest_walker walker;
- int r;
- kvm_pfn_t pfn;
- int level = PT_PAGE_TABLE_LEVEL;
- unsigned long mmu_seq;
- bool map_writable, is_self_change_mapping;
- bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
- is_nx_huge_page_enabled();
- bool force_pt_level = lpage_disallowed;
-
- pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
-
- r = mmu_topup_memory_caches(vcpu);
- if (r)
- return r;
-
- /*
- * If PFEC.RSVD is set, this is a shadow page fault.
- * The bit needs to be cleared before walking guest page tables.
- */
- error_code &= ~PFERR_RSVD_MASK;
-
- /*
- * Look up the guest pte for the faulting address.
- */
- r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
-
- /*
- * The page is not mapped by the guest. Let the guest handle it.
- */
- if (!r) {
- pgprintk("%s: guest page fault\n", __func__);
- if (!prefault)
- inject_page_fault(vcpu, &walker.fault);
-
- return RET_PF_RETRY;
- }
-
- if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
- shadow_page_table_clear_flood(vcpu, addr);
- return RET_PF_EMULATE;
- }
-
- vcpu->arch.write_fault_to_shadow_pgtable = false;
-
- is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
- &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
-
- if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
- level = mapping_level(vcpu, walker.gfn, &force_pt_level);
- if (likely(!force_pt_level)) {
- level = min(walker.level, level);
- walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
- }
- } else
- force_pt_level = true;
-
- mmu_seq = vcpu->kvm->mmu_notifier_seq;
- smp_rmb();
-
- if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
- &map_writable))
- return RET_PF_RETRY;
-
- if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
- return r;
-
- /*
- * Do not change pte_access if the pfn is a mmio page, otherwise
- * we will cache the incorrect access into mmio spte.
- */
- if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
- !is_write_protection(vcpu) && !user_fault &&
- !is_noslot_pfn(pfn)) {
- walker.pte_access |= ACC_WRITE_MASK;
- walker.pte_access &= ~ACC_USER_MASK;
-
- /*
- * If we converted a user page to a kernel page,
- * so that the kernel can write to it when cr0.wp=0,
- * then we should prevent the kernel from executing it
- * if SMEP is enabled.
- */
- if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
- walker.pte_access &= ~ACC_EXEC_MASK;
- }
-
- r = RET_PF_RETRY;
- spin_lock(&vcpu->kvm->mmu_lock);
- if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
- goto out_unlock;
-
- kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
- if (make_mmu_pages_available(vcpu) < 0)
- goto out_unlock;
- if (!force_pt_level)
- transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level);
- r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
- level, pfn, map_writable, prefault, lpage_disallowed);
- kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
-
-out_unlock:
- spin_unlock(&vcpu->kvm->mmu_lock);
- kvm_release_pfn_clean(pfn);
- return r;
-}
-
-static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
-{
- int offset = 0;
-
- WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
-
- if (PTTYPE == 32)
- offset = sp->role.quadrant << PT64_LEVEL_BITS;
-
- return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
-}
-
-static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
-{
- struct kvm_shadow_walk_iterator iterator;
- struct kvm_mmu_page *sp;
- int level;
- u64 *sptep;
-
- vcpu_clear_mmio_info(vcpu, gva);
-
- /*
- * No need to check return value here, rmap_can_add() can
- * help us to skip pte prefetch later.
