summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorDave Airlie <airlied@redhat.com>2013-06-27 14:40:44 +0400
committerDave Airlie <airlied@redhat.com>2013-06-27 14:40:44 +0400
commit4300a0f8bdcce5a03b88bfa16fc9827e15c52dc4 (patch)
treedea0276d7d0a12147f04ddbef9121e32e903c5ca /Documentation
parent160954b7bca43da7cd3cfbce310e6df919a8216e (diff)
parent9e895ace5d82df8929b16f58e9f515f6d54ab82d (diff)
downloadlinux-4300a0f8bdcce5a03b88bfa16fc9827e15c52dc4.tar.xz
Merge tag 'v3.10-rc7' into drm-next
Linux 3.10-rc7 The sdvo lvds fix in this -fixes pull commit c3456fb3e4712d0448592af3c5d644c9472cd3c1 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Jun 10 09:47:58 2013 +0200 drm/i915: prefer VBT modes for SVDO-LVDS over EDID has a silent functional conflict with commit 990256aec2f10800595dddf4d1c3441fcd6b2616 Author: Ville Syrjälä <ville.syrjala@linux.intel.com> Date: Fri May 31 12:17:07 2013 +0000 drm: Add probed modes in probe order in drm-next. W simply need to add the vbt modes before edid modes, i.e. the other way round than now. Conflicts: drivers/gpu/drm/drm_prime.c drivers/gpu/drm/i915/intel_sdvo.c
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DocBook/media/v4l/dev-codec.xml35
-rw-r--r--Documentation/DocBook/media/v4l/v4l2.xml2
-rw-r--r--Documentation/bcache.txt12
-rw-r--r--Documentation/devices.txt8
-rw-r--r--Documentation/devicetree/bindings/media/exynos-fimc-lite.txt2
-rw-r--r--Documentation/devicetree/bindings/net/macb.txt2
-rw-r--r--Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt2
-rw-r--r--Documentation/devicetree/bindings/video/simple-framebuffer.txt25
-rw-r--r--Documentation/dmatest.txt6
-rw-r--r--Documentation/filesystems/xfs.txt3
-rw-r--r--Documentation/kernel-parameters.txt3
-rw-r--r--Documentation/m68k/kernel-options.txt2
-rw-r--r--Documentation/powerpc/transactional_memory.txt27
-rw-r--r--Documentation/rapidio/rapidio.txt128
-rw-r--r--Documentation/rapidio/sysfs.txt17
-rw-r--r--Documentation/sound/alsa/HD-Audio-Models.txt3
16 files changed, 230 insertions, 47 deletions
diff --git a/Documentation/DocBook/media/v4l/dev-codec.xml b/Documentation/DocBook/media/v4l/dev-codec.xml
index dca0ecd54dc6..ff44c16fc080 100644
--- a/Documentation/DocBook/media/v4l/dev-codec.xml
+++ b/Documentation/DocBook/media/v4l/dev-codec.xml
@@ -1,18 +1,27 @@
<title>Codec Interface</title>
- <note>
- <title>Suspended</title>
+ <para>A V4L2 codec can compress, decompress, transform, or otherwise
+convert video data from one format into another format, in memory. Typically
+such devices are memory-to-memory devices (i.e. devices with the
+<constant>V4L2_CAP_VIDEO_M2M</constant> or <constant>V4L2_CAP_VIDEO_M2M_MPLANE</constant>
+capability set).
+</para>
- <para>This interface has been be suspended from the V4L2 API
-implemented in Linux 2.6 until we have more experience with codec
-device interfaces.</para>
- </note>
+ <para>A memory-to-memory video node acts just like a normal video node, but it
+supports both output (sending frames from memory to the codec hardware) and
+capture (receiving the processed frames from the codec hardware into memory)
+stream I/O. An application will have to setup the stream
+I/O for both sides and finally call &VIDIOC-STREAMON; for both capture and output
+to start the codec.</para>
- <para>A V4L2 codec can compress, decompress, transform, or otherwise
-convert video data from one format into another format, in memory.
-Applications send data to be converted to the driver through a
-&func-write; call, and receive the converted data through a
-&func-read; call. For efficiency a driver may also support streaming
-I/O.</para>
+ <para>Video compression codecs use the MPEG controls to setup their codec parameters
+(note that the MPEG controls actually support many more codecs than just MPEG).
