summaryrefslogtreecommitdiff
path: root/arch/mips/alchemy/common/dbdma.c
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2008-10-11 23:39:35 +0400
committerDavid S. Miller <davem@davemloft.net>2008-10-11 23:39:35 +0400
commit56c5d900dbb8e042bfad035d18433476931d8f93 (patch)
tree00b793965beeef10db03e0ff021d2d965c410759 /arch/mips/alchemy/common/dbdma.c
parent4dd95b63ae25c5cad6986829b5e8788e9faa0330 (diff)
parentead9d23d803ea3a73766c3cb27bf7563ac8d7266 (diff)
downloadlinux-56c5d900dbb8e042bfad035d18433476931d8f93.tar.xz
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts: sound/core/memalloc.c
Diffstat (limited to 'arch/mips/alchemy/common/dbdma.c')
-rw-r--r--arch/mips/alchemy/common/dbdma.c978
1 files changed, 978 insertions, 0 deletions
diff --git a/arch/mips/alchemy/common/dbdma.c b/arch/mips/alchemy/common/dbdma.c
new file mode 100644
index 000000000000..601ee9180ee4
--- /dev/null
+++ b/arch/mips/alchemy/common/dbdma.c
@@ -0,0 +1,978 @@
+/*
+ *
+ * BRIEF MODULE DESCRIPTION
+ * The Descriptor Based DMA channel manager that first appeared
+ * on the Au1550. I started with dma.c, but I think all that is
+ * left is this initial comment :-)
+ *
+ * Copyright 2004 Embedded Edge, LLC
+ * dan@embeddededge.com
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
+ * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
+ * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <asm/mach-au1x00/au1000.h>
+#include <asm/mach-au1x00/au1xxx_dbdma.h>
+
+#if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
+
+/*
+ * The Descriptor Based DMA supports up to 16 channels.
+ *
+ * There are 32 devices defined. We keep an internal structure
+ * of devices using these channels, along with additional
+ * information.
+ *
+ * We allocate the descriptors and allow access to them through various
+ * functions. The drivers allocate the data buffers and assign them
+ * to the descriptors.
+ */
+static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
+
+/* I couldn't find a macro that did this... */
+#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
+
+static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
+static int dbdma_initialized;
+static void au1xxx_dbdma_init(void);
+
+static dbdev_tab_t dbdev_tab[] = {
+#ifdef CONFIG_SOC_AU1550
+ /* UARTS */
+ { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
+ { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
+ { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
+ { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
+
+ /* EXT DMA */
+ { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
+
+ /* USB DEV */
+ { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
+ { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
+ { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
+ { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
+ { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
+ { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
+
+ /* PSC 0 */
+ { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
+ { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
+
+ /* PSC 1 */
+ { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
+ { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
+
+ /* PSC 2 */
+ { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
+ { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
+
+ /* PSC 3 */
+ { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
+ { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
+
+ { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
+ { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
+
+ /* MAC 0 */
+ { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
+
+ /* MAC 1 */
+ { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
+
+#endif /* CONFIG_SOC_AU1550 */
+
+#ifdef CONFIG_SOC_AU1200
+ { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
+ { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
+ { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
+ { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
+
+ { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
+
+ { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+
+ { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
+ { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
+ { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
+ { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
+
+ { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
+ { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
+
+ { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
+ { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
+ { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+
+ { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
+ { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
+ { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+
+ { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
+ { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
+ { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
+ { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+
+ { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
+
+#endif /* CONFIG_SOC_AU1200 */
+
+ { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+ { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
+
+ /* Provide 16 user definable device types */
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+ { ~0, 0, 0, 0, 0, 0, 0 },
+};
+
+#define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
+
+static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
+
+static dbdev_tab_t *find_dbdev_id(u32 id)
+{
+ int i;
+ dbdev_tab_t *p;
+ for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
+ p = &dbdev_tab[i];
+ if (p->dev_id == id)
+ return p;
+ }
+ return NULL;
+}
+
+void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
+{
+ return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+}
+EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
+
+u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
+{
+ u32 ret = 0;
+ dbdev_tab_t *p;
+ static u16 new_id = 0x1000;
+
+ p = find_dbdev_id(~0);
+ if (NULL != p) {
+ memcpy(p, dev, sizeof(dbdev_tab_t));
+ p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
+ ret = p->dev_id;
+ new_id++;
+#if 0
+ printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
+ p->dev_id, p->dev_flags, p->dev_physaddr);
+#endif
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL(au1xxx_ddma_add_device);
+
+void au1xxx_ddma_del_device(u32 devid)
+{
+ dbdev_tab_t *p = find_dbdev_id(devid);
+
+ if (p != NULL) {
+ memset(p, 0, sizeof(dbdev_tab_t));
+ p->dev_id = ~0;
+ }
+}
+EXPORT_SYMBOL(au1xxx_ddma_del_device);
+
+/* Allocate a channel and return a non-zero descriptor if successful. */
+u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
+ void (*callback)(int, void *), void *callparam)
+{
+ unsigned long flags;
+ u32 used, chan, rv;
+ u32 dcp;
+ int i;
+ dbdev_tab_t *stp, *dtp;
+ chan_tab_t *ctp;
+ au1x_dma_chan_t *cp;
+
+ /*
+ * We do the intialization on the first channel allocation.
