diff options
author | Paolo Bonzini <pbonzini@redhat.com> | 2019-11-21 12:45:07 +0300 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2019-11-21 14:03:50 +0300 |
commit | c50d8ae3a1274f32c9033bbb0e1c5b3115da2112 (patch) | |
tree | ea3c1611243a67c029590a241f07bc5f0796962c /arch/x86/kvm/paging_tmpl.h | |
parent | 0155b2b91b263248fb5dd01c238439d4ab3731c5 (diff) | |
download | linux-c50d8ae3a1274f32c9033bbb0e1c5b3115da2112.tar.xz |
KVM: x86: create mmu/ subdirectory
Preparatory work for shattering mmu.c into multiple files. Besides making it easier
to follow, this will also make it possible to write unit tests for various parts.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'arch/x86/kvm/paging_tmpl.h')
-rw-r--r-- | arch/x86/kvm/paging_tmpl.h | 1090 |
1 files changed, 0 insertions, 1090 deletions
diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h deleted file mode 100644 index 97b21e7fd013..000000000000 --- a/arch/x86/kvm/paging_tmpl.h +++ /dev/null @@ -1,1090 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0-only */ -/* - * Kernel-based Virtual Machine driver for Linux - * - * This module enables machines with Intel VT-x extensions to run virtual - * machines without emulation or binary translation. - * - * MMU support - * - * Copyright (C) 2006 Qumranet, Inc. - * Copyright 2010 Red Hat, Inc. and/or its affiliates. - * - * Authors: - * Yaniv Kamay <yaniv@qumranet.com> - * Avi Kivity <avi@qumranet.com> - */ - -/* - * We need the mmu code to access both 32-bit and 64-bit guest ptes, - * so the code in this file is compiled twice, once per pte size. - */ - -#if PTTYPE == 64 - #define pt_element_t u64 - #define guest_walker guest_walker64 - #define FNAME(name) paging##64_##name - #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK - #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) - #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) - #define PT_INDEX(addr, level) PT64_INDEX(addr, level) - #define PT_LEVEL_BITS PT64_LEVEL_BITS - #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT - #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT - #define PT_HAVE_ACCESSED_DIRTY(mmu) true - #ifdef CONFIG_X86_64 - #define PT_MAX_FULL_LEVELS 4 - #define CMPXCHG cmpxchg - #else - #define CMPXCHG cmpxchg64 - #define PT_MAX_FULL_LEVELS 2 - #endif -#elif PTTYPE == 32 - #define pt_element_t u32 - #define guest_walker guest_walker32 - #define FNAME(name) paging##32_##name - #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK - #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) - #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) - #define PT_INDEX(addr, level) PT32_INDEX(addr, level) - #define PT_LEVEL_BITS PT32_LEVEL_BITS - #define PT_MAX_FULL_LEVELS 2 - #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT - #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT - #define PT_HAVE_ACCESSED_DIRTY(mmu) true - #define CMPXCHG cmpxchg -#elif PTTYPE == PTTYPE_EPT - #define pt_element_t u64 - #define guest_walker guest_walkerEPT - #define FNAME(name) ept_##name - #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK - #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) - #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) - #define PT_INDEX(addr, level) PT64_INDEX(addr, level) - #define PT_LEVEL_BITS PT64_LEVEL_BITS - #define PT_GUEST_DIRTY_SHIFT 9 - #define PT_GUEST_ACCESSED_SHIFT 8 - #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) - #define CMPXCHG cmpxchg64 - #define PT_MAX_FULL_LEVELS 4 -#else - #error Invalid PTTYPE value -#endif - -#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) -#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) - -#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) -#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) - -/* - * The guest_walker structure emulates the behavior of the hardware page - * table walker. - */ -struct guest_walker { - int level; - unsigned max_level; - gfn_t table_gfn[PT_MAX_FULL_LEVELS]; - pt_element_t ptes[PT_MAX_FULL_LEVELS]; - pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; - gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; - pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; - bool pte_writable[PT_MAX_FULL_LEVELS]; - unsigned pt_access; - unsigned pte_access; - gfn_t gfn; - struct x86_exception fault; -}; - -static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) -{ - return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; -} - -static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, - unsigned gpte) -{ - unsigned mask; - - /* dirty bit is not