+See <xref linkend="mpeg-controls"></xref>.</para>
- <para>[to do]</para>
+ <para>Memory-to-memory devices can often be used as a shared resource: you can
+open the video node multiple times, each application setting up their own codec properties
+that are local to the file handle, and each can use it independently from the others.
+The driver will arbitrate access to the codec and reprogram it whenever another file
+handler gets access. This is different from the usual video node behavior where the video properties
+are global to the device (i.e. changing something through one file handle is visible
+through another file handle).</para>
diff --git a/Documentation/DocBook/media/v4l/v4l2.xml b/Documentation/DocBook/media/v4l/v4l2.xml
index bfc93cdcf696..bfe823dd0f31 100644
--- a/Documentation/DocBook/media/v4l/v4l2.xml
+++ b/Documentation/DocBook/media/v4l/v4l2.xml
@@ -493,7 +493,7 @@ and discussions on the V4L mailing list.</revremark>
</partinfo>
<title>Video for Linux Two API Specification</title>
- <subtitle>Revision 3.9</subtitle>
+ <subtitle>Revision 3.10</subtitle>
<chapter id="common">
&sub-common;
diff --git a/Documentation/bcache.txt b/Documentation/bcache.txt
index 77db8809bd96..b3a7e7d384f6 100644
--- a/Documentation/bcache.txt
+++ b/Documentation/bcache.txt
@@ -319,7 +319,10 @@ cache<0..n>
Symlink to each of the cache devices comprising this cache set.
cache_available_percent
- Percentage of cache device free.
+ Percentage of cache device which doesn't contain dirty data, and could
+ potentially be used for writeback. This doesn't mean this space isn't used
+ for clean cached data; the unused statistic (in priority_stats) is typically
+ much lower.
clear_stats
Clears the statistics associated with this cache
@@ -423,8 +426,11 @@ nbuckets
Total buckets in this cache
priority_stats
- Statistics about how recently data in the cache has been accessed. This can
- reveal your working set size.
+ Statistics about how recently data in the cache has been accessed.
+ This can reveal your working set size. Unused is the percentage of
+ the cache that doesn't contain any data. Metadata is bcache's
+ metadata overhead. Average is the average priority of cache buckets.
+ Next is a list of quantiles with the priority threshold of each.
written
Sum of all data that has been written to the cache; comparison with
diff --git a/Documentation/devices.txt b/Documentation/devices.txt
index 08f01e79c41a..b9015912bca6 100644
--- a/Documentation/devices.txt
+++ b/Documentation/devices.txt
@@ -498,12 +498,8 @@ Your cooperation is appreciated.
Each device type has 5 bits (32 minors).
- 13 block 8-bit MFM/RLL/IDE controller
- 0 = /dev/xda First XT disk whole disk
- 64 = /dev/xdb Second XT disk whole disk
-
- Partitions are handled in the same way as IDE disks
- (see major number 3).
+ 13 block Previously used for the XT disk (/dev/xdN)
+ Deleted in kernel v3.9.
14 char Open Sound System (OSS)
0 = /dev/mixer Mixer control
diff --git a/Documentation/devicetree/bindings/media/exynos-fimc-lite.txt b/Documentation/devicetree/bindings/media/exynos-fimc-lite.txt
index 3f62adfb3e0b..de9f6b78ee51 100644
--- a/Documentation/devicetree/bindings/media/exynos-fimc-lite.txt
+++ b/Documentation/devicetree/bindings/media/exynos-fimc-lite.txt
@@ -2,7 +2,7 @@ Exynos4x12/Exynos5 SoC series camera host interface (FIMC-LITE)
Required properties:
-- compatible : should be "samsung,exynos4212-fimc" for Exynos4212 and
+- compatible : should be "samsung,exynos4212-fimc-lite" for Exynos4212 and
Exynos4412 SoCs;
- reg : physical base address and size of the device memory mapped
registers;
diff --git a/Documentation/devicetree/bindings/net/macb.txt b/Documentation/devicetree/bindings/net/macb.txt
index 44afa0e5057d..4ff65047bb9a 100644
--- a/Documentation/devicetree/bindings/net/macb.txt
+++ b/Documentation/devicetree/bindings/net/macb.txt
@@ -4,7 +4,7 @@ Required properties:
- compatible: Should be "cdns,[<chip>-]{macb|gem}"
Use "cdns,at91sam9260-macb" Atmel at91sam9260 and at91sam9263 SoCs.