+ * We have to wait because of the interrupt handler initialization
+ * which can't be done successfully during board set up.
+ */
+ if (!dbdma_initialized)
+ au1xxx_dbdma_init();
+ dbdma_initialized = 1;
+
+ stp = find_dbdev_id(srcid);
+ if (stp == NULL)
+ return 0;
+ dtp = find_dbdev_id(destid);
+ if (dtp == NULL)
+ return 0;
+
+ used = 0;
+ rv = 0;
+
+ /* Check to see if we can get both channels. */
+ spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
+ if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
+ (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
+ /* Got source */
+ stp->dev_flags |= DEV_FLAGS_INUSE;
+ if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
+ (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
+ /* Got destination */
+ dtp->dev_flags |= DEV_FLAGS_INUSE;
+ } else {
+ /* Can't get dest. Release src. */
+ stp->dev_flags &= ~DEV_FLAGS_INUSE;
+ used++;
+ }
+ } else
+ used++;
+ spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
+
+ if (!used) {
+ /* Let's see if we can allocate a channel for it. */
+ ctp = NULL;
+ chan = 0;
+ spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
+ for (i = 0; i < NUM_DBDMA_CHANS; i++)
+ if (chan_tab_ptr[i] == NULL) {
+ /*
+ * If kmalloc fails, it is caught below same
+ * as a channel not available.
+ */
+ ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
+ chan_tab_ptr[i] = ctp;
+ break;
+ }
+ spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
+
+ if (ctp != NULL) {
+ memset(ctp, 0, sizeof(chan_tab_t));
+ ctp->chan_index = chan = i;
+ dcp = DDMA_CHANNEL_BASE;
+ dcp += (0x0100 * chan);
+ ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
+ cp = (au1x_dma_chan_t *)dcp;
+ ctp->chan_src = stp;
+ ctp->chan_dest = dtp;
+ ctp->chan_callback = callback;
+ ctp->chan_callparam = callparam;
+
+ /* Initialize channel configuration. */
+ i = 0;
+ if (stp->dev_intlevel)
+ i |= DDMA_CFG_SED;
+ if (stp->dev_intpolarity)
+ i |= DDMA_CFG_SP;
+ if (dtp->dev_intlevel)
+ i |= DDMA_CFG_DED;
+ if (dtp->dev_intpolarity)
+ i |= DDMA_CFG_DP;
+ if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
+ (dtp->dev_flags & DEV_FLAGS_SYNC))
+ i |= DDMA_CFG_SYNC;
+ cp->ddma_cfg = i;
+ au_sync();
+
+ /* Return a non-zero value that can be used to
+ * find the channel information in subsequent
+ * operations.
+ */
+ rv = (u32)(&chan_tab_ptr[chan]);
+ } else {
+ /* Release devices */
+ stp->dev_flags &= ~DEV_FLAGS_INUSE;
+ dtp->dev_flags &= ~DEV_FLAGS_INUSE;
+ }
+ }
+ return rv;
+}
+EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
+
+/*
+ * Set the device width if source or destination is a FIFO.
+ * Should be 8, 16, or 32 bits.
