summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/irq.c
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2020-11-27 11:18:20 +0300
committerPaolo Bonzini <pbonzini@redhat.com>2020-11-27 17:27:28 +0300
commit71cc849b7093bb83af966c0e60cb11b7f35cd746 (patch)
tree7c792e3d39816ce13f8f66f4d906c7e2ce9ddbe9 /arch/x86/kvm/irq.c
parent72c3bcdcda494cbd600712a32e67702cdee60c07 (diff)
downloadlinux-71cc849b7093bb83af966c0e60cb11b7f35cd746.tar.xz
KVM: x86: Fix split-irqchip vs interrupt injection window request
kvm_cpu_accept_dm_intr and kvm_vcpu_ready_for_interrupt_injection are a hodge-podge of conditions, hacked together to get something that more or less works. But what is actually needed is much simpler; in both cases the fundamental question is, do we have a place to stash an interrupt if userspace does KVM_INTERRUPT? In userspace irqchip mode, that is !vcpu->arch.interrupt.injected. Currently kvm_event_needs_reinjection(vcpu) covers it, but it is unnecessarily restrictive. In split irqchip mode it's a bit more complicated, we need to check kvm_apic_accept_pic_intr(vcpu) (the IRQ window exit is basically an INTACK cycle and thus requires ExtINTs not to be masked) as well as !pending_userspace_extint(vcpu). However, there is no need to check kvm_event_needs_reinjection(vcpu), since split irqchip keeps pending ExtINT state separate from event injection state, and checking kvm_cpu_has_interrupt(vcpu) is wrong too since ExtINT has higher priority than APIC interrupts. In fact the latter fixes a bug: when userspace requests an IRQ window vmexit, an interrupt in the local APIC can cause kvm_cpu_has_interrupt() to be true and thus kvm_vcpu_ready_for_interrupt_injection() to return false. When this happens, vcpu_run does not exit to userspace but the interrupt window vmexits keep occurring. The VM loops without any hope of making progress. Once we try to fix these with something like return kvm_arch_interrupt_allowed(vcpu) && - !kvm_cpu_has_interrupt(vcpu) && - !kvm_event_needs_reinjection(vcpu) && - kvm_cpu_accept_dm_intr(vcpu); + (!lapic_in_kernel(vcpu) + ? !vcpu->arch.interrupt.injected + : (kvm_apic_accept_pic_intr(vcpu) + && !pending_userspace_extint(v))); we realize two things. First, thanks to the previous patch the complex conditional can reuse !kvm_cpu_has_extint(vcpu). Second, the interrupt window request in vcpu_enter_guest() bool req_int_win = dm_request_for_irq_injection(vcpu) && kvm_cpu_accept_dm_intr(vcpu); should be kept in sync with kvm_vcpu_ready_for_interrupt_injection(): it is unnecessary to ask the processor for an interrupt window if we would not be able to return to userspace. Therefore, kvm_cpu_accept_dm_intr(vcpu) is basically !kvm_cpu_has_extint(vcpu) ANDed with the existing check for masked ExtINT. It all makes sense: - we can accept an interrupt from userspace if there is a place to stash it (and, for irqchip split, ExtINTs are not masked). Interrupts from userspace _can_ be accepted even if right now EFLAGS.IF=0. - in order to tell userspace we will inject its interrupt ("IRQ window open" i.e. kvm_vcpu_ready_for_interrupt_injection), both KVM and the vCPU need to be ready to accept the interrupt. ... and this is what the patch implements. Reported-by: David Woodhouse <dwmw@amazon.co.uk> Analyzed-by: David Woodhouse <dwmw@amazon.co.uk> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Nikos Tsironis <ntsironis@arrikto.com> Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Diffstat (limited to 'arch/x86/kvm/irq.c')
-rw-r--r--arch/x86/kvm/irq.c2
1 files changed, 1 insertions, 1 deletions
diff --git a/arch/x86/kvm/irq.c b/arch/x86/kvm/irq.c
index ee94671272e3..814698e5b152 100644
--- a/arch/x86/kvm/irq.c
+++ b/arch/x86/kvm/irq.c
@@ -40,7 +40,7 @@ static int pending_userspace_extint(struct kvm_vcpu *v)
* check if there is pending interrupt from
* non-APIC source without intack.
*/
-static int kvm_cpu_has_extint(struct kvm_vcpu *v)
+int kvm_cpu_has_extint(struct kvm_vcpu *v)
{
/*
* FIXME: interrupt.injected represents an interrupt whose