Use "cdns,at32ap7000-macb" for other 10/100 usage or use the generic form: "cdns,macb".
- Use "cnds,pc302-gem" for Picochip picoXcell pc302 and later devices based on
+ Use "cdns,pc302-gem" for Picochip picoXcell pc302 and later devices based on
the Cadence GEM, or the generic form: "cdns,gem".
- reg: Address and length of the register set for the device
- interrupts: Should contain macb interrupt
diff --git a/Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt b/Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt
index 2a3feabd3b22..34c1505774bf 100644
--- a/Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt
+++ b/Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt
@@ -1,7 +1,7 @@
Atmel AT91RM9200 Real Time Clock
Required properties:
-- compatible: should be: "atmel,at91rm9200-rtc"
+- compatible: should be: "atmel,at91rm9200-rtc" or "atmel,at91sam9x5-rtc"
- reg: physical base address of the controller and length of memory mapped
region.
- interrupts: rtc alarm/event interrupt
diff --git a/Documentation/devicetree/bindings/video/simple-framebuffer.txt b/Documentation/devicetree/bindings/video/simple-framebuffer.txt
new file mode 100644
index 000000000000..3ea460583111
--- /dev/null
+++ b/Documentation/devicetree/bindings/video/simple-framebuffer.txt
@@ -0,0 +1,25 @@
+Simple Framebuffer
+
+A simple frame-buffer describes a raw memory region that may be rendered to,
+with the assumption that the display hardware has already been set up to scan
+out from that buffer.
+
+Required properties:
+- compatible: "simple-framebuffer"
+- reg: Should contain the location and size of the framebuffer memory.
+- width: The width of the framebuffer in pixels.
+- height: The height of the framebuffer in pixels.
+- stride: The number of bytes in each line of the framebuffer.
+- format: The format of the framebuffer surface. Valid values are:
+ - r5g6b5 (16-bit pixels, d[15:11]=r, d[10:5]=g, d[4:0]=b).
+
+Example:
+
+ framebuffer {
+ compatible = "simple-framebuffer";
+ reg = <0x1d385000 (1600 * 1200 * 2)>;
+ width = <1600>;
+ height = <1200>;
+ stride = <(1600 * 2)>;
+ format = "r5g6b5";
+ };
diff --git a/Documentation/dmatest.txt b/Documentation/dmatest.txt
index 279ac0a8c5b1..132a094c7bc3 100644
--- a/Documentation/dmatest.txt
+++ b/Documentation/dmatest.txt
@@ -34,7 +34,7 @@ command:
After a while you will start to get messages about current status or error like
in the original code.
-Note that running a new test will stop any in progress test.
+Note that running a new test will not stop any in progress test.
The following command should return actual state of the test.
% cat /sys/kernel/debug/dmatest/run
@@ -52,8 +52,8 @@ To wait for test done the user may perform a busy loop that checks the state.
The module parameters that is supplied to the kernel command line will be used
for the first performed test. After user gets a control, the test could be
-interrupted or re-run with same or different parameters. For the details see
-the above section "Part 2 - When dmatest is built as a module..."
+re-run with the same or different parameters. For the details see the above
+section "Part 2 - When dmatest is built as a module..."
In both cases the module parameters are used as initial values for the test case.
You always could check them at run-time by running
diff --git a/Documentation/filesystems/xfs.txt b/Documentation/filesystems/xfs.txt
index 3e4b3dd1e046..83577f0232a0 100644
--- a/Documentation/filesystems/xfs.txt
+++ b/Documentation/filesystems/xfs.txt
@@ -33,6 +33,9 @@ When mounting an XFS filesystem, the following options are accepted.
removing extended attributes) the on-disk superblock feature
bit field will be updated to reflect this format being in use.
+ CRC enabled filesystems always use the attr2 format, and so
+ will reject the noattr2 mount option if it is set.
+
barrier
Enables the use of block layer write barriers for writes into
the journal and unwritten extent conversion. This allows for
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 6e3b18a8afc6..2fe6e767b3d6 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -3351,9 +3351,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
plus one apbt timer for broadcast timer.
x86_mrst_timer=apbt_only | lapic_and_apbt
- xd= [HW,XT] Original XT pre-IDE (RLL encoded) disks.