+ */
+u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
+{
+ u32 rv;
+ chan_tab_t *ctp;
+ dbdev_tab_t *stp, *dtp;
+
+ ctp = *((chan_tab_t **)chanid);
+ stp = ctp->chan_src;
+ dtp = ctp->chan_dest;
+ rv = 0;
+
+ if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
+ rv = stp->dev_devwidth;
+ stp->dev_devwidth = bits;
+ }
+ if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
+ rv = dtp->dev_devwidth;
+ dtp->dev_devwidth = bits;
+ }
+
+ return rv;
+}
+EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
+
+/* Allocate a descriptor ring, initializing as much as possible. */
+u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
+{
+ int i;
+ u32 desc_base, srcid, destid;
+ u32 cmd0, cmd1, src1, dest1;
+ u32 src0, dest0;
+ chan_tab_t *ctp;
+ dbdev_tab_t *stp, *dtp;
+ au1x_ddma_desc_t *dp;
+
+ /*
+ * I guess we could check this to be within the
+ * range of the table......
+ */
+ ctp = *((chan_tab_t **)chanid);
+ stp = ctp->chan_src;
+ dtp = ctp->chan_dest;
+
+ /*
+ * The descriptors must be 32-byte aligned. There is a
+ * possibility the allocation will give us such an address,
+ * and if we try that first we are likely to not waste larger
+ * slabs of memory.
+ */
+ desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
+ GFP_KERNEL|GFP_DMA);
+ if (desc_base == 0)
+ return 0;
+
+ if (desc_base & 0x1f) {
+ /*
+ * Lost....do it again, allocate extra, and round
+ * the address base.
+ */
+ kfree((const void *)desc_base);
+ i = entries * sizeof(au1x_ddma_desc_t);
+ i += (sizeof(au1x_ddma_desc_t) - 1);
+ desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
+ if (desc_base == 0)
+ return 0;
+
+ desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
+ }
+ dp = (au1x_ddma_desc_t *)desc_base;
+
+ /* Keep track of the base descriptor. */
+ ctp->chan_desc_base = dp;
+
+ /* Initialize the rings with as much information as we know. */
+ srcid = stp->dev_id;
+ destid = dtp->dev_id;
+
+ cmd0 = cmd1 = src1 = dest1 = 0;
+ src0 = dest0 = 0;
+
+ cmd0 |= DSCR_CMD0_SID(srcid);
+ cmd0 |= DSCR_CMD0_DID(destid);
+ cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
+ cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
+
+ /* Is it mem to mem transfer? */
+ if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
+ (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
+ ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
+ (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
+ cmd0 |= DSCR_CMD0_MEM;
+
+ switch (stp->dev_devwidth) {
+ case 8:
+ cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
+ break;
+ case 16:
+ cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
+ break;
+ case 32:
+ default:
+ cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
+ break;
+ }
+
+ switch (dtp->dev_devwidth) {
+ case 8:
+ cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
+ break;
+ case 16:
+ cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
+ break;
+ case 32:
+ default:
+ cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
+ break;
+ }
+
+ /*
+ * If the device is marked as an in/out FIFO, ensure it is
+ * set non-coherent.
+ */
+ if (stp->dev_flags & DEV_FLAGS_IN)
+ cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
+ if (dtp->dev_flags & DEV_FLAGS_OUT)
+ cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
+
+ /*
+ * Set up source1. For now, assume no stride and increment.
+ * A channel attribute update can change this later.
+ */
+ switch (stp->dev_tsize) {
+ case 1:
+ src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
+ break;
+ case 2:
+ src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
+ break;
+ case 4:
+ src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
+ break;
+ case 8:
+ default:
+ src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
+ break;
+ }
+
+ /* If source input is FIFO, set static address. */
+ if (stp->dev_flags & DEV_FLAGS_IN) {
+ if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
+ src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
+ else
+ src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
+ }
+
+ if (stp->dev_physaddr)
+ src0 = stp->dev_physaddr;
+
+ /*
+ * Set up dest1. For now, assume no stride and increment.
+ * A channel attribute update can change this later.
+ */
+ switch (dtp->dev_tsize) {
+ case 1:
+ dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
+ break;
+ case 2:
+ dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
+ break;
+ case 4:
+ dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
+ break;
+ case 8:
+ default:
+ dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
+ break;
+ }
+
+ /* If destination output is FIFO, set static address. */
+ if (dtp->dev_flags & DEV_FLAGS_OUT) {
+ if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
+ dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
+ else
+ dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
+ }
+
+ if (dtp->dev_physaddr)
+ dest0 = dtp->dev_physaddr;
+
+#if 0
+ printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
+ "source1:%x dest0:%x dest1:%x\n",
+ dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
+ src1, dest0, dest1);
+#endif
+ for (i = 0; i < entries; i++) {
+ dp->dscr_cmd0 = cmd0;
+ dp->dscr_cmd1 = cmd1;
+ dp->dscr_source0 = src0;
+ dp->dscr_source1 = src1;
+ dp->dscr_dest0 = dest0;
+ dp->dscr_dest1 = dest1;
+ dp->dscr_stat = 0;
+ dp->sw_context = 0;
+ dp->sw_status = 0;
+ dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
+ dp++;
+ }
+
+ /* Make last descrptor point to the first. */
+ dp--;
+ dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
+ ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
+
+ return (u32)ctp->chan_desc_base;
+}
+EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
+
+/*
+ * Put a source buffer into the DMA ring.