supported, so no need to track it */ - if (!PT_HAVE_ACCESSED_DIRTY(mmu)) - return; - - BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); - - mask = (unsigned)~ACC_WRITE_MASK; - /* Allow write access to dirty gptes */ - mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & - PT_WRITABLE_MASK; - *access &= mask; -} - -static inline int FNAME(is_present_gpte)(unsigned long pte) -{ -#if PTTYPE != PTTYPE_EPT - return pte & PT_PRESENT_MASK; -#else - return pte & 7; -#endif -} - -static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, - pt_element_t __user *ptep_user, unsigned index, - pt_element_t orig_pte, pt_element_t new_pte) -{ - int npages; - pt_element_t ret; - pt_element_t *table; - struct page *page; - - npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page); - if (likely(npages == 1)) { - table = kmap_atomic(page); - ret = CMPXCHG(&table[index], orig_pte, new_pte); - kunmap_atomic(table); - - kvm_release_page_dirty(page); - } else { - struct vm_area_struct *vma; - unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK; - unsigned long pfn; - unsigned long paddr; - - down_read(¤t->mm->mmap_sem); - vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE); - if (!vma || !(vma->vm_flags & VM_PFNMAP)) { - up_read(¤t->mm->mmap_sem); - return -EFAULT; - } - pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; - paddr = pfn << PAGE_SHIFT; - table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB); - if (!table) { - up_read(¤t->mm->mmap_sem); - return -EFAULT; - } - ret = CMPXCHG(&table[index], orig_pte, new_pte); - memunmap(table); - up_read(¤t->mm->mmap_sem); - } - - return (ret != orig_pte); -} - -static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, - struct kvm_mmu_page *sp, u64 *spte, - u64 gpte) -{ - if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) - goto no_present; - - if (!FNAME(is_present_gpte)(gpte)) - goto no_present; - - /* if accessed bit is not supported prefetch non accessed gpte */ - if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && - !(gpte & PT_GUEST_ACCESSED_MASK)) - goto no_present; - - return false; - -no_present: - drop_spte(vcpu->kvm, spte); - return true; -} - -/* - * For PTTYPE_EPT, a page table can be executable but not readable - * on supported processors. Therefore, set_spte does not automatically - * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK - * to signify readability since it isn't used in the EPT case - */ -static inline unsigned FNAME(gpte_access)(u64 gpte) -{ - unsigned access; -#if PTTYPE == PTTYPE_EPT - access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | - ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | - ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); -#else - BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); - BUILD_BUG_ON(ACC_EXEC_MASK != 1); - access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); - /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ - access ^= (gpte >> PT64_NX_SHIFT); -#endif - - return access; -} - -static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, - struct kvm_mmu *mmu, - struct guest_walker *walker, - int write_fault) -{ - unsigned level, index; - pt_element_t pte, orig_pte; - pt_element_t __user *ptep_user; - gfn_t table_gfn; - int ret; - - /* dirty/accessed bits are not supported, so no need to update them */ - if (!PT_HAVE_ACCESSED_DIRTY(mmu)) - return 0; - - for (level = walker->max_level; level >= walker->level; --level) { - pte = orig_pte = walker->ptes[level - 1]; - table_gfn = walker->table_gfn[level - 1]; - ptep_user = walker->ptep_user[level - 1]; - index = offset_in_page(ptep_user) / sizeof(pt_element_t); - if (!(pte & PT_GUEST_ACCESSED_MASK)) { - trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); - pte |= PT_GUEST_ACCESSED_MASK; - } - if (level == walker->level && write_fault && - !(pte & PT_GUEST_DIRTY_MASK)) { - trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); -#if PTTYPE == PTTYPE_EPT - if (kvm_arch_write_log_dirty(vcpu)) - return -EINVAL; -#endif - pte |= PT_GUEST_DIRTY_MASK; - } - if (pte == orig_pte) - continue; - - /* - * If the slot is read-only, simply do not process the accessed - * and dirty bits. This is the correct thing to do if the slot - * is ROM, and page tables in read-as-ROM/write-as-MMIO slots - * are only supported if the accessed and dirty bits are already - * set in the ROM (so that MMIO writes are never needed). - * - * Note that NPT does not allow this at all and faults, since - * it always wants nested page table entries for the guest - * page tables to be writable. And EPT works