- xd_geo= See header of drivers/block/xd.c.
-
xen_emul_unplug= [HW,X86,XEN]
Unplug Xen emulated devices
Format: [unplug0,][unplug1]
diff --git a/Documentation/m68k/kernel-options.txt b/Documentation/m68k/kernel-options.txt
index 97d45f276fe6..eaf32a1fd0b1 100644
--- a/Documentation/m68k/kernel-options.txt
+++ b/Documentation/m68k/kernel-options.txt
@@ -80,8 +80,6 @@ Valid names are:
/dev/sdd: -> 0x0830 (forth SCSI disk)
/dev/sde: -> 0x0840 (fifth SCSI disk)
/dev/fd : -> 0x0200 (floppy disk)
- /dev/xda: -> 0x0c00 (first XT disk, unused in Linux/m68k)
- /dev/xdb: -> 0x0c40 (second XT disk, unused in Linux/m68k)
The name must be followed by a decimal number, that stands for the
partition number. Internally, the value of the number is just
diff --git a/Documentation/powerpc/transactional_memory.txt b/Documentation/powerpc/transactional_memory.txt
index c907be41d60f..dc23e58ae264 100644
--- a/Documentation/powerpc/transactional_memory.txt
+++ b/Documentation/powerpc/transactional_memory.txt
@@ -147,6 +147,25 @@ Example signal handler:
fix_the_problem(ucp->dar);
}
+When in an active transaction that takes a signal, we need to be careful with
+the stack. It's possible that the stack has moved back up after the tbegin.
+The obvious case here is when the tbegin is called inside a function that
+returns before a tend. In this case, the stack is part of the checkpointed
+transactional memory state. If we write over this non transactionally or in
+suspend, we are in trouble because if we get a tm abort, the program counter and
+stack pointer will be back at the tbegin but our in memory stack won't be valid
+anymore.
+
+To avoid this, when taking a signal in an active transaction, we need to use
+the stack pointer from the checkpointed state, rather than the speculated
+state. This ensures that the signal context (written tm suspended) will be
+written below the stack required for the rollback. The transaction is aborted
+becuase of the treclaim, so any memory written between the tbegin and the
+signal will be rolled back anyway.
+
+For signals taken in non-TM or suspended mode, we use the
+normal/non-checkpointed stack pointer.
+
Failure cause codes used by kernel
==================================
@@ -155,14 +174,18 @@ These are defined in <asm/reg.h>, and distinguish different reasons why the
kernel aborted a transaction:
TM_CAUSE_RESCHED Thread was rescheduled.
+ TM_CAUSE_TLBI Software TLB invalide.
TM_CAUSE_FAC_UNAV FP/VEC/VSX unavailable trap.
TM_CAUSE_SYSCALL Currently unused; future syscalls that must abort
transactions for consistency will use this.
TM_CAUSE_SIGNAL Signal delivered.
TM_CAUSE_MISC Currently unused.
+ TM_CAUSE_ALIGNMENT Alignment fault.
+ TM_CAUSE_EMULATE Emulation that touched memory.
-These can be checked by the user program's abort handler as TEXASR[0:7].
-
+These can be checked by the user program's abort handler as TEXASR[0:7]. If
+bit 7 is set, it indicates that the error is consider persistent. For example
+a TM_CAUSE_ALIGNMENT will be persistent while a TM_CAUSE_RESCHED will not.q
GDB
===
diff --git a/Documentation/rapidio/rapidio.txt b/Documentation/rapidio/rapidio.txt
index c75694b35d08..a9c16c979da2 100644
--- a/Documentation/rapidio/rapidio.txt
+++ b/Documentation/rapidio/rapidio.txt
@@ -79,20 +79,63 @@ master port that is used to communicate with devices within the network.
In order to initialize the RapidIO subsystem, a platform must initialize and
register at least one master port within the RapidIO network. To register mport
within the subsystem controller driver initialization code calls function
-rio_register_mport() for each available master port. After all active master
-ports are registered with a RapidIO subsystem, the rio_init_mports() routine
-is called to perform enumeration and discovery.