- */
- mmu_topup_memory_caches(vcpu);
-
- if (!VALID_PAGE(root_hpa)) {
- WARN_ON(1);
- return;
- }
-
- spin_lock(&vcpu->kvm->mmu_lock);
- for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
- level = iterator.level;
- sptep = iterator.sptep;
-
- sp = page_header(__pa(sptep));
- if (is_last_spte(*sptep, level)) {
- pt_element_t gpte;
- gpa_t pte_gpa;
-
- if (!sp->unsync)
- break;
-
- pte_gpa = FNAME(get_level1_sp_gpa)(sp);
- pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
-
- if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
- kvm_flush_remote_tlbs_with_address(vcpu->kvm,
- sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
-
- if (!rmap_can_add(vcpu))
- break;
-
- if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
- sizeof(pt_element_t)))
- break;
-
- FNAME(update_pte)(vcpu, sp, sptep, &gpte);
- }
-
- if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
- break;
- }
- spin_unlock(&vcpu->kvm->mmu_lock);
-}
-
-static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
- struct x86_exception *exception)
-{
- struct guest_walker walker;
- gpa_t gpa = UNMAPPED_GVA;
- int r;
-
- r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
-
- if (r) {
- gpa = gfn_to_gpa(walker.gfn);
- gpa |= vaddr & ~PAGE_MASK;
- } else if (exception)
- *exception = walker.fault;
-
- return gpa;
-}
-
-#if PTTYPE != PTTYPE_EPT
-static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
- u32 access,
- struct x86_exception *exception)
-{
- struct guest_walker walker;
- gpa_t gpa = UNMAPPED_GVA;
- int r;
-
- r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
-
- if (r) {
- gpa = gfn_to_gpa(walker.gfn);
- gpa |= vaddr & ~PAGE_MASK;
- } else if (exception)
- *exception = walker.fault;
-
- return gpa;
-}
-#endif
-
-/*
- * Using the cached information from sp->gfns is safe because:
- * - The spte has a reference to the struct page, so the pfn for a given gfn
- * can't change unless all sptes pointing to it are nuked first.
- *
- * Note:
- * We should flush all tlbs if spte is dropped even though guest is
- * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
- * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
- * used by guest then tlbs are not flushed, so guest is allowed to access the
- * freed pages.
- * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
- */
-static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
-{
- int i, nr_present = 0;
- bool host_writable;
- gpa_t first_pte_gpa;
- int set_spte_ret = 0;
-
- /* direct kvm_mmu_page can not be unsync. */
- BUG_ON(sp->role.direct);
-
- first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
-
- for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
- unsigned pte_access;
- pt_element_t gpte;
- gpa_t pte_gpa;
- gfn_t gfn;
-
- if (!sp->spt[i])
- continue;
-
- pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
-
- if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
- sizeof(pt_element_t)))
- return 0;
-
- if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
- /*
- * Update spte before increasing tlbs_dirty to make
- * sure no tlb flush is lost after spte is zapped; see
- * the comments in kvm_flush_remote_tlbs().
- */
- smp_wmb();
- vcpu->kvm->tlbs_dirty++;
- continue;
- }
-
- gfn = gpte_to_gfn(gpte);
- pte_access = sp->role.access;
- pte_access &= FNAME(gpte_access)(gpte);
- FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
-
- if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
- &nr_present))
- continue;
-
- if (gfn != sp->gfns[i]) {
- drop_spte(vcpu->kvm, &sp->spt[i]);
- /*
- * The same as above where we are doing
- * prefetch_invalid_gpte().
- */
- smp_wmb();
- vcpu->kvm->tlbs_dirty++;
- continue;
- }
-
- nr_present++;
-
- host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
-
- set_spte_ret |= set_spte(vcpu, &sp->spt[i],
- pte_access, PT_PAGE_TABLE_LEVEL,
- gfn, spte_to_pfn(sp->spt[i]),
- true, false, host_writable);
- }
-
- if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
- kvm_flush_remote_tlbs(vcpu->kvm);
-
- return nr_present;
-}
-
-#undef pt_element_t
-#undef guest_walker
-#undef FNAME
-#undef PT_BASE_ADDR_MASK
-#undef PT_INDEX
-#undef PT_LVL_ADDR_MASK
-#undef PT_LVL_OFFSET_MASK
-#undef PT_LEVEL_BITS
-#undef PT_MAX_FULL_LEVELS
-#undef gpte_to_gfn
-#undef gpte_to_gfn_lvl
-#undef CMPXCHG
-#undef PT_GUEST_ACCESSED_MASK
-#undef PT_GUEST_DIRTY_MASK
-#undef PT_GUEST_DIRTY_SHIFT
-#undef PT_GUEST_ACCESSED_SHIFT
-#undef PT_HAVE_ACCESSED_DIRTY