but will simply - * overwrite the read-only memory to set the accessed and dirty - * bits. - */ - if (unlikely(!walker->pte_writable[level - 1])) - continue; - - ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); - if (ret) - return ret; - - kvm_vcpu_mark_page_dirty(vcpu, table_gfn); - walker->ptes[level - 1] = pte; - } - return 0; -} - -static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) -{ - unsigned pkeys = 0; -#if PTTYPE == 64 - pte_t pte = {.pte = gpte}; - - pkeys = pte_flags_pkey(pte_flags(pte)); -#endif - return pkeys; -} - -/* - * Fetch a guest pte for a guest virtual address - */ -static int FNAME(walk_addr_generic)(struct guest_walker *walker, - struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, - gva_t addr, u32 access) -{ - int ret; - pt_element_t pte; - pt_element_t __user *uninitialized_var(ptep_user); - gfn_t table_gfn; - u64 pt_access, pte_access; - unsigned index, accessed_dirty, pte_pkey; - unsigned nested_access; - gpa_t pte_gpa; - bool have_ad; - int offset; - u64 walk_nx_mask = 0; - const int write_fault = access & PFERR_WRITE_MASK; - const int user_fault = access & PFERR_USER_MASK; - const int fetch_fault = access & PFERR_FETCH_MASK; - u16 errcode = 0; - gpa_t real_gpa; - gfn_t gfn; - - trace_kvm_mmu_pagetable_walk(addr, access); -retry_walk: - walker->level = mmu->root_level; - pte = mmu->get_cr3(vcpu); - have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); - -#if PTTYPE == 64 - walk_nx_mask = 1ULL << PT64_NX_SHIFT; - if (walker->level == PT32E_ROOT_LEVEL) { - pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); - trace_kvm_mmu_paging_element(pte, walker->level); - if (!FNAME(is_present_gpte)(pte)) - goto error; - --walker->level; - } -#endif - walker->max_level = walker->level; - ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); - - /* - * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging - * by the MOV to CR instruction are treated as reads and do not cause the - * processor to set the dirty flag in any EPT paging-structure entry. - */ - nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; - - pte_access = ~0; - ++walker->level; - - do { - gfn_t real_gfn; - unsigned long host_addr; - - pt_access = pte_access; - --walker->level; - - index = PT_INDEX(addr, walker->level); - table_gfn = gpte_to_gfn(pte); - offset = index * sizeof(pt_element_t); - pte_gpa = gfn_to_gpa(table_gfn) + offset; - - BUG_ON(walker->level < 1); - walker->table_gfn[walker->level - 1] = table_gfn; - walker->pte_gpa[walker->level - 1] = pte_gpa; - - real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), - nested_access, - &walker->fault); - - /* - * FIXME: This can happen if emulation (for of an INS/OUTS - * instruction) triggers a nested page fault. The exit - * qualification / exit info field will incorrectly have - * "guest page access" as the nested page fault's cause, - * instead of "guest page structure access". To fix this, - * the x86_exception struct should be augmented with enough - * information to fix the exit_qualification or exit_info_1 - * fields. - */ - if (unlikely(real_gfn == UNMAPPED_GVA)) - return 0; - - real_gfn = gpa_to_gfn(real_gfn); - - host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn, - &walker->pte_writable[walker->level - 1]); - if (unlikely(kvm_is_error_hva(host_addr))) - goto error; - - ptep_user = (pt_element_t __user *)((void *)host_addr + offset); - if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) - goto error; - walker->ptep_user[walker->level - 1] = ptep_user; - - trace_kvm_mmu_paging_element(pte, walker->level); - - /* - * Inverting the NX it lets us AND it like other - * permission bits. - */ - pte_access = pt_access & (pte ^ walk_nx_mask); - - if (unlikely(!FNAME(is_present_gpte)(pte))) - goto error; - - if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) { - errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; - goto error; - } - - walker->ptes[walker->level - 1] = pte; - } while (!is_last_gpte(mmu, walker->level, pte)); - - pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); - accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; - - /* Convert to ACC_*_MASK flags for struct guest_walker. */ - walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask); - walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); - errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); - if (unlikely(errcode)) - goto error; - - gfn = gpte_to_gfn_lvl(pte, walker->level); - gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; - - if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) - gfn += pse36_gfn_delta(pte); - - real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); - if (real_gpa == UNMAPPED_GVA) - return 0; - - walker->gfn = real_gpa >> PAGE_SHIFT; - - if (!write_fault) - FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); - else - /* - * On a write fault, fold the dirty bit into accessed_dirty. - * For modes without A/D bits support accessed_dirty will be - * always clear. - */ - accessed_dirty &= pte >> - (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); - - if (unlikely(!accessed_dirty)) { - ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault); - if (unlikely(ret < 0)) - goto error; - else if (ret) - goto retry_walk; - } - - pgprintk("%s: pte %llx pte_access %x pt_access %x\n", - __func__, (u64)pte, walker->pte_access, walker->pt_access); - return 1; - -error: - errcode |= write_fault | user_fault; - if (fetch_fault && (mmu->nx || - kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) - errcode |= PFERR_FETCH_MASK; - - walker->fault.vector = PF_VECTOR; - walker->fault.error_code_valid = true; - walker->fault.error_code = errcode; - -#if PTTYPE == PTTYPE_EPT - /* - * Use PFERR_RSVD_MASK in error_code to to tell if EPT - * misconfiguration requires to be injected. The detection is - * done by is_rsvd_bits_set() above. - * - * We set up the value of exit_qualification to inject: - * [2:0] - Derive from the access bits. The exit_qualification might be - * out of date if it is serving an EPT misconfiguration. - * [5:3] - Calculated by the page walk of the guest EPT page tables - * [7:8] - Derived from [7:8] of real exit_qualification - * - * The other bits are set to 0. - */ - if (!(errcode & PFERR_RSVD_MASK)) { - vcpu->arch.exit_qualification &= 0x180; - if (write_fault) - vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; - if (user_fault) - vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; - if (fetch_fault) - vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; - vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; - } -#endif - walker->fault.address = addr; - walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; - - trace_kvm_mmu_walker_error(walker->fault.error_code); - return 0; -} - -static int FNAME(walk_addr)(struct guest_walker *walker, - struct kvm_vcpu *vcpu, gva_t addr, u32 access) -{ - return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, - access); -} - -#if PTTYPE != PTTYPE_EPT -static int FNAME(walk_addr_nested)(struct guest_walker *walker, - struct kvm_vcpu *vcpu, gva_t addr, - u32 access) -{ - return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, - addr, access); -} -#endif - -static bool -FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, - u64 *spte, pt_element_t gpte, bool no_dirty_log) -{ - unsigned pte_access; - gfn_t gfn; - kvm_pfn_t pfn; - - if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) - return false; - - pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); - - gfn = gpte_to_gfn(gpte); - pte_access = sp->role.access & FNAME(gpte_access)(gpte); - FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); - pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, - no_dirty_log && (pte_access & ACC_WRITE_MASK)); - if (is_error_pfn(pfn)) - return false; - - /* - * we call mmu_set_spte() with host_writable = true because - * pte_prefetch_gfn_to_pfn always gets a writable pfn. - */ - mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn, - true, true); - - kvm_release_pfn_clean(pfn); - return true; -} - -static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, - u64 *spte, const void *pte) -{ - pt_element_t gpte = *(const pt_element_t *)pte; - - FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); -} - -static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, - struct guest_walker *gw, int level) -{ - pt_element_t curr_pte; - gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; - u64 mask; - int r, index; - - if (level == PT_PAGE_TABLE_LEVEL) { - mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; - base_gpa = pte_gpa & ~mask; - index = (pte_gpa - base_gpa) / sizeof(pt_element_t); - - r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, - gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); - curr_pte = gw->prefetch_ptes[index]; - } else - r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, - &curr_pte, sizeof(curr_pte)); - - return r || curr_pte != gw->ptes[level - 1]; -} - -static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, - u64 *sptep) -{ - struct kvm_mmu_page *sp; - pt_element_t *gptep = gw->prefetch_ptes; - u64 *spte; - int