+rio_register_mport() for each available master port.
-In the current PowerPC-based implementation a subsys_initcall() is specified to
-perform controller initialization and mport registration. At the end it directly
-calls rio_init_mports() to execute RapidIO enumeration and discovery.
+RapidIO subsystem uses subsys_initcall() or device_initcall() to perform
+controller initialization (depending on controller device type).
+
+After all active master ports are registered with a RapidIO subsystem,
+an enumeration and/or discovery routine may be called automatically or
+by user-space command.
4. Enumeration and Discovery
----------------------------
-When rio_init_mports() is called it scans a list of registered master ports and
-calls an enumeration or discovery routine depending on the configured role of a
-master port: host or agent.
+4.1 Overview
+------------
+
+RapidIO subsystem configuration options allow users to specify enumeration and
+discovery methods as statically linked components or loadable modules.
+An enumeration/discovery method implementation and available input parameters
+define how any given method can be attached to available RapidIO mports:
+simply to all available mports OR individually to the specified mport device.
+
+Depending on selected enumeration/discovery build configuration, there are
+several methods to initiate an enumeration and/or discovery process:
+
+ (a) Statically linked enumeration and discovery process can be started
+ automatically during kernel initialization time using corresponding module
+ parameters. This was the original method used since introduction of RapidIO
+ subsystem. Now this method relies on enumerator module parameter which is
+ 'rio-scan.scan' for existing basic enumeration/discovery method.
+ When automatic start of enumeration/discovery is used a user has to ensure
+ that all discovering endpoints are started before the enumerating endpoint
+ and are waiting for enumeration to be completed.
+ Configuration option CONFIG_RAPIDIO_DISC_TIMEOUT defines time that discovering
+ endpoint waits for enumeration to be completed. If the specified timeout
+ expires the discovery process is terminated without obtaining RapidIO network
+ information. NOTE: a timed out discovery process may be restarted later using
+ a user-space command as it is described later if the given endpoint was
+ enumerated successfully.
+
+ (b) Statically linked enumeration and discovery process can be started by
+ a command from user space. This initiation method provides more flexibility
+ for a system startup compared to the option (a) above. After all participating
+ endpoints have been successfully booted, an enumeration process shall be
+ started first by issuing a user-space command, after an enumeration is
+ completed a discovery process can be started on all remaining endpoints.
+
+ (c) Modular enumeration and discovery process can be started by a command from
+ user space. After an enumeration/discovery module is loaded, a network scan
+ process can be started by issuing a user-space command.
+ Similar to the option (b) above, an enumerator has to be started first.
+
+ (d) Modular enumeration and discovery process can be started by a module
+ initialization routine. In this case an enumerating module shall be loaded
+ first.
+
+When a network scan process is started it calls an enumeration or discovery
+routine depending on the configured role of a master port: host or agent.
Enumeration is performed by a master port if it is configured as a host port by
assigning a host device ID greater than or equal to zero. A host device ID is
@@ -104,8 +147,58 @@ for it.
The enumeration and discovery routines use RapidIO maintenance transactions
to access the configuration space of devices.
-The enumeration process is implemented according to the enumeration algorithm
-outlined in the RapidIO Interconnect Specification: Annex I [1].
+4.2 Automatic Start of Enumeration and Discovery
+------------------------------------------------
+
+Automatic enumeration/discovery start method is applicable only to built-in
+enumeration/discovery RapidIO configuration selection. To enable automatic
+enumeration/discovery start by existing basic enumerator method set use boot
+command line parameter "rio-scan.scan=1".
+
+This configuration requires synchronized start of all RapidIO endpoints that
+form a network which will be enumerated/discovered. Discovering endpoints have
+to be started before an enumeration starts to ensure that all RapidIO
+controllers have been initialized and are ready to be discovered. Configuration
+parameter CONFIG_RAPIDIO_DISC_TIMEOUT defines time (in seconds) which
+a discovering endpoint will wait for enumeration to be completed.
+
+When automatic enumeration/discovery start is selected, basic method's
+initialization routine calls rio_init_mports() to perform enumeration or
+discovery for all known mport devices.
+
+Depending on RapidIO network size and configuration this automatic
+enumeration/discovery start method may be difficult to use due to the
+requirement for synchronized start of all endpoints.
