diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 02:20:36 +0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 02:20:36 +0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/i386/kernel/timers | |
download | linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/i386/kernel/timers')
-rw-r--r-- | arch/i386/kernel/timers/Makefile | 9 | ||||
-rw-r--r-- | arch/i386/kernel/timers/common.c | 160 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer.c | 66 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_cyclone.c | 259 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_hpet.c | 191 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_none.c | 39 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_pit.c | 206 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_pm.c | 258 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_tsc.c | 560 |
9 files changed, 1748 insertions, 0 deletions
diff --git a/arch/i386/kernel/timers/Makefile b/arch/i386/kernel/timers/Makefile new file mode 100644 index 000000000000..8fa12be658dd --- /dev/null +++ b/arch/i386/kernel/timers/Makefile @@ -0,0 +1,9 @@ +# +# Makefile for x86 timers +# + +obj-y := timer.o timer_none.o timer_tsc.o timer_pit.o common.o + +obj-$(CONFIG_X86_CYCLONE_TIMER) += timer_cyclone.o +obj-$(CONFIG_HPET_TIMER) += timer_hpet.o +obj-$(CONFIG_X86_PM_TIMER) += timer_pm.o diff --git a/arch/i386/kernel/timers/common.c b/arch/i386/kernel/timers/common.c new file mode 100644 index 000000000000..f7f90005e22e --- /dev/null +++ b/arch/i386/kernel/timers/common.c @@ -0,0 +1,160 @@ +/* + * Common functions used across the timers go here + */ + +#include <linux/init.h> +#include <linux/timex.h> +#include <linux/errno.h> +#include <linux/jiffies.h> + +#include <asm/io.h> +#include <asm/timer.h> +#include <asm/hpet.h> + +#include "mach_timer.h" + +/* ------ Calibrate the TSC ------- + * Return 2^32 * (1 / (TSC clocks per usec)) for do_fast_gettimeoffset(). + * Too much 64-bit arithmetic here to do this cleanly in C, and for + * accuracy's sake we want to keep the overhead on the CTC speaker (channel 2) + * output busy loop as low as possible. We avoid reading the CTC registers + * directly because of the awkward 8-bit access mechanism of the 82C54 + * device. + */ + +#define CALIBRATE_TIME (5 * 1000020/HZ) + +unsigned long __init calibrate_tsc(void) +{ + mach_prepare_counter(); + + { + unsigned long startlow, starthigh; + unsigned long endlow, endhigh; + unsigned long count; + + rdtsc(startlow,starthigh); + mach_countup(&count); + rdtsc(endlow,endhigh); + + + /* Error: ECTCNEVERSET */ + if (count <= 1) + goto bad_ctc; + + /* 64-bit subtract - gcc just messes up with long longs */ + __asm__("subl %2,%0\n\t" + "sbbl %3,%1" + :"=a" (endlow), "=d" (endhigh) + :"g" (startlow), "g" (starthigh), + "0" (endlow), "1" (endhigh)); + + /* Error: ECPUTOOFAST */ + if (endhigh) + goto bad_ctc; + + /* Error: ECPUTOOSLOW */ + if (endlow <= CALIBRATE_TIME) + goto bad_ctc; + + __asm__("divl %2" + :"=a" (endlow), "=d" (endhigh) + :"r" (endlow), "0" (0), "1" (CALIBRATE_TIME)); + + return endlow; + } + + /* + * The CTC wasn't reliable: we got a hit on the very first read, + * or the CPU was so fast/slow that the quotient wouldn't fit in + * 32 bits.. + */ +bad_ctc: + return 0; +} + +#ifdef CONFIG_HPET_TIMER +/* ------ Calibrate the TSC using HPET ------- + * Return 2^32 * (1 / (TSC clocks per usec)) for getting the CPU freq. + * Second output is parameter 1 (when non NULL) + * Set 2^32 * (1 / (tsc per HPET clk)) for delay_hpet(). + * calibrate_tsc() calibrates the processor TSC by comparing + * it to the HPET timer of known frequency. + * Too much 64-bit arithmetic here to do this cleanly in C + */ +#define CALIBRATE_CNT_HPET (5 * hpet_tick) +#define CALIBRATE_TIME_HPET (5 * KERNEL_TICK_USEC) + +unsigned long __init calibrate_tsc_hpet(unsigned long *tsc_hpet_quotient_ptr) +{ + unsigned long tsc_startlow, tsc_starthigh; + unsigned long tsc_endlow, tsc_endhigh; + unsigned long hpet_start, hpet_end; + unsigned long result, remain; + + hpet_start = hpet_readl(HPET_COUNTER); + rdtsc(tsc_startlow, tsc_starthigh); + do { + hpet_end = hpet_readl(HPET_COUNTER); + } while ((hpet_end - hpet_start) < CALIBRATE_CNT_HPET); + rdtsc(tsc_endlow, tsc_endhigh); + + /* 64-bit subtract - gcc just messes up with long longs */ + __asm__("subl %2,%0\n\t" + "sbbl %3,%1" + :"=a" (tsc_endlow), "=d" (tsc_endhigh) + :"g" (tsc_startlow), "g" (tsc_starthigh), + "0" (tsc_endlow), "1" (tsc_endhigh)); + + /* Error: ECPUTOOFAST */ + if (tsc_endhigh) + goto bad_calibration; + + /* Error: ECPUTOOSLOW */ + if (tsc_endlow <= CALIBRATE_TIME_HPET) + goto bad_calibration; + + ASM_DIV64_REG(result, remain, tsc_endlow, 0, CALIBRATE_TIME_HPET); + if (remain > (tsc_endlow >> 1)) + result++; /* rounding the result */ + + if (tsc_hpet_quotient_ptr) { + unsigned long tsc_hpet_quotient; + + ASM_DIV64_REG(tsc_hpet_quotient, remain, tsc_endlow, 0, + CALIBRATE_CNT_HPET); + if (remain > (tsc_endlow >> 1)) + tsc_hpet_quotient++; /* rounding the result */ + *tsc_hpet_quotient_ptr = tsc_hpet_quotient; + } + + return result; +bad_calibration: + /* + * the CPU was so fast/slow that the quotient wouldn't fit in + * 32 bits.. + */ + return 0; +} +#endif + +/* calculate cpu_khz */ +void __init init_cpu_khz(void) +{ + if (cpu_has_tsc) { + unsigned long tsc_quotient = calibrate_tsc(); + if (tsc_quotient) { + /* report CPU clock rate in Hz. + * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) = + * clock/second. Our precision is about 100 ppm. + */ + { unsigned long eax=0, edx=1000; + __asm__("divl %2" + :"=a" (cpu_khz), "=d" (edx) + :"r" (tsc_quotient), + "0" (eax), "1" (edx)); + printk("Detected %lu.%03lu MHz processor.