i; - - sp = page_header(__pa(sptep)); - - if (sp->role.level > PT_PAGE_TABLE_LEVEL) - return; - - if (sp->role.direct) - return __direct_pte_prefetch(vcpu, sp, sptep); - - i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); - spte = sp->spt + i; - - for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { - if (spte == sptep) - continue; - - if (is_shadow_present_pte(*spte)) - continue; - - if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) - break; - } -} - -/* - * Fetch a shadow pte for a specific level in the paging hierarchy. - * If the guest tries to write a write-protected page, we need to - * emulate this operation, return 1 to indicate this case. - */ -static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, - struct guest_walker *gw, - int write_fault, int hlevel, - kvm_pfn_t pfn, bool map_writable, bool prefault, - bool lpage_disallowed) -{ - struct kvm_mmu_page *sp = NULL; - struct kvm_shadow_walk_iterator it; - unsigned direct_access, access = gw->pt_access; - int top_level, ret; - gfn_t gfn, base_gfn; - - direct_access = gw->pte_access; - - top_level = vcpu->arch.mmu->root_level; - if (top_level == PT32E_ROOT_LEVEL) - top_level = PT32_ROOT_LEVEL; - /* - * Verify that the top-level gpte is still there. Since the page - * is a root page, it is either write protected (and cannot be - * changed from now on) or it is invalid (in which case, we don't - * really care if it changes underneath us after this point). - */ - if (FNAME(gpte_changed)(vcpu, gw, top_level)) - goto out_gpte_changed; - - if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) - goto out_gpte_changed; - - for (shadow_walk_init(&it, vcpu, addr); - shadow_walk_okay(&it) && it.level > gw->level; - shadow_walk_next(&it)) { - gfn_t table_gfn; - - clear_sp_write_flooding_count(it.sptep); - drop_large_spte(vcpu, it.sptep); - - sp = NULL; - if (!is_shadow_present_pte(*it.sptep)) { - table_gfn = gw->table_gfn[it.level - 2]; - sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, - false, access); - } - - /* - * Verify that the gpte in the page we've just write - * protected is still there. - */ - if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) - goto out_gpte_changed; - - if (sp) - link_shadow_page(vcpu, it.sptep, sp); - } - - /* - * FNAME(page_fault) might have clobbered the bottom bits of - * gw->gfn, restore them from the virtual address. - */ - gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT); - base_gfn = gfn; - - trace_kvm_mmu_spte_requested(addr, gw->level, pfn); - - for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { - clear_sp_write_flooding_count(it.sptep); - - /* - * We cannot overwrite existing page tables with an NX - * large page, as the leaf could be executable. - */ - disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel); - - base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); - if (it.level == hlevel) - break; - - validate_direct_spte(vcpu, it.sptep, direct_access); - - drop_large_spte(vcpu, it.sptep); - - if (!is_shadow_present_pte(*it.sptep)) { - sp = kvm_mmu_get_page(vcpu, base_gfn, addr, - it.level - 1, true, direct_access); - link_shadow_page(vcpu, it.sptep, sp); - if (lpage_disallowed) - account_huge_nx_page(vcpu->kvm, sp); - } - } - - ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, - it.level, base_gfn, pfn, prefault, map_writable); - FNAME(pte_prefetch)(vcpu, gw, it.sptep); - ++vcpu->stat.pf_fixed; - return ret; - -out_gpte_changed: - return RET_PF_RETRY; -} - - /* - * To see whether the mapped gfn can write its page table in the current - * mapping. - * - * It is the helper function of FNAME(page_fault). When guest uses large page - * size to map the writable gfn which is used as current page table, we should - * force kvm to use small page size to map it because new shadow page will be - * created when kvm establishes shadow page table that stop kvm using large - * page size. Do it early can avoid unnecessary #PF and emulation. - * - * @write_fault_to_shadow_pgtable will return true if the fault gfn is - * currently used as its page table. - * - * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok - * since the PDPT is always shadowed, that means, we can not use large page - * size to map the gfn which is used as PDPT. - */ -static bool -FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, - struct guest_walker *walker, int user_fault, - bool *write_fault_to_shadow_pgtable) -{ - int level; - gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); - bool self_changed = false; - - if (!