+
+4.3 User-space Start of Enumeration and Discovery
+-------------------------------------------------
+
+User-space start of enumeration and discovery can be used with built-in and
+modular build configurations. For user-space controlled start RapidIO subsystem
+creates the sysfs write-only attribute file '/sys/bus/rapidio/scan'. To initiate
+an enumeration or discovery process on specific mport device, a user needs to
+write mport_ID (not RapidIO destination ID) into that file. The mport_ID is a
+sequential number (0 ... RIO_MAX_MPORTS) assigned during mport device
+registration. For example for machine with single RapidIO controller, mport_ID
+for that controller always will be 0.
+
+To initiate RapidIO enumeration/discovery on all available mports a user may
+write '-1' (or RIO_MPORT_ANY) into the scan attribute file.
+
+4.4 Basic Enumeration Method
+----------------------------
+
+This is an original enumeration/discovery method which is available since
+first release of RapidIO subsystem code. The enumeration process is
+implemented according to the enumeration algorithm outlined in the RapidIO
+Interconnect Specification: Annex I [1].
+
+This method can be configured as statically linked or loadable module.
+The method's single parameter "scan" allows to trigger the enumeration/discovery
+process from module initialization routine.
+
+This enumeration/discovery method can be started only once and does not support
+unloading if it is built as a module.
The enumeration process traverses the network using a recursive depth-first
algorithm. When a new device is found, the enumerator takes ownership of that
@@ -160,6 +253,19 @@ time period. If this wait time period expires before enumeration is completed,
an agent skips RapidIO discovery and continues with remaining kernel
initialization.
+4.5 Adding New Enumeration/Discovery Method
+-------------------------------------------
+
+RapidIO subsystem code organization allows addition of new enumeration/discovery
+methods as new configuration options without significant impact to to the core
+RapidIO code.
+
+A new enumeration/discovery method has to be attached to one or more mport
+devices before an enumeration/discovery process can be started. Normally,
+method's module initialization routine calls rio_register_scan() to attach
+an enumerator to a specified mport device (or devices). The basic enumerator
+implementation demonstrates this process.
+
5. References
-------------
diff --git a/Documentation/rapidio/sysfs.txt b/Documentation/rapidio/sysfs.txt
index 97f71ce575d6..19878179da4c 100644
--- a/Documentation/rapidio/sysfs.txt
+++ b/Documentation/rapidio/sysfs.txt
@@ -88,3 +88,20 @@ that exports additional attributes.
IDT_GEN2:
errlog - reads contents of device error log until it is empty.
+
+
+5. RapidIO Bus Attributes
+-------------------------
+
+RapidIO bus subdirectory /sys/bus/rapidio implements the following bus-specific
+attribute:
+
+ scan - allows to trigger enumeration discovery process from user space. This
+ is a write-only attribute. To initiate an enumeration or discovery
+ process on specific mport device, a user needs to write mport_ID (not
+ RapidIO destination ID) into this file. The mport_ID is a sequential
+ number (0 ... RIO_MAX_MPORTS) assigned to the mport device.
+ For example, for a machine with a single RapidIO controller, mport_ID
+ for that controller always will be 0.
+ To initiate RapidIO enumeration/discovery on all available mports
+ a user must write '-1' (or RIO_MPORT_ANY) into this attribute file.
diff --git a/Documentation/sound/alsa/HD-Audio-Models.txt b/Documentation/sound/alsa/HD-Audio-Models.txt
index bb8b0dc532b8..77d68e23b247 100644
--- a/Documentation/sound/alsa/HD-Audio-Models.txt
+++ b/Documentation/sound/alsa/HD-Audio-Models.txt
@@ -29,6 +29,8 @@ ALC269/270/275/276/280/282
alc271-dmic Enable ALC271X digital mic workaround
inv-dmic Inverted internal mic workaround
lenovo-dock Enables docking station I/O for some Lenovos
+ dell-headset-multi Headset jack, which can also be used as mic-in
+ dell-headset-dock Headset jack (without mic-in), and also dock I/O
ALC662/663/272
==============
@@ -42,6 +44,7 @@ ALC662/663/272
asus-mode7 ASUS
asus-mode8 ASUS
inv-dmic Inverted internal mic workaround
+ dell-headset-multi Headset jack, which can also be used as mic-in
ALC680
======