+ * This updates the source pointer and byte count. Normally used
+ * for memory to fifo transfers.
+ */
+u32 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
+{
+ chan_tab_t *ctp;
+ au1x_ddma_desc_t *dp;
+
+ /*
+ * I guess we could check this to be within the
+ * range of the table......
+ */
+ ctp = *(chan_tab_t **)chanid;
+
+ /*
+ * We should have multiple callers for a particular channel,
+ * an interrupt doesn't affect this pointer nor the descriptor,
+ * so no locking should be needed.
+ */
+ dp = ctp->put_ptr;
+
+ /*
+ * If the descriptor is valid, we are way ahead of the DMA
+ * engine, so just return an error condition.
+ */
+ if (dp->dscr_cmd0 & DSCR_CMD0_V)
+ return 0;
+
+ /* Load up buffer address and byte count. */
+ dp->dscr_source0 = virt_to_phys(buf);
+ dp->dscr_cmd1 = nbytes;
+ /* Check flags */
+ if (flags & DDMA_FLAGS_IE)
+ dp->dscr_cmd0 |= DSCR_CMD0_IE;
+ if (flags & DDMA_FLAGS_NOIE)
+ dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
+
+ /*
+ * There is an errata on the Au1200/Au1550 parts that could result
+ * in "stale" data being DMA'ed. It has to do with the snoop logic on
+ * the cache eviction buffer. DMA_NONCOHERENT is on by default for
+ * these parts. If it is fixed in the future, these dma_cache_inv will
+ * just be nothing more than empty macros. See io.h.
+ */
+ dma_cache_wback_inv((unsigned long)buf, nbytes);
+ dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
+ au_sync();
+ dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
+ ctp->chan_ptr->ddma_dbell = 0;
+
+ /* Get next descriptor pointer. */
+ ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+
+ /* Return something non-zero. */
+ return nbytes;
+}
+EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
+
+/* Put a destination buffer into the DMA ring.
+ * This updates the destination pointer and byte count. Normally used
+ * to place an empty buffer into the ring for fifo to memory transfers.
+ */
+u32
+_au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
+{
+ chan_tab_t *ctp;
+ au1x_ddma_desc_t *dp;
+
+ /* I guess we could check this to be within the
+ * range of the table......
+ */
+ ctp = *((chan_tab_t **)chanid);
+
+ /* We should have multiple callers for a particular channel,
+ * an interrupt doesn't affect this pointer nor the descriptor,
+ * so no locking should be needed.
+ */
+ dp = ctp->put_ptr;
+
+ /* If the descriptor is valid, we are way ahead of the DMA
+ * engine, so just return an error condition.
+ */
+ if (dp->dscr_cmd0 & DSCR_CMD0_V)
+ return 0;
+
+ /* Load up buffer address and byte count */
+
+ /* Check flags */
+ if (flags & DDMA_FLAGS_IE)
+ dp->dscr_cmd0 |= DSCR_CMD0_IE;
+ if (flags & DDMA_FLAGS_NOIE)
+ dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
+
+ dp->dscr_dest0 = virt_to_phys(buf);
+ dp->dscr_cmd1 = nbytes;
+#if 0
+ printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
+ dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
+ dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
+#endif
+ /*
+ * There is an errata on the Au1200/Au1550 parts that could result in
+ * "stale" data being DMA'ed. It has to do with the snoop logic on the
+ * cache eviction buffer. DMA_NONCOHERENT is on by default for these
+ * parts. If it is fixed in the future, these dma_cache_inv will just
+ * be nothing more than empty macros. See io.h.
+ */
+ dma_cache_inv((unsigned long)buf, nbytes);
+ dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
+ au_sync();
+ dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
+ ctp->chan_ptr->ddma_dbell = 0;
+
+ /* Get next descriptor pointer. */
+ ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+
+ /* Return something non-zero. */
+ return nbytes;
+}
+EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
+
+/*
+ * Get a destination buffer into the DMA ring.