\n", cpu_khz / 1000, cpu_khz % 1000); + } + } + } +} diff --git a/arch/i386/kernel/timers/timer.c b/arch/i386/kernel/timers/timer.c new file mode 100644 index 000000000000..a3d6a288088b --- /dev/null +++ b/arch/i386/kernel/timers/timer.c @@ -0,0 +1,66 @@ +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/string.h> +#include <asm/timer.h> + +#ifdef CONFIG_HPET_TIMER +/* + * HPET memory read is slower than tsc reads, but is more dependable as it + * always runs at constant frequency and reduces complexity due to + * cpufreq. So, we prefer HPET timer to tsc based one. Also, we cannot use + * timer_pit when HPET is active. So, we default to timer_tsc. + */ +#endif +/* list of timers, ordered by preference, NULL terminated */ +static struct init_timer_opts* __initdata timers[] = { +#ifdef CONFIG_X86_CYCLONE_TIMER + &timer_cyclone_init, +#endif +#ifdef CONFIG_HPET_TIMER + &timer_hpet_init, +#endif +#ifdef CONFIG_X86_PM_TIMER + &timer_pmtmr_init, +#endif + &timer_tsc_init, + &timer_pit_init, + NULL, +}; + +static char clock_override[10] __initdata; + +static int __init clock_setup(char* str) +{ + if (str) + strlcpy(clock_override, str, sizeof(clock_override)); + return 1; +} +__setup("clock=", clock_setup); + + +/* The chosen timesource has been found to be bad. + * Fall back to a known good timesource (the PIT) + */ +void clock_fallback(void) +{ + cur_timer = &timer_pit; +} + +/* iterates through the list of timers, returning the first + * one that initializes successfully. + */ +struct timer_opts* __init select_timer(void) +{ + int i = 0; + + /* find most preferred working timer */ + while (timers[i]) { + if (timers[i]->init) + if (timers[i]->init(clock_override) == 0) + return timers[i]->opts; + ++i; + } + + panic("select_timer: Cannot find a suitable timer\n"); + return NULL; +} diff --git a/arch/i386/kernel/timers/timer_cyclone.c b/arch/i386/kernel/timers/timer_cyclone.c new file mode 100644 index 000000000000..f6f1206a11bb --- /dev/null +++ b/arch/i386/kernel/timers/timer_cyclone.c @@ -0,0 +1,259 @@ +/* Cyclone-timer: + * This code implements timer_ops for the cyclone counter found + * on IBM x440, x360, and other Summit based systems. + * + * Copyright (C) 2002 IBM, John Stultz (johnstul@us.ibm.com) + */ + + +#include <linux/spinlock.h> +#include <linux/init.h> +#include <linux/timex.h> +#include <linux/errno.h> +#include <linux/string.h> +#include <linux/jiffies.h> + +#include <asm/timer.h> +#include <asm/io.h> +#include <asm/pgtable.h> +#include <asm/fixmap.h> +#include "io_ports.h" + +extern spinlock_t i8253_lock; + +/* Number of usecs that the last interrupt was delayed */ +static int delay_at_last_interrupt; + +#define CYCLONE_CBAR_ADDR 0xFEB00CD0 +#define CYCLONE_PMCC_OFFSET 0x51A0 +#define CYCLONE_MPMC_OFFSET 0x51D0 +#define CYCLONE_MPCS_OFFSET 0x51A8 +#define CYCLONE_TIMER_FREQ 100000000 +#define CYCLONE_TIMER_MASK (((u64)1<<40)-1) /* 40 bit mask */ +int use_cyclone = 0; + +static u32* volatile cyclone_timer; /* Cyclone MPMC0 register */ +static u32 last_cyclone_low; +static u32 last_cyclone_high; +static unsigned long long monotonic_base; +static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; + +/* helper macro to atomically read both cyclone counter registers */ +#define read_cyclone_counter(low,high) \ + do{ \ + high = cyclone_timer[1]; low = cyclone_timer[0]; \ + } while (high != cyclone_timer[1]); + + +static void mark_offset_cyclone(void) +{ + unsigned long lost, delay; + unsigned long delta = last_cyclone_low; + int count; + unsigned long long this_offset, last_offset; + + write_seqlock(&monotonic_lock); + last_offset = ((unsigned long long)last_cyclone_high<<32)|last_cyclone_low; + + spin_lock(&i8253_lock); + read_cyclone_counter(last_cyclone_low,last_cyclone_high); + + /* read values for delay_at_last_interrupt */ + outb_p(0x00, 0x43); /* latch the count ASAP */ + + count = inb_p(0x40); /* read the latched count */ + count |= inb(0x40) << 8; + + /* + * VIA686a test code... reset the latch if count > max + 1 + * from timer_pit.c - cjb + */ + if (count > LATCH) { + outb_p(0x34, PIT_MODE); + outb_p(LATCH & 0xff, PIT_CH0); + outb(LATCH >> 8, PIT_CH0); + count = LATCH - 1; + } + spin_unlock(&i8253_lock); + + /* lost tick compensation */ + delta = last_cyclone_low - delta; + delta /= (CYCLONE_TIMER_FREQ/1000000); + delta += delay_at_last_interrupt; + lost = delta/(1000000/HZ); + delay = delta%(1000000/HZ); + if (lost >= 2) + jiffies_64 += lost-1; + + /* update the monotonic base value */ + this_offset = ((unsigned long long)last_cyclone_high<<32)|last_cyclone_low; + monotonic_base += (this_offset - last_offset) & CYCLONE_TIMER_MASK; + write_sequnlock(&monotonic_lock); + + /* calculate delay_at_last_interrupt */ + count = ((LATCH-1) - count) * TICK_SIZE; + delay_at_last_interrupt = (count + LATCH/2) / LATCH; + + + /* catch corner case where tick rollover occured + * between cyclone and pit reads (as noted when + * usec delta is > 90% # of usecs/tick) + */ + if (lost && abs(delay - delay_at_last_interrupt) > (900000/HZ)) + jiffies_64++; +} + +static unsigned long get_offset_cyclone(void) +{ + u32 offset; + + if(!cyclone_timer) + return delay_at_last_interrupt; + + /* Read the cyclone timer */ + offset = cyclone_timer[0]; + + /* .. relative to previous jiffy */ + offset = offset - last_cyclone_low; + + /* convert cyclone ticks to microseconds */ + /* XXX slow, can we speed this up? */ + offset = offset/(CYCLONE_TIMER_FREQ/1000000); + + /* our adjusted time offset in microseconds */ + return delay_at_last_interrupt + offset; +} + +static unsigned long long monotonic_clock_cyclone(void) +{ + u32 now_low, now_high; + unsigned long long last_offset, this_offset, base; + unsigned long long ret; + unsigned seq; + + /* atomically read monotonic base & last_offset */ + do { + seq = read_seqbegin(&monotonic_lock); + last_offset = ((unsigned long long)last_cyclone_high<<32)|last_cyclone_low; + base = monotonic_base; + } while (read_seqretry(&monotonic_lock, seq)); + + + /* Read the cyclone counter */ + read_cyclone_counter(now_low,now_high); + this_offset = ((unsigned long long)now_high<<32)|now_low; + + /* convert to nanoseconds */ + ret = base + ((this_offset - last_offset)&CYCLONE_TIMER_MASK); + return ret * (1000000000 / CYCLONE_TIMER_FREQ); +} + +static int __init init_cyclone(char* override) +{ + u32* reg; + u32 base; /* saved cyclone base address */ + u32 pageaddr; /* page that contains cyclone_timer register */ + u32 offset; /* offset from pageaddr to cyclone_timer register */ + int i; + + /* check clock override */ + if (override[0] && strncmp(override,"cyclone",7)) + return -ENODEV; + + /*make sure we're on a summit box*/ + if(!use_cyclone) return -ENODEV; + + printk(KERN_INFO "Summit chipset: Starting Cyclone Counter.