diff options
author | Dave Martin <Dave.Martin@arm.com> | 2017-10-31 18:51:05 +0300 |
---|---|---|
committer | Will Deacon <will.deacon@arm.com> | 2017-11-03 18:24:15 +0300 |
commit | bc0ee476036478a85beeed51f0d94c8729fd0544 (patch) | |
tree | 4b3d0df4b754feadf3bcbd96c012021f9811d81e /arch/arm64/include/asm/processor.h | |
parent | 22043a3c082a584434a8c0d8b5e04cb6da985296 (diff) | |
download | linux-bc0ee476036478a85beeed51f0d94c8729fd0544.tar.xz |
arm64/sve: Core task context handling
This patch adds the core support for switching and managing the SVE
architectural state of user tasks.
Calls to the existing FPSIMD low-level save/restore functions are
factored out as new functions task_fpsimd_{save,load}(), since SVE
now dynamically may or may not need to be handled at these points
depending on the kernel configuration, hardware features discovered
at boot, and the runtime state of the task. To make these
decisions as fast as possible, const cpucaps are used where
feasible, via the system_supports_sve() helper.
The SVE registers are only tracked for threads that have explicitly
used SVE, indicated by the new thread flag TIF_SVE. Otherwise, the
FPSIMD view of the architectural state is stored in
thread.fpsimd_state as usual.
When in use, the SVE registers are not stored directly in
thread_struct due to their potentially large and variable size.
Because the task_struct slab allocator must be configured very
early during kernel boot, it is also tricky to configure it
correctly to match the maximum vector length provided by the
hardware, since this depends on examining secondary CPUs as well as
the primary. Instead, a pointer sve_state in thread_struct points
to a dynamically allocated buffer containing the SVE register data,
and code is added to allocate and free this buffer at appropriate
times.
TIF_SVE is set when taking an SVE access trap from userspace, if
suitable hardware support has been detected. This enables SVE for
the thread: a subsequent return to userspace will disable the trap
accordingly. If such a trap is taken without sufficient system-
wide hardware support, SIGILL is sent to the thread instead as if
an undefined instruction had been executed: this may happen if
userspace tries to use SVE in a system where not all CPUs support
it for example.
The kernel will clear TIF_SVE and disable SVE for the thread
whenever an explicit syscall is made by userspace. For backwards
compatibility reasons and conformance with the spirit of the base
AArch64 procedure call standard, the subset of the SVE register
state that aliases the FPSIMD registers is still preserved across a
syscall even if this happens. The remainder of the SVE register
state logically becomes zero at syscall entry, though the actual
zeroing work is currently deferred until the thread next tries to
use SVE, causing another trap to the kernel. This implementation
is suboptimal: in the future, the fastpath case may be optimised
to zero the registers in-place and leave SVE enabled for the task,
where beneficial.
TIF_SVE is also cleared in the following slowpath cases, which are
taken as reasonable hints that the task may no longer use SVE:
* exec
* fork and clone
Code is added to sync data between thread.fpsimd_state and
thread.sve_state whenever enabling/disabling SVE, in a manner
consistent with the SVE architectural programmer's model.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Alex Bennée <alex.bennee@linaro.org>
[will: added #include to fix allnoconfig build]
[will: use enable_daif in do_sve_acc]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Diffstat (limited to 'arch/arm64/include/asm/processor.h')
-rw-r--r-- | arch/arm64/include/asm/processor.h | 2 |
1 files changed, 2 insertions, 0 deletions
diff --git a/arch/arm64/include/asm/processor.h b/arch/arm64/include/asm/processor.h index 7dddca21fc64..e2f575dbdddd 100644 --- a/arch/arm64/include/asm/processor.h +++ b/arch/arm64/include/asm/processor.h @@ -105,6 +105,8 @@ struct thread_struct { unsigned long tp2_value; #endif struct fpsimd_state fpsimd_state; + void *sve_state; /* SVE registers, if any */ + unsigned int sve_vl; /* SVE vector length */ unsigned long fault_address; /* fault info */ unsigned long fault_code; /* ESR_EL1 value */ struct debug_info debug; /* debugging */ |