+ * Normally used to get a full buffer from the ring during fifo
+ * to memory transfers. This does not set the valid bit, you will
+ * have to put another destination buffer to keep the DMA going.
+ */
+u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
+{
+ chan_tab_t *ctp;
+ au1x_ddma_desc_t *dp;
+ u32 rv;
+
+ /*
+ * I guess we could check this to be within the
+ * range of the table......
+ */
+ ctp = *((chan_tab_t **)chanid);
+
+ /*
+ * We should have multiple callers for a particular channel,
+ * an interrupt doesn't affect this pointer nor the descriptor,
+ * so no locking should be needed.
+ */
+ dp = ctp->get_ptr;
+
+ /*
+ * If the descriptor is valid, we are way ahead of the DMA
+ * engine, so just return an error condition.
+ */
+ if (dp->dscr_cmd0 & DSCR_CMD0_V)
+ return 0;
+
+ /* Return buffer address and byte count. */
+ *buf = (void *)(phys_to_virt(dp->dscr_dest0));
+ *nbytes = dp->dscr_cmd1;
+ rv = dp->dscr_stat;
+
+ /* Get next descriptor pointer. */
+ ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+
+ /* Return something non-zero. */
+ return rv;
+}
+EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
+
+void au1xxx_dbdma_stop(u32 chanid)
+{
+ chan_tab_t *ctp;
+ au1x_dma_chan_t *cp;
+ int halt_timeout = 0;
+
+ ctp = *((chan_tab_t **)chanid);
+
+ cp = ctp->chan_ptr;
+ cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
+ au_sync();
+ while (!(cp->ddma_stat & DDMA_STAT_H)) {
+ udelay(1);
+ halt_timeout++;
+ if (halt_timeout > 100) {
+ printk(KERN_WARNING "warning: DMA channel won't halt\n");
+ break;
+ }
+ }
+ /* clear current desc valid and doorbell */
+ cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
+ au_sync();
+}
+EXPORT_SYMBOL(au1xxx_dbdma_stop);
+
+/*
+ * Start using the current descriptor pointer. If the DBDMA encounters
+ * a non-valid descriptor, it will stop. In this case, we can just
+ * continue by adding a buffer to the list and starting again.
+ */
+void au1xxx_dbdma_start(u32 chanid)
+{
+ chan_tab_t *ctp;
+ au1x_dma_chan_t *cp;
+
+ ctp = *((chan_tab_t **)chanid);
+ cp = ctp->chan_ptr;
+ cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
+ cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
+ au_sync();
+ cp->ddma_dbell = 0;
+ au_sync();
+}
+EXPORT_SYMBOL(au1xxx_dbdma_start);
+
+void au1xxx_dbdma_reset(u32 chanid)
+{
+ chan_tab_t *ctp;
+ au1x_ddma_desc_t *dp;
+
+ au1xxx_dbdma_stop(chanid);
+
+ ctp = *((chan_tab_t **)chanid);
+ ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
+
+ /* Run through the descriptors and reset the valid indicator. */
+ dp = ctp->chan_desc_base;
+
+ do {
+ dp->dscr_cmd0 &= ~DSCR_CMD0_V;
+ /*
+ * Reset our software status -- this is used to determine
+ * if a descriptor is in use by upper level software. Since
+ * posting can reset 'V' bit.