\n"); + + /* find base address */ + pageaddr = (CYCLONE_CBAR_ADDR)&PAGE_MASK; + offset = (CYCLONE_CBAR_ADDR)&(~PAGE_MASK); + set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); + reg = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); + if(!reg){ + printk(KERN_ERR "Summit chipset: Could not find valid CBAR register.\n"); + return -ENODEV; + } + base = *reg; + if(!base){ + printk(KERN_ERR "Summit chipset: Could not find valid CBAR value.\n"); + return -ENODEV; + } + + /* setup PMCC */ + pageaddr = (base + CYCLONE_PMCC_OFFSET)&PAGE_MASK; + offset = (base + CYCLONE_PMCC_OFFSET)&(~PAGE_MASK); + set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); + reg = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); + if(!reg){ + printk(KERN_ERR "Summit chipset: Could not find valid PMCC register.\n"); + return -ENODEV; + } + reg[0] = 0x00000001; + + /* setup MPCS */ + pageaddr = (base + CYCLONE_MPCS_OFFSET)&PAGE_MASK; + offset = (base + CYCLONE_MPCS_OFFSET)&(~PAGE_MASK); + set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); + reg = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); + if(!reg){ + printk(KERN_ERR "Summit chipset: Could not find valid MPCS register.\n"); + return -ENODEV; + } + reg[0] = 0x00000001; + + /* map in cyclone_timer */ + pageaddr = (base + CYCLONE_MPMC_OFFSET)&PAGE_MASK; + offset = (base + CYCLONE_MPMC_OFFSET)&(~PAGE_MASK); + set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); + cyclone_timer = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); + if(!cyclone_timer){ + printk(KERN_ERR "Summit chipset: Could not find valid MPMC register.\n"); + return -ENODEV; + } + + /*quick test to make sure its ticking*/ + for(i=0; i<3; i++){ + u32 old = cyclone_timer[0]; + int stall = 100; + while(stall--) barrier(); + if(cyclone_timer[0] == old){ + printk(KERN_ERR "Summit chipset: Counter not counting! DISABLED\n"); + cyclone_timer = 0; + return -ENODEV; + } + } + + init_cpu_khz(); + + /* Everything looks good! */ + return 0; +} + + +static void delay_cyclone(unsigned long loops) +{ + unsigned long bclock, now; + if(!cyclone_timer) + return; + bclock = cyclone_timer[0]; + do { + rep_nop(); + now = cyclone_timer[0]; + } while ((now-bclock) < loops); +} +/************************************************************/ + +/* cyclone timer_opts struct */ +static struct timer_opts timer_cyclone = { + .name = "cyclone", + .mark_offset = mark_offset_cyclone, + .get_offset = get_offset_cyclone, + .monotonic_clock = monotonic_clock_cyclone, + .delay = delay_cyclone, +}; + +struct init_timer_opts __initdata timer_cyclone_init = { + .init = init_cyclone, + .opts = &timer_cyclone, +}; diff --git a/arch/i386/kernel/timers/timer_hpet.c b/arch/i386/kernel/timers/timer_hpet.c new file mode 100644 index 000000000000..713134e71844 --- /dev/null +++ b/arch/i386/kernel/timers/timer_hpet.c @@ -0,0 +1,191 @@ +/* + * This code largely moved from arch/i386/kernel/time.c. + * See comments there for proper credits. + */ + +#include <linux/spinlock.h> +#include <linux/init.h> +#include <linux/timex.h> +#include <linux/errno.h> +#include <linux/string.h> +#include <linux/jiffies.h> + +#include <asm/timer.h> +#include <asm/io.h> +#include <asm/processor.h> + +#include "io_ports.h" +#include "mach_timer.h" +#include <asm/hpet.h> + +static unsigned long hpet_usec_quotient; /* convert hpet clks to usec */ +static unsigned long tsc_hpet_quotient; /* convert tsc to hpet clks */ +static unsigned long hpet_last; /* hpet counter value at last tick*/ +static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter */ +static unsigned long last_tsc_high; /* msb 32 bits of Time Stamp Counter */ +static unsigned long long monotonic_base; +static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; + +/* convert from cycles(64bits) => nanoseconds (64bits) + * basic equation: + * ns = cycles / (freq / ns_per_sec) + * ns = cycles * (ns_per_sec / freq) + * ns = cycles * (10^9 / (cpu_mhz * 10^6)) + * ns = cycles * (10^3 / cpu_mhz) + * + * Then we use scaling math (suggested by george@mvista.com) to get: + * ns = cycles * (10^3 * SC / cpu_mhz) / SC + * ns = cycles * cyc2ns_scale / SC + * + * And since SC is a constant power of two, we can convert the div + * into a shift. + * -johnstul@us.ibm.com "math is hard, lets go shopping!" + */ +static unsigned long cyc2ns_scale; +#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ + +static inline void set_cyc2ns_scale(unsigned long cpu_mhz) +{ + cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz; +} + +static inline unsigned long long cycles_2_ns(unsigned long long cyc) +{ + return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; +} + +static unsigned long long monotonic_clock_hpet(void) +{ + unsigned long long last_offset, this_offset, base; + unsigned seq; + + /* atomically read monotonic base & last_offset */ + do { + seq = read_seqbegin(&monotonic_lock); + last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; + base = monotonic_base; + } while (read_seqretry(&monotonic_lock, seq)); + + /* Read the Time Stamp Counter */ + rdtscll(this_offset); + + /* return the value in ns */ + return base + cycles_2_ns(this_offset - last_offset); +} + +static unsigned long get_offset_hpet(void) +{ + register unsigned long eax, edx; + + eax = hpet_readl(HPET_COUNTER); + eax -= hpet_last; /* hpet delta */ + + /* + * Time offset = (hpet delta) * ( usecs per HPET clock ) + * = (hpet delta) * ( usecs per tick / HPET clocks per tick) + * = (hpet delta) * ( hpet_usec_quotient ) / (2^32) + * + * Where, + * hpet_usec_quotient = (2^32 * usecs per tick)/HPET clocks per tick + * + * Using a mull instead of a divl saves some cycles in critical path. + */ + ASM_MUL64_REG(eax, edx, hpet_usec_quotient, eax); + + /* our adjusted time offset in microseconds */ + return edx; +} + +static void mark_offset_hpet(void) +{ + unsigned long long this_offset, last_offset; + unsigned long offset; + + write_seqlock(&monotonic_lock); + last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; + rdtsc(last_tsc_low, last_tsc_high); + + offset = hpet_readl(HPET_T0_CMP) - hpet_tick; + if (unlikely(((offset - hpet_last) > hpet_tick) && (hpet_last != 0))) { + int lost_ticks = (offset - hpet_last) / hpet_tick; + jiffies_64 += lost_ticks; + } + hpet_last = offset; + + /* update the monotonic base value */ + this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; + monotonic_base += cycles_2_ns(this_offset - last_offset); + write_sequnlock(&monotonic_lock); +} + +static void delay_hpet(unsigned long loops) +{ + unsigned long hpet_start, hpet_end; + unsigned long eax; + + /* loops is the number of cpu cycles. Convert it to hpet clocks */ + ASM_MUL64_REG(eax, loops, tsc_hpet_quotient, loops); + + hpet_start = hpet_readl(HPET_COUNTER); + do { + rep_nop(); + hpet_end = hpet_readl(HPET_COUNTER); + } while ((hpet_end - hpet_start) < (loops)); +} + +static int __init init_hpet(char* override) +{ + unsigned long result, remain; + + /* check clock override */ + if (override[0] && strncmp(override,"hpet",4)) + return -ENODEV; + + if (!is_hpet_enabled()) + return -ENODEV; + + printk("Using HPET for gettimeofday\n"); + if (cpu_has_tsc) { + unsigned long tsc_quotient = calibrate_tsc_hpet(&tsc_hpet_quotient); + if (tsc_quotient) { + /* report CPU clock rate in Hz. + * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) = + * clock/second. Our precision is about 100 ppm. + */ + { unsigned long eax=0, edx=1000; + ASM_DIV64_REG(cpu_khz, edx, tsc_quotient, + eax, edx); + printk("Detected %lu.%03lu MHz processor.\n", + cpu_khz / 1000, cpu_khz % 1000); + } + set_cyc2ns_scale(cpu_khz/1000); + } + } + + /* + * Math to calculate hpet to usec multiplier + * Look for the comments at get_offset_hpet() + */ + ASM_DIV64_REG(result, remain, hpet_tick, 0, KERNEL_TICK_USEC); + if (remain > (hpet_tick >> 1)) + result++; /* rounding the result */ + hpet_usec_quotient = result; + + return 0; +} + +/************************************************************/ + +/* tsc timer_opts struct */ +static struct timer_opts timer_hpet = { + .name = "hpet", + .mark_offset = mark_offset_hpet, + .get_offset = get_offset_hpet, + .monotonic_clock = monotonic_clock_hpet, + .delay = delay_hpet, +}; + +struct init_timer_opts __initdata timer_hpet_init = { + .init = init_hpet, + .opts = &timer_hpet, +}; diff --git a/arch/i386/kernel/timers/timer_none.c b/arch/i386/kernel/timers/timer_none.c new file mode 100644 index 000000000000..4ea2f414dbbd --- /dev/null +++ b/arch/i386/kernel/timers/timer_none.c @@ -0,0 +1,39 @@ +#include <linux/init.h> +#include <asm/timer.h> + +static void mark_offset_none(void) +{ + /* nothing needed */ +} + +static unsigned long get_offset_none(void) +{ + return 0; +} + +static unsigned long long monotonic_clock_none(void) +{ + return 0; +} + +static void delay_none(unsigned long loops) +{ + int d0; + __asm__ __volatile__( + "\tjmp 1f\n" + ".align 16\n" + "1:\tjmp 2f\n" + ".align 16\n" + "2:\tdecl %0\n\tjns 2b" + :"=&a" (d0) + :"0" (loops)); +} + +/* none timer_opts struct */ +struct timer_opts timer_none = { + .name = "none", + .mark_offset = mark_offset_none, + .get_offset = get_offset_none, + .monotonic_clock = monotonic_clock_none, + .delay = delay_none, +}; diff --git a/arch/i386/kernel/timers/timer_pit.c b/arch/i386/kernel/timers/timer_pit.c new file mode 100644 index 000000000000..967d5453cd0e --- /dev/null +++ b/arch/i386/kernel/timers/timer_pit.c @@ -0,0 +1,206 @@ +/* + * This code largely moved from arch/i386/kernel/time.c. + * See comments there for proper credits. + */ + +#include <linux/spinlock.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/irq.h> +#include <linux/sysdev.h> +#include <linux/timex.h> +#include <asm/delay.h> +#include <asm/mpspec.h> +#include <asm/timer.h> +#include <asm/smp.h> +#include <asm/io.h> +#include <asm/arch_hooks.h> + +extern spinlock_t i8259A_lock; +extern spinlock_t i8253_lock; +#include "do_timer.h" +#include "io_ports.h" + +static int count_p; /* counter in get_offset_pit() */ + +static int __init init_pit(char* override) +{ + /* check clock override */ + if (override[0] && strncmp(override,"pit",3)) + printk(KERN_ERR "Warning: clock= override failed. Defaulting to PIT\n"); + + count_p = LATCH; + return 0; +} + +static void mark_offset_pit(void) +{ + /* nothing needed */ +} + +static unsigned long long monotonic_clock_pit(void) +{ + return 0; +} + +static void delay_pit(unsigned long loops) +{ + int d0; + __asm__ __volatile__( + "\tjmp 1f\n" + ".align 16\n" + "1:\tjmp 2f\n" + ".align 16\n" + "2:\tdecl %0\n\tjns 2b" + :"=&a" (d0) + :"0" (loops)); +} + + +/* This function must be called with xtime_lock held. + * It was inspired by Steve McCanne's microtime-i386 for BSD. -- jrs + * + * However, the pc-audio speaker driver changes the divisor so that + * it gets interrupted rather more often - it loads 64 into the + * counter rather than 11932! This has an adverse impact on + * do_gettimeoffset() -- it stops working! What is also not + * good is that the interval that our timer function gets called + * is no longer 10.0002 ms, but 9.9767 ms. To get around this + * would require using a different timing source. Maybe someone + * could use the RTC - I know that this can interrupt at frequencies + * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix + * it so that at startup, the timer code in sched.c would select + * using either the RTC or the 8253 timer. The decision would be + * based on whether there was any other device around that needed + * to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz, + * and then do some jiggery to have a version of do_timer that + * advanced the clock by 1/1024 s. Every time that reached over 1/100 + * of a second, then do all the old code. If the time was kept correct + * then do_gettimeoffset could just return 0 - there is no low order + * divider that can be accessed. + * + * Ideally, you would be able to use the RTC for the speaker driver, + * but it appears that the speaker driver really needs interrupt more + * often than every 120 us or so. + * + * Anyway, this needs more thought.... pjsg (1993-08-28) + * + * If you are really that interested, you should be reading + * comp.protocols.time.ntp! + */ + +static unsigned long get_offset_pit(void) +{ + int count; + unsigned long flags; + static unsigned long jiffies_p = 0; + + /* + * cache volatile jiffies temporarily; we have xtime_lock. + */ + unsigned long jiffies_t; + + spin_lock_irqsave(&i8253_lock, flags); + /* timer count may underflow right here */ + outb_p(0x00, PIT_MODE); /* latch the count ASAP */ + + count = inb_p(PIT_CH0); /* read the latched count */ + + /* + * We do this guaranteed double memory access instead of a _p + * postfix in the previous port access. Wheee, hackady hack + */ + jiffies_t = jiffies; + + count |= inb_p(PIT_CH0) << 8; + + /* VIA686a test code... reset the latch if count > max + 1 */ + if (count > LATCH) { + outb_p(0x34, PIT_MODE); + outb_p(LATCH & 0xff, PIT_CH0); + outb(LATCH >> 8, PIT_CH0); + count = LATCH - 1; + } + + /* + * avoiding timer inconsistencies (they are rare, but they happen)... + * there are two kinds of problems that must be avoided here: + * 1. the timer counter underflows + * 2. hardware problem with the timer, not giving us continuous time, + * the counter does small "jumps" upwards on some Pentium systems, + * (see c't 95/10 page 335 for Neptun bug.) + */ + + if( jiffies_t == jiffies_p ) { + if( count > count_p ) { + /* the nutcase */ + count = do_timer_overflow(count); + } + } else + jiffies_p = jiffies_t; + + count_p = count; + + spin_unlock_irqrestore(&i8253_lock, flags); + + count = ((LATCH-1) - count) * TICK_SIZE; + count = (count + LATCH/2) / LATCH; + + return count; +} + + +/* tsc timer_opts struct */ +struct timer_opts timer_pit = { + .name = "pit", + .mark_offset = mark_offset_pit, + .get_offset = get_offset_pit, + .monotonic_clock = monotonic_clock_pit, + .delay = delay_pit, +}; + +struct init_timer_opts __initdata timer_pit_init = { + .init = init_pit, + .opts = &timer_pit, +}; + +void setup_pit_timer(void) +{ + extern spinlock_t i8253_lock; + unsigned long flags; + + spin_lock_irqsave(&i8253_lock, flags); + outb_p(0x34,PIT_MODE); /* binary, mode 2, LSB/MSB, ch 0 */ + udelay(10); + outb_p(LATCH & 0xff , PIT_CH0); /* LSB */ + udelay(10); + outb(LATCH >> 8 , PIT_CH0); /* MSB */ + spin_unlock_irqrestore(&i8253_lock, flags); +} + +static int timer_resume(struct sys_device *dev) +{ + setup_pit_timer(); + return 0; +} + +static struct sysdev_class timer_sysclass = { + set_kset_name("timer_pit"), + .resume = timer_resume, +}; + +static struct sys_device device_timer = { + .id = 0, + .cls = &timer_sysclass, +}; + +static int __init init_timer_sysfs(void) +{ + int error = sysdev_class_register(&timer_sysclass); + if (!error) + error = sysdev_register(&device_timer); + return error; +} + +device_initcall(init_timer_sysfs); + diff --git a/arch/i386/kernel/timers/timer_pm.c b/arch/i386/kernel/timers/timer_pm.c new file mode 100644 index 000000000000..d77f22030fe6 --- /dev/null +++ b/arch/i386/kernel/timers/timer_pm.c @@ -0,0 +1,258 @@ +/* + * (C) Dominik Brodowski <linux@brodo.de> 2003 + * + * Driver to use the Power Management Timer (PMTMR) available in some + * southbridges as primary timing source for the Linux kernel. + * + * Based on parts of linux/drivers/acpi/hardware/hwtimer.c, timer_pit.c, + * timer_hpet.c, and on Arjan van de Ven's implementation for 2.4. + * + * This file is licensed under the GPL v2. + */ + + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/init.h> +#include <asm/types.h> +#include <asm/timer.h> +#include <asm/smp.h> +#include <asm/io.h> +#include <asm/arch_hooks.h> + +#include <linux/timex.h> +#include "mach_timer.h" + +/* Number of PMTMR ticks expected during calibration run */ +#define PMTMR_TICKS_PER_SEC 3579545 +#define PMTMR_EXPECTED_RATE \ + ((CALIBRATE_LATCH * (PMTMR_TICKS_PER_SEC >> 10)) / (CLOCK_TICK_RATE>>10)) + + +/* The I/O port the PMTMR resides at. + * The location is detected during setup_arch(), + * in arch/i386/acpi/boot.c */ +u32 pmtmr_ioport = 0; + + +/* value of the Power timer at last timer interrupt */ +static u32 offset_tick; +static u32 offset_delay; + +static unsigned long long monotonic_base; +static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; + +#define ACPI_PM_MASK 0xFFFFFF /* limit it to 24 bits */ + +/*helper function to safely read acpi pm timesource*/ +static inline u32 read_pmtmr(void) +{ + u32 v1=0,v2=0,v3=0; + /* It has been reported that because of various broken + * chipsets (ICH4, PIIX4 and PIIX4E) where the ACPI PM time + * source is not latched, so you must read it multiple + * times to insure a safe value is read. + */ + do { + v1 = inl(pmtmr_ioport); + v2 = inl(pmtmr_ioport); + v3 = inl(pmtmr_ioport); + } while ((v1 > v2 && v1 < v3) || (v2 > v3 && v2 < v1) + || (v3 > v1 && v3 < v2)); + + /* mask the output to 24 bits */ + return v2 & ACPI_PM_MASK; +} + + +/* + * Some boards have the PMTMR running way too fast. We check + * the PMTMR rate against PIT channel 2 to catch these cases. + */ +static int verify_pmtmr_rate(void) +{ + u32 value1, value2; + unsigned long count, delta; + + mach_prepare_counter(); + value1 = read_pmtmr(); + mach_countup(&count); + value2 = read_pmtmr(); + delta = (value2 - value1) & ACPI_PM_MASK; + + /* Check that the PMTMR delta is within 5% of what we expect */ + if (delta < (PMTMR_EXPECTED_RATE * 19) / 20 || + delta > (PMTMR_EXPECTED_RATE * 21) / 20) { + printk(KERN_INFO "PM-Timer running at invalid rate: %lu%% of normal - aborting.\n", 100UL * delta / PMTMR_EXPECTED_RATE); + return -1; + } + + return 0; +} + + +static int init_pmtmr(char* override) +{ + u32 value1, value2; + unsigned int i; + + if (override[0] && strncmp(override,"pmtmr",5)) + return -ENODEV; + + if (!pmtmr_ioport) + return -ENODEV; + + /* we use the TSC for delay_pmtmr, so make sure it exists */ + if (!cpu_has_tsc) + return -ENODEV; + + /* "verify" this timing source */ + value1 = read_pmtmr(); + for (i = 0; i < 10000; i++) { + value2 = read_pmtmr(); + if (value2 == value1) + continue; + if (value2 > value1) + goto pm_good; + if ((value2 < value1) && ((value2) < 0xFFF)) + goto pm_good; + printk(KERN_INFO "PM-Timer had inconsistent results: 0x%#x, 0x%#x - aborting.\n", value1, value2); + return -EINVAL; + } + printk(KERN_INFO "PM-Timer had no reasonable result: 0x%#x - aborting.\n", value1); + return -ENODEV; + +pm_good: + if (verify_pmtmr_rate() != 0) + return -ENODEV; + + init_cpu_khz(); + return 0; +} + +static inline u32 cyc2us(u32 cycles) +{ + /* The Power Management Timer ticks at 3.579545 ticks per microsecond. + * 1 / PM_TIMER_FREQUENCY == 0.27936511 =~ 286/1024 [error: 0.024%] + * + * Even with HZ = 100, delta is at maximum 35796 ticks, so it can + * easily be multiplied with 286 (=0x11E) without having to fear + * u32 overflows. + */ + cycles *= 286; + return (cycles >> 10); +} + +/* + * this gets called during each timer interrupt + * - Called while holding the writer xtime_lock + */ +static void mark_offset_pmtmr(void) +{ + u32 lost, delta, last_offset; + static int first_run = 1; + last_offset = offset_tick; + + write_seqlock(&monotonic_lock); + + offset_tick = read_pmtmr(); + + /* calculate tick interval */ + delta = (offset_tick - last_offset) & ACPI_PM_MASK; + + /* convert to usecs */ + delta = cyc2us(delta); + + /* update the monotonic base value */ + monotonic_base += delta * NSEC_PER_USEC; + write_sequnlock(&monotonic_lock); + + /* convert to ticks */ + delta += offset_delay; + lost = delta / (USEC_PER_SEC / HZ); + offset_delay = delta % (USEC_PER_SEC / HZ); + + + /* compensate for lost ticks */ + if (lost >= 2) + jiffies_64 += lost - 1; + + /* don't calculate delay for first run, + or if we've got less then a tick */ + if (first_run || (lost < 1)) { + first_run = 0; + offset_delay = 0; + } +} + + +static unsigned long long monotonic_clock_pmtmr(void) +{ + u32 last_offset, this_offset; + unsigned long long base, ret; + unsigned seq; + + + /* atomically read monotonic base & last_offset */ + do { + seq = read_seqbegin(&monotonic_lock); + last_offset = offset_tick; + base = monotonic_base; + } while (read_seqretry(&monotonic_lock, seq)); + + /* Read the pmtmr */ + this_offset = read_pmtmr(); + + /* convert to nanoseconds */ + ret = (this_offset - last_offset) & ACPI_PM_MASK; + ret = base + (cyc2us(ret) * NSEC_PER_USEC); + return ret; +} + +static void delay_pmtmr(unsigned long loops) +{ + unsigned long bclock, now; + + rdtscl(bclock); + do + { + rep_nop(); + rdtscl(now); + } while ((now-bclock) < loops); +} + + +/* + * get the offset (in microseconds) from the last call to mark_offset() + * - Called holding a reader xtime_lock + */ +static unsigned long get_offset_pmtmr(void) +{ + u32 now, offset, delta = 0; + + offset = offset_tick; + now = read_pmtmr(); + delta = (now - offset)&ACPI_PM_MASK; + + return (unsigned long) offset_delay + cyc2us(delta); +} + + +/* acpi timer_opts struct */ +static struct timer_opts timer_pmtmr = { + .name = "pmtmr", + .mark_offset = mark_offset_pmtmr, + .get_offset = get_offset_pmtmr, + .monotonic_clock = monotonic_clock_pmtmr, + .delay = delay_pmtmr, +}; + +struct init_timer_opts __initdata timer_pmtmr_init = { + .init = init_pmtmr, + .opts = &timer_pmtmr, +}; + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Dominik Brodowski <linux@brodo.de>"); +MODULE_DESCRIPTION("Power Management Timer (PMTMR) as primary timing source for x86"); diff --git a/arch/i386/kernel/timers/timer_tsc.c b/arch/i386/kernel/timers/timer_tsc.c new file mode 100644 index 000000000000..a685994e5c8e --- /dev/null +++ b/arch/i386/kernel/timers/timer_tsc.c @@ -0,0 +1,560 @@ +/* + * This code largely moved from arch/i386/kernel/time.c. + * See comments there for proper credits. + * + * 2004-06-25 Jesper Juhl + * moved mark_offset_tsc below cpufreq_delayed_get to avoid gcc 3.4 + * failing to inline. + */ + +#include <linux/spinlock.h> +#include <linux/init.h> +#include <linux/timex.h> +#include <linux/errno.h> +#include <linux/cpufreq.h> +#include <linux/string.h> +#include <linux/jiffies.h> + +#include <asm/timer.h> +#include <asm/io.h> +/* processor.h for distable_tsc flag */ +#include <asm/processor.h> + +#include "io_ports.h" +#include "mach_timer.h" + +#include <asm/hpet.h> + +#ifdef CONFIG_HPET_TIMER +static unsigned long hpet_usec_quotient; +static unsigned long hpet_last; +static struct timer_opts timer_tsc; +#endif + +static inline void cpufreq_delayed_get(void); + +int tsc_disable __initdata = 0; + +extern spinlock_t i8253_lock; + +static int use_tsc; +/* Number of usecs that the last interrupt was delayed */ +static int delay_at_last_interrupt; + +static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter */ +static unsigned long last_tsc_high; /* msb 32 bits of Time Stamp Counter */ +static unsigned long long monotonic_base; +static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; + +/* convert from cycles(64bits) => nanoseconds (64bits) + * basic equation: + * ns = cycles / (freq / ns_per_sec) + * ns = cycles * (ns_per_sec / freq) + * ns = cycles * (10^9 / (cpu_mhz * 10^6)) + * ns = cycles * (10^3 / cpu_mhz) + * + * Then we use scaling math (suggested by george@mvista.com) to get: + * ns = cycles * (10^3 * SC / cpu_mhz) / SC + * ns = cycles * cyc2ns_scale / SC + * + * And since SC is a constant power of two, we can convert the div + * into a shift. + * -johnstul@us.ibm.com "math is hard, lets go shopping!" + */ +static unsigned long cyc2ns_scale; +#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ + +static inline void set_cyc2ns_scale(unsigned long cpu_mhz) +{ + cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz; +} + +static inline unsigned long long cycles_2_ns(unsigned long long cyc) +{ + return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; +} + +static int count2; /* counter for mark_offset_tsc() */ + +/* Cached *multiplier* to convert TSC counts to microseconds. + * (see the equation below). + * Equal to 2^32 * (1 / (clocks per usec) ). + * Initialized in time_init. + */ +static unsigned long fast_gettimeoffset_quotient; + +static unsigned long get_offset_tsc(void) +{ + register unsigned long eax, edx; + + /* Read the Time Stamp Counter */ + + rdtsc(eax,edx); + + /* .. relative to previous jiffy (32 bits is enough) */ + eax -= last_tsc_low; /* tsc_low delta */ + + /* + * Time offset = (tsc_low delta) * fast_gettimeoffset_quotient + * = (tsc_low delta) * (usecs_per_clock) + * = (tsc_low delta) * (usecs_per_jiffy / clocks_per_jiffy) + * + * Using a mull instead of a divl saves up to 31 clock cycles + * in the critical path. + */ + + __asm__("mull %2" + :"=a" (eax), "=d" (edx) + :"rm" (fast_gettimeoffset_quotient), + "0" (eax)); + + /* our adjusted time offset in microseconds */ + return delay_at_last_interrupt + edx; +} + +static unsigned long long monotonic_clock_tsc(void) +{ + unsigned long long last_offset, this_offset, base; + unsigned seq; + + /* atomically read monotonic base & last_offset */ + do { + seq = read_seqbegin(&monotonic_lock); + last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; + base = monotonic_base; + } while (read_seqretry(&monotonic_lock, seq)); + + /* Read the Time Stamp Counter */ + rdtscll(this_offset); + + /* return the value in ns */ + return base + cycles_2_ns(this_offset - last_offset); +} + +/* + * Scheduler clock - returns current time in nanosec units. + */ +unsigned long long sched_clock(void) +{ + unsigned long long this_offset; + + /* + * In the NUMA case we dont use the TSC as they are not + * synchronized across all CPUs. + */ +#ifndef CONFIG_NUMA + if (!use_tsc) +#endif + /* no locking but a rare wrong value is not a big deal */ + return jiffies_64 * (1000000000 / HZ); + + /* Read the Time Stamp Counter */ + rdtscll(this_offset); + + /* return the value in ns */ + return cycles_2_ns(this_offset); +} + +static void delay_tsc(unsigned long loops) +{ + unsigned long bclock, now; + + rdtscl(bclock); + do + { + rep_nop(); + rdtscl(now); + } while ((now-bclock) < loops); +} + +#ifdef CONFIG_HPET_TIMER +static void mark_offset_tsc_hpet(void) +{ + unsigned long long this_offset, last_offset; + unsigned long offset, temp, hpet_current; + + write_seqlock(&monotonic_lock); + last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; + /* + * It is important that these two operations happen almost at + * the same time. We do the RDTSC stuff first, since it's + * faster. To avoid any inconsistencies, we need interrupts + * disabled locally. + */ + /* + * Interrupts are just disabled locally since the timer irq + * has the SA_INTERRUPT flag set. -arca + */ + /* read Pentium cycle counter */ + + hpet_current = hpet_readl(HPET_COUNTER); + rdtsc(last_tsc_low, last_tsc_high); + + /* lost tick compensation */ + offset = hpet_readl(HPET_T0_CMP) - hpet_tick; + if (unlikely(((offset - hpet_last) > hpet_tick) && (hpet_last != 0))) { + int lost_ticks = (offset - hpet_last) / hpet_tick; + jiffies_64 += lost_ticks; + } + hpet_last = hpet_current; + + /* update the monotonic base value */ + this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; + monotonic_base += cycles_2_ns(this_offset - last_offset); + write_sequnlock(&monotonic_lock); + + /* calculate delay_at_last_interrupt */ + /* + * Time offset = (hpet delta) * ( usecs per HPET clock ) + * = (hpet delta) * ( usecs per tick / HPET clocks per tick) + * = (hpet delta) * ( hpet_usec_quotient ) / (2^32) + * Where, + * hpet_usec_quotient = (2^32 * usecs per tick)/HPET clocks per tick + */ + delay_at_last_interrupt = hpet_current - offset; + ASM_MUL64_REG(temp, delay_at_last_interrupt, + hpet_usec_quotient, delay_at_last_interrupt); +} +#endif + + +#ifdef CONFIG_CPU_FREQ +#include <linux/workqueue.h> + +static unsigned int cpufreq_delayed_issched = 0; +static unsigned int cpufreq_init = 0; +static struct work_struct cpufreq_delayed_get_work; + +static void handle_cpufreq_delayed_get(void *v) +{ + unsigned int cpu; + for_each_online_cpu(cpu) { + cpufreq_get(cpu); + } + cpufreq_delayed_issched = 0; +} + +/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries + * to verify the CPU frequency the timing core thinks the CPU is running + * at is still correct. + */ +static inline void cpufreq_delayed_get(void) +{ + if (cpufreq_init && !cpufreq_delayed_issched) { + cpufreq_delayed_issched = 1; + printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n"); + schedule_work(&cpufreq_delayed_get_work); + } +} + +/* If the CPU frequency is scaled, TSC-based delays will need a different + * loops_per_jiffy value to function properly. + */ + +static unsigned int ref_freq = 0; +static unsigned long loops_per_jiffy_ref = 0; + +#ifndef CONFIG_SMP +static unsigned long fast_gettimeoffset_ref = 0; +static unsigned long cpu_khz_ref = 0; +#endif + +static int +time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, + void *data) +{ + struct cpufreq_freqs *freq = data; + + if (val != CPUFREQ_RESUMECHANGE) + write_seqlock_irq(&xtime_lock); + if (!ref_freq) { + ref_freq = freq->old; + loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy; +#ifndef CONFIG_SMP + fast_gettimeoffset_ref = fast_gettimeoffset_quotient; + cpu_khz_ref = cpu_khz; +#endif + } + + if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || + (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || + (val == CPUFREQ_RESUMECHANGE)) { + if (!(freq->flags & CPUFREQ_CONST_LOOPS)) + cpu_data[freq->cpu].loops_per_jiffy = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); +#ifndef CONFIG_SMP + if (cpu_khz) + cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new); + if (use_tsc) { + if (!(freq->flags & CPUFREQ_CONST_LOOPS)) { + fast_gettimeoffset_quotient = cpufreq_scale(fast_gettimeoffset_ref, freq->new, ref_freq); + set_cyc2ns_scale(cpu_khz/1000); + } + } +#endif + } + + if (val != CPUFREQ_RESUMECHANGE) + write_sequnlock_irq(&xtime_lock); + + return 0; +} + +static struct notifier_block time_cpufreq_notifier_block = { + .notifier_call = time_cpufreq_notifier +}; + + +static int __init cpufreq_tsc(void) +{ + int ret; + INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL); + ret = cpufreq_register_notifier(&time_cpufreq_notifier_block, + CPUFREQ_TRANSITION_NOTIFIER); + if (!ret) + cpufreq_init = 1; + return ret; +} +core_initcall(cpufreq_tsc); + +#else /* CONFIG_CPU_FREQ */ +static inline void cpufreq_delayed_get(void) { return; } +#endif + +static void mark_offset_tsc(void) +{ + unsigned long lost,delay; + unsigned long delta = last_tsc_low; + int count; + int countmp; + static int count1 = 0; + unsigned long long this_offset, last_offset; + static int lost_count = 0; + + write_seqlock(&monotonic_lock); + last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; + /* + * It is important that these two operations happen almost at + * the same time. We do the RDTSC stuff first, since it's + * faster. To avoid any inconsistencies, we need interrupts + * disabled locally. + */ + + /* + * Interrupts are just disabled locally since the timer irq + * has the SA_INTERRUPT flag set. -arca + */ + + /* read Pentium cycle counter */ + + rdtsc(last_tsc_low, last_tsc_high); + + spin_lock(&i8253_lock); + outb_p(0x00, PIT_MODE); /* latch the count ASAP */ + + count = inb_p(PIT_CH0); /* read the latched count */ + count |= inb(PIT_CH0) << 8; + + /* + * VIA686a test code... reset the latch if count > max + 1 + * from timer_pit.c - cjb + */ + if (count > LATCH) { + outb_p(0x34, PIT_MODE); + outb_p(LATCH & 0xff, PIT_CH0); + outb(LATCH >> 8, PIT_CH0); + count = LATCH - 1; + } + + spin_unlock(&i8253_lock); + + if (pit_latch_buggy) { + /* get center value of last 3 time lutch */ + if ((count2 >= count && count >= count1) + || (count1 >= count && count >= count2)) { + count2 = count1; count1 = count; + } else if ((count1 >= count2 && count2 >= count) + || (count >= count2 && count2 >= count1)) { + countmp = count;count = count2; + count2 = count1;count1 = countmp; + } else { + count2 = count1; count1 = count; count = count1; + } + } + + /* lost tick compensation */ + delta = last_tsc_low - delta; + { + register unsigned long eax, edx; + eax = delta; + __asm__("mull %2" + :"=a" (eax), "=d" (edx) + :"rm" (fast_gettimeoffset_quotient), + "0" (eax)); + delta = edx; + } + delta += delay_at_last_interrupt; + lost = delta/(1000000/HZ); + delay = delta%(1000000/HZ); + if (lost >= 2) { + jiffies_64 += lost-1; + + /* sanity check to ensure we're not always losing ticks */ + if (lost_count++ > 100) { + printk(KERN_WARNING "Losing too many ticks!\n"); + printk(KERN_WARNING "TSC cannot be used as a timesource. \n"); + printk(KERN_WARNING "Possible reasons for this are:\n"); + printk(KERN_WARNING " You're running with Speedstep,\n"); + printk(KERN_WARNING " You don't have DMA enabled for your hard disk (see hdparm),\n"); + printk(KERN_WARNING " Incorrect TSC synchronization on an SMP system (see dmesg).\n"); + printk(KERN_WARNING "Falling back to a sane timesource now.\n"); + + clock_fallback(); + } + /* ... but give the TSC a fair chance */ + if (lost_count > 25) + cpufreq_delayed_get(); + } else + lost_count = 0; + /* update the monotonic base value */ + this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; + monotonic_base += cycles_2_ns(this_offset - last_offset); + write_sequnlock(&monotonic_lock); + + /* calculate delay_at_last_interrupt */ + count = ((LATCH-1) - count) * TICK_SIZE; + delay_at_last_interrupt = (count + LATCH/2) / LATCH; + + /* catch corner case where tick rollover occured + * between tsc and pit reads (as noted when + * usec delta is > 90% # of usecs/tick) + */ + if (lost && abs(delay - delay_at_last_interrupt) > (900000/HZ)) + jiffies_64++; +} + +static int __init init_tsc(char* override) +{ + + /* check clock override */ + if (override[0] && strncmp(override,"tsc",3)) { +#ifdef CONFIG_HPET_TIMER + if (is_hpet_enabled()) { + printk(KERN_ERR "Warning: clock= override failed. Defaulting to tsc\n"); + } else +#endif + { + return -ENODEV; + } + } + + /* + * If we have APM enabled or the CPU clock speed is variable + * (CPU stops clock on HLT or slows clock to save power) + * then the TSC timestamps may diverge by up to 1 jiffy from + * 'real time' but nothing will break. + * The most frequent case is that the CPU is "woken" from a halt + * state by the timer interrupt itself, so we get 0 error. In the + * rare cases where a driver would "wake" the CPU and request a + * timestamp, the maximum error is < 1 jiffy. But timestamps are + * still perfectly ordered. + * Note that the TSC counter will be reset if APM suspends + * to disk; this won't break the kernel, though, 'cuz we're + * smart. See arch/i386/kernel/apm.c. + */ + /* + * Firstly we have to do a CPU check for chips with + * a potentially buggy TSC. At this point we haven't run + * the ident/bugs checks so we must run this hook as it + * may turn off the TSC flag. + * + * NOTE: this doesn't yet handle SMP 486 machines where only + * some CPU's have a TSC. Thats never worked and nobody has + * moaned if you have the only one in the world - you fix it! + */ + + count2 = LATCH; /* initialize counter for mark_offset_tsc() */ + + if (cpu_has_tsc) { + unsigned long tsc_quotient; +#ifdef CONFIG_HPET_TIMER + if (is_hpet_enabled()){ + unsigned long result, remain; + printk("Using TSC for gettimeofday\n"); + tsc_quotient = calibrate_tsc_hpet(NULL); + timer_tsc.mark_offset = &mark_offset_tsc_hpet; + /* + * Math to calculate hpet to usec multiplier + * Look for the comments at get_offset_tsc_hpet() + */ + ASM_DIV64_REG(result, remain, hpet_tick, + 0, KERNEL_TICK_USEC); + if (remain > (hpet_tick >> 1)) + result++; /* rounding the result */ + + hpet_usec_quotient = result; + } else +#endif + { + tsc_quotient = calibrate_tsc(); + } + + if (tsc_quotient) { + fast_gettimeoffset_quotient = tsc_quotient; + use_tsc = 1; + /* + * We could be more selective here I suspect + * and just enable this for the next intel chips ? + */ + /* report CPU clock rate in Hz. + * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) = + * clock/second. Our precision is about 100 ppm. + */ + { unsigned long eax=0, edx=1000; + __asm__("divl %2" + :"=a" (cpu_khz), "=d" (edx) + :"r" (tsc_quotient), + "0" (eax), "1" (edx)); + printk("Detected %lu.%03lu MHz processor.\n", cpu_khz / 1000, cpu_khz % 1000); + } + set_cyc2ns_scale(cpu_khz/1000); + return 0; + } + } + return -ENODEV; +} + +#ifndef CONFIG_X86_TSC +/* disable flag for tsc. Takes effect by clearing the TSC cpu flag + * in cpu/common.c */ +static int __init tsc_setup(char *str) +{ + tsc_disable = 1; + return 1; +} +#else +static int __init tsc_setup(char *str) +{ + printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " + "cannot disable TSC.\n"); + return 1; +} +#endif +__setup("notsc", tsc_setup); + + + +/************************************************************/ + +/* tsc timer_opts struct */ +static struct timer_opts timer_tsc = { + .name = "tsc", + .mark_offset = mark_offset_tsc, + .get_offset = get_offset_tsc, + .monotonic_clock = monotonic_clock_tsc, + .delay = delay_tsc, +}; + +struct init_timer_opts __initdata timer_tsc_init = { + .init = init_tsc, + .opts = &timer_tsc, +}; |