(walker->pte_access & ACC_WRITE_MASK || - (!is_write_protection(vcpu) && !user_fault))) - return false; - - for (level = walker->level; level <= walker->max_level; level++) { - gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; - - self_changed |= !(gfn & mask); - *write_fault_to_shadow_pgtable |= !gfn; - } - - return self_changed; -} - -/* - * Page fault handler. There are several causes for a page fault: - * - there is no shadow pte for the guest pte - * - write access through a shadow pte marked read only so that we can set - * the dirty bit - * - write access to a shadow pte marked read only so we can update the page - * dirty bitmap, when userspace requests it - * - mmio access; in this case we will never install a present shadow pte - * - normal guest page fault due to the guest pte marked not present, not - * writable, or not executable - * - * Returns: 1 if we need to emulate the instruction, 0 otherwise, or - * a negative value on error. - */ -static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code, - bool prefault) -{ - int write_fault = error_code & PFERR_WRITE_MASK; - int user_fault = error_code & PFERR_USER_MASK; - struct guest_walker walker; - int r; - kvm_pfn_t pfn; - int level = PT_PAGE_TABLE_LEVEL; - unsigned long mmu_seq; - bool map_writable, is_self_change_mapping; - bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) && - is_nx_huge_page_enabled(); - bool force_pt_level = lpage_disallowed; - - pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); - - r = mmu_topup_memory_caches(vcpu); - if (r) - return r; - - /* - * If PFEC.RSVD is set, this is a shadow page fault. - * The bit needs to be cleared before walking guest page tables. - */ - error_code &= ~PFERR_RSVD_MASK; - - /* - * Look up the guest pte for the faulting address. - */ - r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); - - /* - * The page is not mapped by the guest. Let the guest handle it. - */ - if (!r) { - pgprintk("%s: guest page fault\n", __func__); - if (!prefault) - inject_page_fault(vcpu, &walker.fault); - - return RET_PF_RETRY; - } - - if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) { - shadow_page_table_clear_flood(vcpu, addr); - return RET_PF_EMULATE; - } - - vcpu->arch.write_fault_to_shadow_pgtable = false; - - is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, - &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); - - if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) { - level = mapping_level(vcpu, walker.gfn, &force_pt_level); - if (likely(!force_pt_level)) { - level = min(walker.level, level); - walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); - } - } else - force_pt_level = true; - - mmu_seq = vcpu->kvm->mmu_notifier_seq; - smp_rmb(); - - if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, - &map_writable)) - return RET_PF_RETRY; - - if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r)) - return r; - - /* - * Do not change pte_access if the pfn is a mmio page, otherwise - * we will cache the incorrect access into mmio spte. - */ - if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && - !is_write_protection(vcpu) && !user_fault && - !is_noslot_pfn(pfn)) { - walker.pte_access |= ACC_WRITE_MASK; - walker.pte_access &= ~ACC_USER_MASK; - - /* - * If we converted a user page to a kernel page, - * so that the kernel can write to it when cr0.wp=0, - * then we should prevent the kernel from executing it - * if SMEP is enabled. - */ - if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) - walker.pte_access &= ~ACC_EXEC_MASK; - } - - r = RET_PF_RETRY; - spin_lock(&vcpu->kvm->mmu_lock); - if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) - goto out_unlock; - - kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); - if (make_mmu_pages_available(vcpu) < 0) - goto out_unlock; - if (!force_pt_level) - transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level); - r = FNAME(fetch)(vcpu, addr, &walker, write_fault, - level, pfn, map_writable, prefault, lpage_disallowed); - kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); - -out_unlock: - spin_unlock(&vcpu->kvm->mmu_lock); - kvm_release_pfn_clean(pfn); - return r; -} - -static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) -{ - int offset = 0; - - WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); - - if (PTTYPE == 32) - offset = sp->role.quadrant << PT64_LEVEL_BITS; - - return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); -} - -static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) -{ - struct kvm_shadow_walk_iterator iterator; - struct kvm_mmu_page *sp; - int level; - u64 *sptep; - - vcpu_clear_mmio_info(vcpu, gva); - - /* - * No need to check return value here, rmap_can_add() can - * help us to skip pte prefetch later. - */ - mmu_topup_memory_caches(vcpu); - - if (!VALID_PAGE(root_hpa)) { - WARN_ON(1); - return; - } - - spin_lock(&vcpu->kvm->mmu_lock); - for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { - level = iterator.level; - sptep = iterator.sptep; - - sp = page_header(__pa(sptep)); - if (is_last_spte(*sptep, level)) { - pt_element_t gpte; - gpa_t pte_gpa; - - if (!sp->unsync) - break; - - pte_gpa = FNAME(get_level1_sp_gpa)(sp); - pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); - - if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) - kvm_flush_remote_tlbs_with_address(vcpu->kvm, - sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); - - if (!rmap_can_add(vcpu)) - break; - - if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, - sizeof(pt_element_t))) - break; - - FNAME(update_pte)(vcpu, sp, sptep, &gpte); - } - - if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) - break; - } - spin_unlock(&vcpu->kvm->mmu_lock); -} - -static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, - struct x86_exception *exception) -{ - struct guest_walker walker; - gpa_t gpa = UNMAPPED_GVA; - int r; - - r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); - - if (r) { - gpa = gfn_to_gpa(walker.gfn); - gpa |= vaddr & ~PAGE_MASK; - } else if (exception) - *exception = walker.fault; - - return gpa; -} - -#if PTTYPE != PTTYPE_EPT -static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, - u32 access, - struct x86_exception *exception) -{ - struct guest_walker walker; - gpa_t gpa = UNMAPPED_GVA; - int r; - - r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); - - if (r) { - gpa = gfn_to_gpa(walker.gfn); - gpa |= vaddr & ~PAGE_MASK; - } else if (exception) - *exception = walker.fault; - - return gpa; -} -#endif - -/* - * Using the cached information from sp->gfns is safe because: - * - The spte has a reference to the struct page, so the pfn for a given gfn - * can't change unless all sptes pointing to it are nuked first. - * - * Note: - * We should flush all tlbs if spte is dropped even though guest is - * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page - * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't - * used by guest then tlbs are not flushed, so guest is allowed to access the - * freed pages. - * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. - */ -static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) -{ - int i, nr_present = 0; - bool host_writable; - gpa_t first_pte_gpa; - int set_spte_ret = 0; - - /* direct kvm_mmu_page can not be unsync. */ - BUG_ON(sp->role.direct); - - first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); - - for (i = 0; i < PT64_ENT_PER_PAGE; i++) { - unsigned pte_access; - pt_element_t gpte; - gpa_t pte_gpa; - gfn_t gfn; - - if (!sp->spt[i]) - continue; - - pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); - - if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, - sizeof(pt_element_t))) - return 0; - - if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { - /* - * Update spte before increasing tlbs_dirty to make - * sure no tlb flush is lost after spte is zapped; see - * the comments in kvm_flush_remote_tlbs(). - */ - smp_wmb(); - vcpu->kvm->tlbs_dirty++; - continue; - } - - gfn = gpte_to_gfn(gpte); - pte_access = sp->role.access; - pte_access &= FNAME(gpte_access)(gpte); - FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); - - if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access, - &nr_present)) - continue; - - if (gfn != sp->gfns[i]) { - drop_spte(vcpu->kvm, &sp->spt[i]); - /* - * The same as above where we are doing - * prefetch_invalid_gpte(). - */ - smp_wmb(); - vcpu->kvm->tlbs_dirty++; - continue; - } - - nr_present++; - - host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; - - set_spte_ret |= set_spte(vcpu, &sp->spt[i], - pte_access, PT_PAGE_TABLE_LEVEL, - gfn, spte_to_pfn(sp->spt[i]), - true, false, host_writable); - } - - if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH) - kvm_flush_remote_tlbs(vcpu->kvm); - - return nr_present; -} - -#undef pt_element_t -#undef guest_walker -#undef FNAME -#undef PT_BASE_ADDR_MASK -#undef PT_INDEX -#undef PT_LVL_ADDR_MASK -#undef PT_LVL_OFFSET_MASK -#undef PT_LEVEL_BITS -#undef PT_MAX_FULL_LEVELS -#undef gpte_to_gfn -#undef gpte_to_gfn_lvl -#undef CMPXCHG -#undef PT_GUEST_ACCESSED_MASK -#undef PT_GUEST_DIRTY_MASK -#undef PT_GUEST_DIRTY_SHIFT -#undef PT_GUEST_ACCESSED_SHIFT -#undef PT_HAVE_ACCESSED_DIRTY |