+ */
+ dp->sw_status = 0;
+ dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+ } while (dp != ctp->chan_desc_base);
+}
+EXPORT_SYMBOL(au1xxx_dbdma_reset);
+
+u32 au1xxx_get_dma_residue(u32 chanid)
+{
+ chan_tab_t *ctp;
+ au1x_dma_chan_t *cp;
+ u32 rv;
+
+ ctp = *((chan_tab_t **)chanid);
+ cp = ctp->chan_ptr;
+
+ /* This is only valid if the channel is stopped. */
+ rv = cp->ddma_bytecnt;
+ au_sync();
+
+ return rv;
+}
+EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
+
+void au1xxx_dbdma_chan_free(u32 chanid)
+{
+ chan_tab_t *ctp;
+ dbdev_tab_t *stp, *dtp;
+
+ ctp = *((chan_tab_t **)chanid);
+ stp = ctp->chan_src;
+ dtp = ctp->chan_dest;
+
+ au1xxx_dbdma_stop(chanid);
+
+ kfree((void *)ctp->chan_desc_base);
+
+ stp->dev_flags &= ~DEV_FLAGS_INUSE;
+ dtp->dev_flags &= ~DEV_FLAGS_INUSE;
+ chan_tab_ptr[ctp->chan_index] = NULL;
+
+ kfree(ctp);
+}
+EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
+
+static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
+{
+ u32 intstat;
+ u32 chan_index;
+ chan_tab_t *ctp;
+ au1x_ddma_desc_t *dp;
+ au1x_dma_chan_t *cp;
+
+ intstat = dbdma_gptr->ddma_intstat;
+ au_sync();
+ chan_index = __ffs(intstat);
+
+ ctp = chan_tab_ptr[chan_index];
+ cp = ctp->chan_ptr;
+ dp = ctp->cur_ptr;
+
+ /* Reset interrupt. */
+ cp->ddma_irq = 0;
+ au_sync();
+
+ if (ctp->chan_callback)
+ ctp->chan_callback(irq, ctp->chan_callparam);
+
+ ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+ return IRQ_RETVAL(1);
+}
+
+static void au1xxx_dbdma_init(void)
+{
+ int irq_nr;
+
+ dbdma_gptr->ddma_config = 0;
+ dbdma_gptr->ddma_throttle = 0;
+ dbdma_gptr->ddma_inten = 0xffff;
+ au_sync();
+
+#if defined(CONFIG_SOC_AU1550)
+ irq_nr = AU1550_DDMA_INT;
+#elif defined(CONFIG_SOC_AU1200)
+ irq_nr = AU1200_DDMA_INT;
+#else
+ #error Unknown Au1x00 SOC
+#endif
+
+ if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
+ "Au1xxx dbdma", (void *)dbdma_gptr))
+ printk(KERN_ERR "Can't get 1550 dbdma irq");
+}
+
+void au1xxx_dbdma_dump(u32 chanid)
+{
+ chan_tab_t *ctp;
+ au1x_ddma_desc_t *dp;
+ dbdev_tab_t *stp, *dtp;
+ au1x_dma_chan_t *cp;
+ u32 i = 0;
+
+ ctp = *((chan_tab_t **)chanid);
+ stp = ctp->chan_src;
+ dtp = ctp->chan_dest;
+ cp = ctp->chan_ptr;
+
+ printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
+ (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
+ dtp - dbdev_tab);
+ printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
+ (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
+ (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
+
+ printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
+ printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
+ cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
+ printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
+ cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
+ cp->ddma_bytecnt);
+
+ /* Run through the descriptors */
+ dp = ctp->chan_desc_base;
+
+ do {
+ printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
+ i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
+ printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
+ dp->dscr_source0, dp->dscr_source1,
+ dp->dscr_dest0, dp->dscr_dest1);
+ printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
+ dp->dscr_stat, dp->dscr_nxtptr);
+ dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+ } while (dp != ctp->chan_desc_base);
+}
+
+/* Put a descriptor into the DMA ring.
+ * This updates the source/destination pointers and byte count.
+ */
+u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
+{
+ chan_tab_t *ctp;
+ au1x_ddma_desc_t *dp;
+ u32 nbytes = 0;
+
+ /*
+ * I guess we could check this to be within the
+ * range of the table......
+ */
+ ctp = *((chan_tab_t **)chanid);
+
+ /*
+ * We should have multiple callers for a particular channel,
+ * an interrupt doesn't affect this pointer nor the descriptor,
+ * so no locking should be needed.
+ */
+ dp = ctp->put_ptr;
+
+ /*
+ * If the descriptor is valid, we are way ahead of the DMA
+ * engine, so just return an error condition.
+ */
+ if (dp->dscr_cmd0 & DSCR_CMD0_V)
+ return 0;
+
+ /* Load up buffer addresses and byte count. */
+ dp->dscr_dest0 = dscr->dscr_dest0;
+ dp->dscr_source0 = dscr->dscr_source0;
+ dp->dscr_dest1 = dscr->dscr_dest1;
+ dp->dscr_source1 = dscr->dscr_source1;
+ dp->dscr_cmd1 = dscr->dscr_cmd1;
+ nbytes = dscr->dscr_cmd1;
+ /* Allow the caller to specifiy if an interrupt is generated */
+ dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
+ dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
+ ctp->chan_ptr->ddma_dbell = 0;
+
+ /* Get next descriptor pointer. */
+ ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
+
+ /* Return something non-zero. */
+ return nbytes;
+}
+
+#endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */