diff options
author | Ingo Molnar <mingo@elte.hu> | 2009-06-12 01:31:52 +0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2009-06-12 01:31:52 +0400 |
commit | 0d5959723e1db3fd7323c198a50c16cecf96c7a9 (patch) | |
tree | 802b623fff261ebcbbddadf84af5524398364a18 /Documentation | |
parent | 62fdac5913f71f8f200bd2c9bd59a02e9a1498e9 (diff) | |
parent | 512626a04e72aca60effe111fa0333ed0b195d21 (diff) | |
download | linux-0d5959723e1db3fd7323c198a50c16cecf96c7a9.tar.xz |
Merge branch 'linus' into x86/mce3
Conflicts:
arch/x86/kernel/cpu/mcheck/mce_64.c
arch/x86/kernel/irq.c
Merge reason: Resolve the conflicts above.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'Documentation')
23 files changed, 1034 insertions, 75 deletions
diff --git a/Documentation/ABI/testing/sysfs-block b/Documentation/ABI/testing/sysfs-block index 44f52a4f5903..cbbd3e069945 100644 --- a/Documentation/ABI/testing/sysfs-block +++ b/Documentation/ABI/testing/sysfs-block @@ -60,3 +60,62 @@ Description: Indicates whether the block layer should automatically generate checksums for write requests bound for devices that support receiving integrity metadata. + +What: /sys/block/<disk>/alignment_offset +Date: April 2009 +Contact: Martin K. Petersen <martin.petersen@oracle.com> +Description: + Storage devices may report a physical block size that is + bigger than the logical block size (for instance a drive + with 4KB physical sectors exposing 512-byte logical + blocks to the operating system). This parameter + indicates how many bytes the beginning of the device is + offset from the disk's natural alignment. + +What: /sys/block/<disk>/<partition>/alignment_offset +Date: April 2009 +Contact: Martin K. Petersen <martin.petersen@oracle.com> +Description: + Storage devices may report a physical block size that is + bigger than the logical block size (for instance a drive + with 4KB physical sectors exposing 512-byte logical + blocks to the operating system). This parameter + indicates how many bytes the beginning of the partition + is offset from the disk's natural alignment. + +What: /sys/block/<disk>/queue/logical_block_size +Date: May 2009 +Contact: Martin K. Petersen <martin.petersen@oracle.com> +Description: + This is the smallest unit the storage device can + address. It is typically 512 bytes. + +What: /sys/block/<disk>/queue/physical_block_size +Date: May 2009 +Contact: Martin K. Petersen <martin.petersen@oracle.com> +Description: + This is the smallest unit the storage device can write + without resorting to read-modify-write operation. It is + usually the same as the logical block size but may be + bigger. One example is SATA drives with 4KB sectors + that expose a 512-byte logical block size to the + operating system. + +What: /sys/block/<disk>/queue/minimum_io_size +Date: April 2009 +Contact: Martin K. Petersen <martin.petersen@oracle.com> +Description: + Storage devices may report a preferred minimum I/O size, + which is the smallest request the device can perform + without incurring a read-modify-write penalty. For disk + drives this is often the physical block size. For RAID + arrays it is often the stripe chunk size. + +What: /sys/block/<disk>/queue/optimal_io_size +Date: April 2009 +Contact: Martin K. Petersen <martin.petersen@oracle.com> +Description: + Storage devices may report an optimal I/O size, which is + the device's preferred unit of receiving I/O. This is + rarely reported for disk drives. For RAID devices it is + usually the stripe width or the internal block size. diff --git a/Documentation/ABI/testing/sysfs-bus-pci-devices-cciss b/Documentation/ABI/testing/sysfs-bus-pci-devices-cciss new file mode 100644 index 000000000000..0a92a7c93a62 --- /dev/null +++ b/Documentation/ABI/testing/sysfs-bus-pci-devices-cciss @@ -0,0 +1,33 @@ +Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/model +Date: March 2009 +Kernel Version: 2.6.30 +Contact: iss_storagedev@hp.com +Description: Displays the SCSI INQUIRY page 0 model for logical drive + Y of controller X. + +Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/rev +Date: March 2009 +Kernel Version: 2.6.30 +Contact: iss_storagedev@hp.com +Description: Displays the SCSI INQUIRY page 0 revision for logical + drive Y of controller X. + +Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/unique_id +Date: March 2009 +Kernel Version: 2.6.30 +Contact: iss_storagedev@hp.com +Description: Displays the SCSI INQUIRY page 83 serial number for logical + drive Y of controller X. + +Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/vendor +Date: March 2009 +Kernel Version: 2.6.30 +Contact: iss_storagedev@hp.com +Description: Displays the SCSI INQUIRY page 0 vendor for logical drive + Y of controller X. + +Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/block:cciss!cXdY +Date: March 2009 +Kernel Version: 2.6.30 +Contact: iss_storagedev@hp.com +Description: A symbolic link to /sys/block/cciss!cXdY diff --git a/Documentation/ABI/testing/sysfs-devices-cache_disable b/Documentation/ABI/testing/sysfs-devices-cache_disable new file mode 100644 index 000000000000..175bb4f70512 --- /dev/null +++ b/Documentation/ABI/testing/sysfs-devices-cache_disable @@ -0,0 +1,18 @@ +What: /sys/devices/system/cpu/cpu*/cache/index*/cache_disable_X +Date: August 2008 +KernelVersion: 2.6.27 +Contact: mark.langsdorf@amd.com +Description: These files exist in every cpu's cache index directories. + There are currently 2 cache_disable_# files in each + directory. Reading from these files on a supported + processor will return that cache disable index value + for that processor and node. Writing to one of these + files will cause the specificed cache index to be disabled. + + Currently, only AMD Family 10h Processors support cache index + disable, and only for their L3 caches. See the BIOS and + Kernel Developer's Guide at + http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/31116-Public-GH-BKDG_3.20_2-4-09.pdf + for formatting information and other details on the + cache index disable. +Users: joachim.deguara@amd.com diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt index d9aa43d78bcc..25fb8bcf32a2 100644 --- a/Documentation/DMA-API.txt +++ b/Documentation/DMA-API.txt @@ -704,12 +704,24 @@ this directory the following files can currently be found: The current number of free dma_debug_entries in the allocator. + dma-api/driver-filter + You can write a name of a driver into this file + to limit the debug output to requests from that + particular driver. Write an empty string to + that file to disable the filter and see + all errors again. + If you have this code compiled into your kernel it will be enabled by default. If you want to boot without the bookkeeping anyway you can provide 'dma_debug=off' as a boot parameter. This will disable DMA-API debugging. Notice that you can not enable it again at runtime. You have to reboot to do so. +If you want to see debug messages only for a special device driver you can +specify the dma_debug_driver=<drivername> parameter. This will enable the +driver filter at boot time. The debug code will only print errors for that +driver afterwards. This filter can be disabled or changed later using debugfs. + When the code disables itself at runtime this is most likely because it ran out of dma_debug_entries. These entries are preallocated at boot. The number of preallocated entries is defined per architecture. If it is too low for you diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index b1eb661e6302..9632444f6c62 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -13,7 +13,8 @@ DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \ gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \ mac80211.xml debugobjects.xml sh.xml regulator.xml \ - alsa-driver-api.xml writing-an-alsa-driver.xml + alsa-driver-api.xml writing-an-alsa-driver.xml \ + tracepoint.xml ### # The build process is as follows (targets): diff --git a/Documentation/DocBook/tracepoint.tmpl b/Documentation/DocBook/tracepoint.tmpl new file mode 100644 index 000000000000..b0756d0fd579 --- /dev/null +++ b/Documentation/DocBook/tracepoint.tmpl @@ -0,0 +1,89 @@ +<?xml version="1.0" encoding="UTF-8"?> +<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" + "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> + +<book id="Tracepoints"> + <bookinfo> + <title>The Linux Kernel Tracepoint API</title> + + <authorgroup> + <author> + <firstname>Jason</firstname> + <surname>Baron</surname> + <affiliation> + <address> + <email>jbaron@redhat.com</email> + </address> + </affiliation> + </author> + </authorgroup> + + <legalnotice> + <para> + This documentation is free software; you can redistribute + it and/or modify it under the terms of the GNU General Public + License as published by the Free Software Foundation; either + version 2 of the License, or (at your option) any later + version. + </para> + + <para> + This program is distributed in the hope that it will be + useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU General Public License for more details. + </para> + + <para> + You should have received a copy of the GNU General Public + License along with this program; if not, write to the Free + Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, + MA 02111-1307 USA + </para> + + <para> + For more details see the file COPYING in the source + distribution of Linux. + </para> + </legalnotice> + </bookinfo> + + <toc></toc> + <chapter id="intro"> + <title>Introduction</title> + <para> + Tracepoints are static probe points that are located in strategic points + throughout the kernel. 'Probes' register/unregister with tracepoints + via a callback mechanism. The 'probes' are strictly typed functions that + are passed a unique set of parameters defined by each tracepoint. + </para> + + <para> + From this simple callback mechanism, 'probes' can be used to profile, debug, + and understand kernel behavior. There are a number of tools that provide a + framework for using 'probes'. These tools include Systemtap, ftrace, and + LTTng. + </para> + + <para> + Tracepoints are defined in a number of header files via various macros. Thus, + the purpose of this document is to provide a clear accounting of the available + tracepoints. The intention is to understand not only what tracepoints are + available but also to understand where future tracepoints might be added. + </para> + + <para> + The API presented has functions of the form: + <function>trace_tracepointname(function parameters)</function>. These are the + tracepoints callbacks that are found throughout the code. Registering and + unregistering probes with these callback sites is covered in the + <filename>Documentation/trace/*</filename> directory. + </para> + </chapter> + + <chapter id="irq"> + <title>IRQ</title> +!Iinclude/trace/events/irq.h + </chapter> + +</book> diff --git a/Documentation/RCU/trace.txt b/Documentation/RCU/trace.txt index 068848240a8b..02cced183b2d 100644 --- a/Documentation/RCU/trace.txt +++ b/Documentation/RCU/trace.txt @@ -192,23 +192,24 @@ rcu/rcuhier (which displays the struct rcu_node hierarchy). The output of "cat rcu/rcudata" looks as follows: rcu: - 0 c=4011 g=4012 pq=1 pqc=4011 qp=0 rpfq=1 rp=3c2a dt=23301/73 dn=2 df=1882 of=0 ri=2126 ql=2 b=10 - 1 c=4011 g=4012 pq=1 pqc=4011 qp=0 rpfq=3 rp=39a6 dt=78073/1 dn=2 df=1402 of=0 ri=1875 ql=46 b=10 - 2 c=4010 g=4010 pq=1 pqc=4010 qp=0 rpfq=-5 rp=1d12 dt=16646/0 dn=2 df=3140 of=0 ri=2080 ql=0 b=10 - 3 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=2b50 dt=21159/1 dn=2 df=2230 of=0 ri=1923 ql=72 b=10 - 4 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=1644 dt=5783/1 dn=2 df=3348 of=0 ri=2805 ql=7 b=10 - 5 c=4012 g=4013 pq=0 pqc=4011 qp=1 rpfq=3 rp=1aac dt=5879/1 dn=2 df=3140 of=0 ri=2066 ql=10 b=10 - 6 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=ed8 dt=5847/1 dn=2 df=3797 of=0 ri=1266 ql=10 b=10 - 7 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=1fa2 dt=6199/1 dn=2 df=2795 of=0 ri=2162 ql=28 b=10 +rcu: + 0 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=10951/1 dn=0 df=1101 of=0 ri=36 ql=0 b=10 + 1 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=16117/1 dn=0 df=1015 of=0 ri=0 ql=0 b=10 + 2 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=1445/1 dn=0 df=1839 of=0 ri=0 ql=0 b=10 + 3 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=6681/1 dn=0 df=1545 of=0 ri=0 ql=0 b=10 + 4 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=1003/1 dn=0 df=1992 of=0 ri=0 ql=0 b=10 + 5 c=17829 g=17830 pq=1 pqc=17829 qp=1 dt=3887/1 dn=0 df=3331 of=0 ri=4 ql=2 b=10 + 6 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=859/1 dn=0 df=3224 of=0 ri=0 ql=0 b=10 + 7 c=17829 g=17830 pq=0 pqc=17829 qp=1 dt=3761/1 dn=0 df=1818 of=0 ri=0 ql=2 b=10 rcu_bh: - 0 c=-268 g=-268 pq=1 pqc=-268 qp=0 rpfq=-145 rp=21d6 dt=23301/73 dn=2 df=0 of=0 ri=0 ql=0 b=10 - 1 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-170 rp=20ce dt=78073/1 dn=2 df=26 of=0 ri=5 ql=0 b=10 - 2 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-83 rp=fbd dt=16646/0 dn=2 df=28 of=0 ri=4 ql=0 b=10 - 3 c=-268 g=-268 pq=1 pqc=-268 qp=0 rpfq=-105 rp=178c dt=21159/1 dn=2 df=28 of=0 ri=2 ql=0 b=10 - 4 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-30 rp=b54 dt=5783/1 dn=2 df=32 of=0 ri=0 ql=0 b=10 - 5 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-29 rp=df5 dt=5879/1 dn=2 df=30 of=0 ri=3 ql=0 b=10 - 6 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-28 rp=788 dt=5847/1 dn=2 df=32 of=0 ri=0 ql=0 b=10 - 7 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-53 rp=1098 dt=6199/1 dn=2 df=30 of=0 ri=3 ql=0 b=10 + 0 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=10951/1 dn=0 df=0 of=0 ri=0 ql=0 b=10 + 1 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=16117/1 dn=0 df=13 of=0 ri=0 ql=0 b=10 + 2 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=1445/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 + 3 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=6681/1 dn=0 df=9 of=0 ri=0 ql=0 b=10 + 4 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=1003/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 + 5 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=3887/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 + 6 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=859/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 + 7 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=3761/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 The first section lists the rcu_data structures for rcu, the second for rcu_bh. Each section has one line per CPU, or eight for this 8-CPU system. @@ -253,12 +254,6 @@ o "pqc" indicates which grace period the last-observed quiescent o "qp" indicates that RCU still expects a quiescent state from this CPU. -o "rpfq" is the number of rcu_pending() calls on this CPU required - to induce this CPU to invoke force_quiescent_state(). - -o "rp" is low-order four hex digits of the count of how many times - rcu_pending() has been invoked on this CPU. - o "dt" is the current value of the dyntick counter that is incremented when entering or leaving dynticks idle state, either by the scheduler or by irq. The number after the "/" is the interrupt @@ -305,6 +300,9 @@ o "b" is the batch limit for this CPU. If more than this number of RCU callbacks is ready to invoke, then the remainder will be deferred. +There is also an rcu/rcudata.csv file with the same information in +comma-separated-variable spreadsheet format. + The output of "cat rcu/rcugp" looks as follows: @@ -411,3 +409,63 @@ o Each element of the form "1/1 0:127 ^0" represents one struct For example, the first entry at the lowest level shows "^0", indicating that it corresponds to bit zero in the first entry at the middle level. + + +The output of "cat rcu/rcu_pending" looks as follows: + +rcu: + 0 np=255892 qsp=53936 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741 + 1 np=261224 qsp=54638 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792 + 2 np=237496 qsp=49664 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629 + 3 np=236249 qsp=48766 cbr=0 cng=286 gpc=48049 gps=1218 nf=207 nn=137723 + 4 np=221310 qsp=46850 cbr=0 cng=26 gpc=43161 gps=4634 nf=3529 nn=123110 + 5 np=237332 qsp=48449 cbr=0 cng=54 gpc=47920 gps=3252 nf=201 nn=137456 + 6 np=219995 qsp=46718 cbr=0 cng=50 gpc=42098 gps=6093 nf=4202 nn=120834 + 7 np=249893 qsp=49390 cbr=0 cng=72 gpc=38400 gps=17102 nf=41 nn=144888 +rcu_bh: + 0 np=146741 qsp=1419 cbr=0 cng=6 gpc=0 gps=0 nf=2 nn=145314 + 1 np=155792 qsp=12597 cbr=0 cng=0 gpc=4 gps=8 nf=3 nn=143180 + 2 np=136629 qsp=18680 cbr=0 cng=0 gpc=7 gps=6 nf=0 nn=117936 + 3 np=137723 qsp=2843 cbr=0 cng=0 gpc=10 gps=7 nf=0 nn=134863 + 4 np=123110 qsp=12433 cbr=0 cng=0 gpc=4 gps=2 nf=0 nn=110671 + 5 np=137456 qsp=4210 cbr=0 cng=0 gpc=6 gps=5 nf=0 nn=133235 + 6 np=120834 qsp=9902 cbr=0 cng=0 gpc=6 gps=3 nf=2 nn=110921 + 7 np=144888 qsp=26336 cbr=0 cng=0 gpc=8 gps=2 nf=0 nn=118542 + +As always, this is once again split into "rcu" and "rcu_bh" portions. +The fields are as follows: + +o "np" is the number of times that __rcu_pending() has been invoked + for the corresponding flavor of RCU. + +o "qsp" is the number of times that the RCU was waiting for a + quiescent state from this CPU. + +o "cbr" is the number of times that this CPU had RCU callbacks + that had passed through a grace period, and were thus ready + to be invoked. + +o "cng" is the number of times that this CPU needed another + grace period while RCU was idle. + +o "gpc" is the number of times that an old grace period had + completed, but this CPU was not yet aware of it. + +o "gps" is the number of times that a new grace period had started, + but this CPU was not yet aware of it. + +o "nf" is the number of times that this CPU suspected that the + current grace period had run for too long, and thus needed to + be forced. + + Please note that "forcing" consists of sending resched IPIs + to holdout CPUs. If that CPU really still is in an old RCU + read-side critical section, then we really do have to wait for it. + The assumption behing "forcing" is that the CPU is not still in + an old RCU read-side critical section, but has not yet responded + for some other reason. + +o "nn" is the number of times that this CPU needed nothing. Alert + readers will note that the rcu "nn" number for a given CPU very + closely matches the rcu_bh "np" number for that same CPU. This + is due to short-circuit evaluation in rcu_pending(). diff --git a/Documentation/Smack.txt b/Documentation/Smack.txt index 629c92e99783..34614b4c708e 100644 --- a/Documentation/Smack.txt +++ b/Documentation/Smack.txt @@ -184,8 +184,9 @@ length. Single character labels using special characters, that being anything other than a letter or digit, are reserved for use by the Smack development team. Smack labels are unstructured, case sensitive, and the only operation ever performed on them is comparison for equality. Smack labels cannot -contain unprintable characters or the "/" (slash) character. Smack labels -cannot begin with a '-', which is reserved for special options. +contain unprintable characters, the "/" (slash), the "\" (backslash), the "'" +(quote) and '"' (double-quote) characters. +Smack labels cannot begin with a '-', which is reserved for special options. There are some predefined labels: @@ -523,3 +524,18 @@ Smack supports some mount options: These mount options apply to all file system types. +Smack auditing + +If you want Smack auditing of security events, you need to set CONFIG_AUDIT +in your kernel configuration. +By default, all denied events will be audited. You can change this behavior by +writing a single character to the /smack/logging file : +0 : no logging +1 : log denied (default) +2 : log accepted +3 : log denied & accepted + +Events are logged as 'key=value' pairs, for each event you at least will get +the subjet, the object, the rights requested, the action, the kernel function +that triggered the event, plus other pairs depending on the type of event +audited. diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt index 6fab97ea7e6b..8d2158a1c6aa 100644 --- a/Documentation/block/biodoc.txt +++ b/Documentation/block/biodoc.txt @@ -186,7 +186,7 @@ a virtual address mapping (unlike the earlier scheme of virtual address do not have a corresponding kernel virtual address space mapping) and low-memory pages. -Note: Please refer to Documentation/PCI/PCI-DMA-mapping.txt for a discussion +Note: Please refer to Documentation/DMA-mapping.txt for a discussion on PCI high mem DMA aspects and mapping of scatter gather lists, and support for 64 bit PCI. diff --git a/Documentation/filesystems/gfs2-glocks.txt b/Documentation/filesystems/gfs2-glocks.txt index 4dae9a3840bf..0494f78d87e4 100644 --- a/Documentation/filesystems/gfs2-glocks.txt +++ b/Documentation/filesystems/gfs2-glocks.txt @@ -60,7 +60,7 @@ go_lock | Called for the first local holder of a lock go_unlock | Called on the final local unlock of a lock go_dump | Called to print content of object for debugfs file, or on | error to dump glock to the log. -go_type; | The type of the glock, LM_TYPE_..... +go_type | The type of the glock, LM_TYPE_..... go_min_hold_time | The minimum hold time The minimum hold time for each lock is the time after a remote lock diff --git a/Documentation/filesystems/gfs2.txt b/Documentation/filesystems/gfs2.txt index 593004b6bbab..5e3ab8f3beff 100644 --- a/Documentation/filesystems/gfs2.txt +++ b/Documentation/filesystems/gfs2.txt @@ -11,18 +11,15 @@ their I/O so file system consistency is maintained. One of the nifty features of GFS is perfect consistency -- changes made to the file system on one machine show up immediately on all other machines in the cluster. -GFS uses interchangable inter-node locking mechanisms. Different lock -modules can plug into GFS and each file system selects the appropriate -lock module at mount time. Lock modules include: +GFS uses interchangable inter-node locking mechanisms, the currently +supported mechanisms are: lock_nolock -- allows gfs to be used as a local file system lock_dlm -- uses a distributed lock manager (dlm) for inter-node locking The dlm is found at linux/fs/dlm/ -In addition to interfacing with an external locking manager, a gfs lock -module is responsible for interacting with external cluster management -systems. Lock_dlm depends on user space cluster management systems found +Lock_dlm depends on user space cluster management systems found at the URL above. To use gfs as a local file system, no external clustering systems are @@ -31,13 +28,19 @@ needed, simply: $ mkfs -t gfs2 -p lock_nolock -j 1 /dev/block_device $ mount -t gfs2 /dev/block_device /dir -GFS2 is not on-disk compatible with previous versions of GFS. +If you are using Fedora, you need to install the gfs2-utils package +and, for lock_dlm, you will also need to install the cman package +and write a cluster.conf as per the documentation. + +GFS2 is not on-disk compatible with previous versions of GFS, but it +is pretty close. The following man pages can be found at the URL above: - gfs2_fsck to repair a filesystem + fsck.gfs2 to repair a filesystem gfs2_grow to expand a filesystem online gfs2_jadd to add journals to a filesystem online gfs2_tool to manipulate, examine and tune a filesystem gfs2_quota to examine and change quota values in a filesystem + gfs2_convert to convert a gfs filesystem to gfs2 in-place mount.gfs2 to help mount(8) mount a filesystem mkfs.gfs2 to make a filesystem diff --git a/Documentation/futex-requeue-pi.txt b/Documentation/futex-requeue-pi.txt new file mode 100644 index 000000000000..9dc1ff4fd536 --- /dev/null +++ b/Documentation/futex-requeue-pi.txt @@ -0,0 +1,131 @@ +Futex Requeue PI +---------------- + +Requeueing of tasks from a non-PI futex to a PI futex requires +special handling in order to ensure the underlying rt_mutex is never +left without an owner if it has waiters; doing so would break the PI +boosting logic [see rt-mutex-desgin.txt] For the purposes of +brevity, this action will be referred to as "requeue_pi" throughout +this document. Priority inheritance is abbreviated throughout as +"PI". + +Motivation +---------- + +Without requeue_pi, the glibc implementation of +pthread_cond_broadcast() must resort to waking all the tasks waiting +on a pthread_condvar and letting them try to sort out which task +gets to run first in classic thundering-herd formation. An ideal +implementation would wake the highest-priority waiter, and leave the +rest to the natural wakeup inherent in unlocking the mutex +associated with the condvar. + +Consider the simplified glibc calls: + +/* caller must lock mutex */ +pthread_cond_wait(cond, mutex) +{ + lock(cond->__data.__lock); + unlock(mutex); + do { + unlock(cond->__data.__lock); + futex_wait(cond->__data.__futex); + lock(cond->__data.__lock); + } while(...) + unlock(cond->__data.__lock); + lock(mutex); +} + +pthread_cond_broadcast(cond) +{ + lock(cond->__data.__lock); + unlock(cond->__data.__lock); + futex_requeue(cond->data.__futex, cond->mutex); +} + +Once pthread_cond_broadcast() requeues the tasks, the cond->mutex +has waiters. Note that pthread_cond_wait() attempts to lock the +mutex only after it has returned to user space. This will leave the +underlying rt_mutex with waiters, and no owner, breaking the +previously mentioned PI-boosting algorithms. + +In order to support PI-aware pthread_condvar's, the kernel needs to +be able to requeue tasks to PI futexes. This support implies that +upon a successful futex_wait system call, the caller would return to +user space already holding the PI futex. The glibc implementation +would be modified as follows: + + +/* caller must lock mutex */ +pthread_cond_wait_pi(cond, mutex) +{ + lock(cond->__data.__lock); + unlock(mutex); + do { + unlock(cond->__data.__lock); + futex_wait_requeue_pi(cond->__data.__futex); + lock(cond->__data.__lock); + } while(...) + unlock(cond->__data.__lock); + /* the kernel acquired the the mutex for us */ +} + +pthread_cond_broadcast_pi(cond) +{ + lock(cond->__data.__lock); + unlock(cond->__data.__lock); + futex_requeue_pi(cond->data.__futex, cond->mutex); +} + +The actual glibc implementation will likely test for PI and make the +necessary changes inside the existing calls rather than creating new +calls for the PI cases. Similar changes are needed for +pthread_cond_timedwait() and pthread_cond_signal(). + +Implementation +-------------- + +In order to ensure the rt_mutex has an owner if it has waiters, it +is necessary for both the requeue code, as well as the waiting code, +to be able to acquire the rt_mutex before returning to user space. +The requeue code cannot simply wake the waiter and leave it to +acquire the rt_mutex as it would open a race window between the +requeue call returning to user space and the waiter waking and +starting to run. This is especially true in the uncontended case. + +The solution involves two new rt_mutex helper routines, +rt_mutex_start_proxy_lock() and rt_mutex_finish_proxy_lock(), which +allow the requeue code to acquire an uncontended rt_mutex on behalf +of the waiter and to enqueue the waiter on a contended rt_mutex. +Two new system calls provide the kernel<->user interface to +requeue_pi: FUTEX_WAIT_REQUEUE_PI and FUTEX_REQUEUE_CMP_PI. + +FUTEX_WAIT_REQUEUE_PI is called by the waiter (pthread_cond_wait() +and pthread_cond_timedwait()) to block on the initial futex and wait +to be requeued to a PI-aware futex. The implementation is the +result of a high-speed collision between futex_wait() and +futex_lock_pi(), with some extra logic to check for the additional +wake-up scenarios. + +FUTEX_REQUEUE_CMP_PI is called by the waker +(pthread_cond_broadcast() and pthread_cond_signal()) to requeue and +possibly wake the waiting tasks. Internally, this system call is +still handled by futex_requeue (by passing requeue_pi=1). Before +requeueing, futex_requeue() attempts to acquire the requeue target +PI futex on behalf of the top waiter. If it can, this waiter is +woken. futex_requeue() then proceeds to requeue the remaining +nr_wake+nr_requeue tasks to the PI futex, calling +rt_mutex_start_proxy_lock() prior to each requeue to prepare the +task as a waiter on the underlying rt_mutex. It is possible that +the lock can be acquired at this stage as well, if so, the next +waiter is woken to finish the acquisition of the lock. + +FUTEX_REQUEUE_PI accepts nr_wake and nr_requeue as arguments, but +their sum is all that really matters. futex_requeue() will wake or +requeue up to nr_wake + nr_requeue tasks. It will wake only as many +tasks as it can acquire the lock for, which in the majority of cases +should be 0 as good programming practice dictates that the caller of +either pthread_cond_broadcast() or pthread_cond_signal() acquire the +mutex prior to making the call. FUTEX_REQUEUE_PI requires that +nr_wake=1. nr_requeue should be INT_MAX for broadcast and 0 for +signal. diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 11648c13a729..7bcdebffdab3 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -56,7 +56,6 @@ parameter is applicable: ISAPNP ISA PnP code is enabled. ISDN Appropriate ISDN support is enabled. JOY Appropriate joystick support is enabled. - KMEMTRACE kmemtrace is enabled. LIBATA Libata driver is enabled LP Printer support is enabled. LOOP Loopback device support is enabled. @@ -329,11 +328,6 @@ and is between 256 and 4096 characters. It is defined in the file flushed before they will be reused, which is a lot of faster - amd_iommu_size= [HW,X86-64] - Define the size of the aperture for the AMD IOMMU - driver. Possible values are: - '32M', '64M' (default), '128M', '256M', '512M', '1G' - amijoy.map= [HW,JOY] Amiga joystick support Map of devices attached to JOY0DAT and JOY1DAT Format: <a>,<b> @@ -646,6 +640,13 @@ and is between 256 and 4096 characters. It is defined in the file DMA-API debugging code disables itself because the architectural default is too low. + dma_debug_driver=<driver_name> + With this option the DMA-API debugging driver + filter feature can be enabled at boot time. Just + pass the driver to filter for as the parameter. + The filter can be disabled or changed to another + driver later using sysfs. + dscc4.setup= [NET] dtc3181e= [HW,SCSI] @@ -752,12 +753,25 @@ and is between 256 and 4096 characters. It is defined in the file ia64_pal_cache_flush instead of SAL_CACHE_FLUSH. ftrace=[tracer] - [ftrace] will set and start the specified tracer + [FTRACE] will set and start the specified tracer as early as possible in order to facilitate early boot debugging. ftrace_dump_on_oops - [ftrace] will dump the trace buffers on oops. + [FTRACE] will dump the trace buffers on oops. + + ftrace_filter=[function-list] + [FTRACE] Limit the functions traced by the function + tracer at boot up. function-list is a comma separated + list of functions. This list can be changed at run + time by the set_ftrace_filter file in the debugfs + tracing directory. + + ftrace_notrace=[function-list] + [FTRACE] Do not trace the functions specified in + function-list. This list can be changed at run time + by the set_ftrace_notrace file in the debugfs + tracing directory. gamecon.map[2|3]= [HW,JOY] Multisystem joystick and NES/SNES/PSX pad @@ -914,6 +928,12 @@ and is between 256 and 4096 characters. It is defined in the file Formt: { "sha1" | "md5" } default: "sha1" + ima_tcb [IMA] + Load a policy which meets the needs of the Trusted + Computing Base. This means IMA will measure all + programs exec'd, files mmap'd for exec, and all files + opened for read by uid=0. + in2000= [HW,SCSI] See header of drivers/scsi/in2000.c. @@ -1054,15 +1074,6 @@ and is between 256 and 4096 characters. It is defined in the file use the HighMem zone if it exists, and the Normal zone if it does not. - kmemtrace.enable= [KNL,KMEMTRACE] Format: { yes | no } - Controls whether kmemtrace is enabled - at boot-time. - - kmemtrace.subbufs=n [KNL,KMEMTRACE] Overrides the number of - subbufs kmemtrace's relay channel has. Set this - higher than default (KMEMTRACE_N_SUBBUFS in code) if - you experience buffer overruns. - kgdboc= [HW] kgdb over consoles. Requires a tty driver that supports console polling. (only serial suported for now) @@ -1072,6 +1083,10 @@ and is between 256 and 4096 characters. It is defined in the file Configure the RouterBoard 532 series on-chip Ethernet adapter MAC address. + kmemleak= [KNL] Boot-time kmemleak enable/disable + Valid arguments: on, off + Default: on + kstack=N [X86] Print N words from the kernel stack in oops dumps. @@ -1663,6 +1678,14 @@ and is between 256 and 4096 characters. It is defined in the file oprofile.timer= [HW] Use timer interrupt instead of performance counters + oprofile.cpu_type= Force an oprofile cpu type + This might be useful if you have an older oprofile + userland or if you want common events. + Format: { archperfmon } + archperfmon: [X86] Force use of architectural + perfmon on Intel CPUs instead of the + CPU specific event set. + osst= [HW,SCSI] SCSI Tape Driver Format: <buffer_size>,<write_threshold> See also Documentation/scsi/st.txt. diff --git a/Documentation/kmemleak.txt b/Documentation/kmemleak.txt new file mode 100644 index 000000000000..0112da3b9ab8 --- /dev/null +++ b/Documentation/kmemleak.txt @@ -0,0 +1,142 @@ +Kernel Memory Leak Detector +=========================== + +Introduction +------------ + +Kmemleak provides a way of detecting possible kernel memory leaks in a +way similar to a tracing garbage collector +(http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29#Tracing_garbage_collectors), +with the difference that the orphan objects are not freed but only +reported via /sys/kernel/debug/kmemleak. A similar method is used by the +Valgrind tool (memcheck --leak-check) to detect the memory leaks in +user-space applications. + +Usage +----- + +CONFIG_DEBUG_KMEMLEAK in "Kernel hacking" has to be enabled. A kernel +thread scans the memory every 10 minutes (by default) and prints any new +unreferenced objects found. To trigger an intermediate scan and display +all the possible memory leaks: + + # mount -t debugfs nodev /sys/kernel/debug/ + # cat /sys/kernel/debug/kmemleak + +Note that the orphan objects are listed in the order they were allocated +and one object at the beginning of the list may cause other subsequent +objects to be reported as orphan. + +Memory scanning parameters can be modified at run-time by writing to the +/sys/kernel/debug/kmemleak file. The following parameters are supported: + + off - disable kmemleak (irreversible) + stack=on - enable the task stacks scanning + stack=off - disable the tasks stacks scanning + scan=on - start the automatic memory scanning thread + scan=off - stop the automatic memory scanning thread + scan=<secs> - set the automatic memory scanning period in seconds (0 + to disable it) + +Kmemleak can also be disabled at boot-time by passing "kmemleak=off" on +the kernel command line. + +Basic Algorithm +--------------- + +The memory allocations via kmalloc, vmalloc, kmem_cache_alloc and +friends are traced and the pointers, together with additional +information like size and stack trace, are stored in a prio search tree. +The corresponding freeing function calls are tracked and the pointers +removed from the kmemleak data structures. + +An allocated block of memory is considered orphan if no pointer to its +start address or to any location inside the block can be found by +scanning the memory (including saved registers). This means that there +might be no way for the kernel to pass the address of the allocated +block to a freeing function and therefore the block is considered a +memory leak. + +The scanning algorithm steps: + + 1. mark all objects as white (remaining white objects will later be + considered orphan) + 2. scan the memory starting with the data section and stacks, checking + the values against the addresses stored in the prio search tree. If + a pointer to a white object is found, the object is added to the + gray list + 3. scan the gray objects for matching addresses (some white objects + can become gray and added at the end of the gray list) until the + gray set is finished + 4. the remaining white objects are considered orphan and reported via + /sys/kernel/debug/kmemleak + +Some allocated memory blocks have pointers stored in the kernel's +internal data structures and they cannot be detected as orphans. To +avoid this, kmemleak can also store the number of values pointing to an +address inside the block address range that need to be found so that the +block is not considered a leak. One example is __vmalloc(). + +Kmemleak API +------------ + +See the include/linux/kmemleak.h header for the functions prototype. + +kmemleak_init - initialize kmemleak +kmemleak_alloc - notify of a memory block allocation +kmemleak_free - notify of a memory block freeing +kmemleak_not_leak - mark an object as not a leak +kmemleak_ignore - do not scan or report an object as leak +kmemleak_scan_area - add scan areas inside a memory block +kmemleak_no_scan - do not scan a memory block +kmemleak_erase - erase an old value in a pointer variable +kmemleak_alloc_recursive - as kmemleak_alloc but checks the recursiveness +kmemleak_free_recursive - as kmemleak_free but checks the recursiveness + +Dealing with false positives/negatives +-------------------------------------- + +The false negatives are real memory leaks (orphan objects) but not +reported by kmemleak because values found during the memory scanning +point to such objects. To reduce the number of false negatives, kmemleak +provides the kmemleak_ignore, kmemleak_scan_area, kmemleak_no_scan and +kmemleak_erase functions (see above). The task stacks also increase the +amount of false negatives and their scanning is not enabled by default. + +The false positives are objects wrongly reported as being memory leaks +(orphan). For objects known not to be leaks, kmemleak provides the +kmemleak_not_leak function. The kmemleak_ignore could also be used if +the memory block is known not to contain other pointers and it will no +longer be scanned. + +Some of the reported leaks are only transient, especially on SMP +systems, because of pointers temporarily stored in CPU registers or +stacks. Kmemleak defines MSECS_MIN_AGE (defaulting to 1000) representing +the minimum age of an object to be reported as a memory leak. + +Limitations and Drawbacks +------------------------- + +The main drawback is the reduced performance of memory allocation and +freeing. To avoid other penalties, the memory scanning is only performed +when the /sys/kernel/debug/kmemleak file is read. Anyway, this tool is +intended for debugging purposes where the performance might not be the +most important requirement. + +To keep the algorithm simple, kmemleak scans for values pointing to any +address inside a block's address range. This may lead to an increased +number of false negatives. However, it is likely that a real memory leak +will eventually become visible. + +Another source of false negatives is the data stored in non-pointer +values. In a future version, kmemleak could only scan the pointer +members in the allocated structures. This feature would solve many of +the false negative cases described above. + +The tool can report false positives. These are cases where an allocated +block doesn't need to be freed (some cases in the init_call functions), +the pointer is calculated by other methods than the usual container_of +macro or the pointer is stored in a location not scanned by kmemleak. + +Page allocations and ioremap are not tracked. Only the ARM and x86 +architectures are currently supported. diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt index f5b7127f54ac..7f5809eddee6 100644 --- a/Documentation/memory-barriers.txt +++ b/Documentation/memory-barriers.txt @@ -31,6 +31,7 @@ Contents: - Locking functions. - Interrupt disabling functions. + - Sleep and wake-up functions. - Miscellaneous functions. (*) Inter-CPU locking barrier effects. @@ -1217,6 +1218,132 @@ barriers are required in such a situation, they must be provided from some other means. +SLEEP AND WAKE-UP FUNCTIONS +--------------------------- + +Sleeping and waking on an event flagged in global data can be viewed as an +interaction between two pieces of data: the task state of the task waiting for +the event and the global data used to indicate the event. To make sure that +these appear to happen in the right order, the primitives to begin the process +of going to sleep, and the primitives to initiate a wake up imply certain +barriers. + +Firstly, the sleeper normally follows something like this sequence of events: + + for (;;) { + set_current_state(TASK_UNINTERRUPTIBLE); + if (event_indicated) + break; + schedule(); + } + +A general memory barrier is interpolated automatically by set_current_state() +after it has altered the task state: + + CPU 1 + =============================== + set_current_state(); + set_mb(); + STORE current->state + <general barrier> + LOAD event_indicated + +set_current_state() may be wrapped by: + + prepare_to_wait(); + prepare_to_wait_exclusive(); + +which therefore also imply a general memory barrier after setting the state. +The whole sequence above is available in various canned forms, all of which +interpolate the memory barrier in the right place: + + wait_event(); + wait_event_interruptible(); + wait_event_interruptible_exclusive(); + wait_event_interruptible_timeout(); + wait_event_killable(); + wait_event_timeout(); + wait_on_bit(); + wait_on_bit_lock(); + + +Secondly, code that performs a wake up normally follows something like this: + + event_indicated = 1; + wake_up(&event_wait_queue); + +or: + + event_indicated = 1; + wake_up_process(event_daemon); + +A write memory barrier is implied by wake_up() and co. if and only if they wake +something up. The barrier occurs before the task state is cleared, and so sits +between the STORE to indicate the event and the STORE to set TASK_RUNNING: + + CPU 1 CPU 2 + =============================== =============================== + set_current_state(); STORE event_indicated + set_mb(); wake_up(); + STORE current->state <write barrier> + <general barrier> STORE current->state + LOAD event_indicated + +The available waker functions include: + + complete(); + wake_up(); + wake_up_all(); + wake_up_bit(); + wake_up_interruptible(); + wake_up_interruptible_all(); + wake_up_interruptible_nr(); + wake_up_interruptible_poll(); + wake_up_interruptible_sync(); + wake_up_interruptible_sync_poll(); + wake_up_locked(); + wake_up_locked_poll(); + wake_up_nr(); + wake_up_poll(); + wake_up_process(); + + +[!] Note that the memory barriers implied by the sleeper and the waker do _not_ +order multiple stores before the wake-up with respect to loads of those stored +values after the sleeper has called set_current_state(). For instance, if the +sleeper does: + + set_current_state(TASK_INTERRUPTIBLE); + if (event_indicated) + break; + __set_current_state(TASK_RUNNING); + do_something(my_data); + +and the waker does: + + my_data = value; + event_indicated = 1; + wake_up(&event_wait_queue); + +there's no guarantee that the change to event_indicated will be perceived by +the sleeper as coming after the change to my_data. In such a circumstance, the +code on both sides must interpolate its own memory barriers between the +separate data accesses. Thus the above sleeper ought to do: + + set_current_state(TASK_INTERRUPTIBLE); + if (event_indicated) { + smp_rmb(); + do_something(my_data); + } + +and the waker should do: + + my_data = value; + smp_wmb(); + event_indicated = 1; + wake_up(&event_wait_queue); + + MISCELLANEOUS FUNCTIONS ----------------------- @@ -1366,7 +1493,7 @@ WHERE ARE MEMORY BARRIERS NEEDED? Under normal operation, memory operation reordering is generally not going to be a problem as a single-threaded linear piece of code will still appear to -work correctly, even if it's in an SMP kernel. There are, however, three +work correctly, even if it's in an SMP kernel. There are, however, four circumstances in which reordering definitely _could_ be a problem: (*) Interprocessor interaction. diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt index 5ba4d3fc625a..1df7f9cdab05 100644 --- a/Documentation/scheduler/sched-rt-group.txt +++ b/Documentation/scheduler/sched-rt-group.txt @@ -4,6 +4,7 @@ CONTENTS ======== +0. WARNING 1. Overview 1.1 The problem 1.2 The solution @@ -14,6 +15,23 @@ CONTENTS 3. Future plans +0. WARNING +========== + + Fiddling with these settings can result in an unstable system, the knobs are + root only and assumes root knows what he is doing. + +Most notable: + + * very small values in sched_rt_period_us can result in an unstable + system when the period is smaller than either the available hrtimer + resolution, or the time it takes to handle the budget refresh itself. + + * very small values in sched_rt_runtime_us can result in an unstable + system when the runtime is so small the system has difficulty making + forward progress (NOTE: the migration thread and kstopmachine both + are real-time processes). + 1. Overview =========== @@ -169,7 +187,7 @@ get their allocated time. Implementing SCHED_EDF might take a while to complete. Priority Inheritance is the biggest challenge as the current linux PI infrastructure is geared towards -the limited static priority levels 0-139. With deadline scheduling you need to +the limited static priority levels 0-99. With deadline scheduling you need to do deadline inheritance (since priority is inversely proportional to the deadline delta (deadline - now). diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt index f11ca7979fa6..322a00bb99d9 100644 --- a/Documentation/sysctl/kernel.txt +++ b/Documentation/sysctl/kernel.txt @@ -32,6 +32,7 @@ show up in /proc/sys/kernel: - kstack_depth_to_print [ X86 only ] - l2cr [ PPC only ] - modprobe ==> Documentation/debugging-modules.txt +- modules_disabled - msgmax - msgmnb - msgmni @@ -184,6 +185,16 @@ kernel stack. ============================================================== +modules_disabled: + +A toggle value indicating if modules are allowed to be loaded +in an otherwise modular kernel. This toggle defaults to off +(0), but can be set true (1). Once true, modules can be +neither loaded nor unloaded, and the toggle cannot be set back +to false. + +============================================================== + osrelease, ostype & version: # cat osrelease diff --git a/Documentation/trace/events.txt b/Documentation/trace/events.txt new file mode 100644 index 000000000000..f157d7594ea7 --- /dev/null +++ b/Documentation/trace/events.txt @@ -0,0 +1,90 @@ + Event Tracing + + Documentation written by Theodore Ts'o + Updated by Li Zefan + +1. Introduction +=============== + +Tracepoints (see Documentation/trace/tracepoints.txt) can be used +without creating custom kernel modules to register probe functions +using the event tracing infrastructure. + +Not all tracepoints can be traced using the event tracing system; +the kernel developer must provide code snippets which define how the +tracing information is saved into the tracing buffer, and how the +tracing information should be printed. + +2. Using Event Tracing +====================== + +2.1 Via the 'set_event' interface +--------------------------------- + +The events which are available for tracing can be found in the file +/debug/tracing/available_events. + +To enable a particular event, such as 'sched_wakeup', simply echo it +to /debug/tracing/set_event. For example: + + # echo sched_wakeup >> /debug/tracing/set_event + +[ Note: '>>' is necessary, otherwise it will firstly disable + all the events. ] + +To disable an event, echo the event name to the set_event file prefixed +with an exclamation point: + + # echo '!sched_wakeup' >> /debug/tracing/set_event + +To disable all events, echo an empty line to the set_event file: + + # echo > /debug/tracing/set_event + +To enable all events, echo '*:*' or '*:' to the set_event file: + + # echo *:* > /debug/tracing/set_event + +The events are organized into subsystems, such as ext4, irq, sched, +etc., and a full event name looks like this: <subsystem>:<event>. The +subsystem name is optional, but it is displayed in the available_events +file. All of the events in a subsystem can be specified via the syntax +"<subsystem>:*"; for example, to enable all irq events, you can use the +command: + + # echo 'irq:*' > /debug/tracing/set_event + +2.2 Via the 'enable' toggle +--------------------------- + +The events available are also listed in /debug/tracing/events/ hierarchy +of directories. + +To enable event 'sched_wakeup': + + # echo 1 > /debug/tracing/events/sched/sched_wakeup/enable + +To disable it: + + # echo 0 > /debug/tracing/events/sched/sched_wakeup/enable + +To enable all events in sched subsystem: + + # echo 1 > /debug/tracing/events/sched/enable + +To eanble all events: + + # echo 1 > /debug/tracing/events/enable + +When reading one of these enable files, there are four results: + + 0 - all events this file affects are disabled + 1 - all events this file affects are enabled + X - there is a mixture of events enabled and disabled + ? - this file does not affect any event + +3. Defining an event-enabled tracepoint +======================================= + +See The example provided in samples/trace_events + diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt index fd9a3e693813..2a82d8602944 100644 --- a/Documentation/trace/ftrace.txt +++ b/Documentation/trace/ftrace.txt @@ -179,7 +179,7 @@ Here is the list of current tracers that may be configured. Function call tracer to trace all kernel functions. - "function_graph_tracer" + "function_graph" Similar to the function tracer except that the function tracer probes the functions on their entry @@ -518,9 +518,18 @@ priority with zero (0) being the highest priority and the nice values starting at 100 (nice -20). Below is a quick chart to map the kernel priority to user land priorities. - Kernel priority: 0 to 99 ==> user RT priority 99 to 0 - Kernel priority: 100 to 139 ==> user nice -20 to 19 - Kernel priority: 140 ==> idle task priority + Kernel Space User Space + =============================================================== + 0(high) to 98(low) user RT priority 99(high) to 1(low) + with SCHED_RR or SCHED_FIFO + --------------------------------------------------------------- + 99 sched_priority is not used in scheduling + decisions(it must be specified as 0) + --------------------------------------------------------------- + 100(high) to 139(low) user nice -20(high) to 19(low) + --------------------------------------------------------------- + 140 idle task priority + --------------------------------------------------------------- The task states are: diff --git a/Documentation/trace/power.txt b/Documentation/trace/power.txt new file mode 100644 index 000000000000..cd805e16dc27 --- /dev/null +++ b/Documentation/trace/power.txt @@ -0,0 +1,17 @@ +The power tracer collects detailed information about C-state and P-state +transitions, instead of just looking at the high-level "average" +information. + +There is a helper script found in scrips/tracing/power.pl in the kernel +sources which can be used to parse this information and create a +Scalable Vector Graphics (SVG) picture from the trace data. + +To use this tracer: + + echo 0 > /sys/kernel/debug/tracing/tracing_enabled + echo power > /sys/kernel/debug/tracing/current_tracer + echo 1 > /sys/kernel/debug/tracing/tracing_enabled + sleep 1 + echo 0 > /sys/kernel/debug/tracing/tracing_enabled + cat /sys/kernel/debug/tracing/trace | \ + perl scripts/tracing/power.pl > out.sv diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt index e0203662f9e9..8da3a795083f 100644 --- a/Documentation/x86/boot.txt +++ b/Documentation/x86/boot.txt @@ -50,6 +50,10 @@ Protocol 2.08: (Kernel 2.6.26) Added crc32 checksum and ELF format Protocol 2.09: (Kernel 2.6.26) Added a field of 64-bit physical pointer to single linked list of struct setup_data. +Protocol 2.10: (Kernel 2.6.31) Added a protocol for relaxed alignment + beyond the kernel_alignment added, new init_size and + pref_address fields. Added extended boot loader IDs. + **** MEMORY LAYOUT The traditional memory map for the kernel loader, used for Image or @@ -168,12 +172,13 @@ Offset Proto Name Meaning 021C/4 2.00+ ramdisk_size initrd size (set by boot loader) 0220/4 2.00+ bootsect_kludge DO NOT USE - for bootsect.S use only 0224/2 2.01+ heap_end_ptr Free memory after setup end -0226/2 N/A pad1 Unused +0226/1 2.02+(3 ext_loader_ver Extended boot loader version +0227/1 2.02+(3 ext_loader_type Extended boot loader ID 0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line 022C/4 2.03+ ramdisk_max Highest legal initrd address 0230/4 2.05+ kernel_alignment Physical addr alignment required for kernel 0234/1 2.05+ relocatable_kernel Whether kernel is relocatable or not -0235/1 N/A pad2 Unused +0235/1 2.10+ min_alignment Minimum alignment, as a power of two 0236/2 N/A pad3 Unused 0238/4 2.06+ cmdline_size Maximum size of the kernel command line 023C/4 2.07+ hardware_subarch Hardware subarchitecture @@ -182,6 +187,8 @@ Offset Proto Name Meaning 024C/4 2.08+ payload_length Length of kernel payload 0250/8 2.09+ setup_data 64-bit physical pointer to linked list of struct setup_data +0258/8 2.10+ pref_address Preferred loading address +0260/4 2.10+ init_size Linear memory required during initialization (1) For backwards compatibility, if the setup_sects field contains 0, the real value is 4. @@ -190,6 +197,8 @@ Offset Proto Name Meaning field are unusable, which means the size of a bzImage kernel cannot be determined. +(3) Ignored, but safe to set, for boot protocols 2.02-2.09. + If the "HdrS" (0x53726448) magic number is not found at offset 0x202, the boot protocol version is "old". Loading an old kernel, the following parameters should be assumed: @@ -343,18 +352,32 @@ Protocol: 2.00+ 0xTV here, where T is an identifier for the boot loader and V is a version number. Otherwise, enter 0xFF here. + For boot loader IDs above T = 0xD, write T = 0xE to this field and + write the extended ID minus 0x10 to the ext_loader_type field. + Similarly, the ext_loader_ver field can be used to provide more than + four bits for the bootloader version. + + For example, for T = 0x15, V = 0x234, write: + + type_of_loader <- 0xE4 + ext_loader_type <- 0x05 + ext_loader_ver <- 0x23 + Assigned boot loader ids: 0 LILO (0x00 reserved for pre-2.00 bootloader) 1 Loadlin 2 bootsect-loader (0x20, all other values reserved) - 3 SYSLINUX - 4 EtherBoot + 3 Syslinux + 4 Etherboot/gPXE 5 ELILO 7 GRUB - 8 U-BOOT + 8 U-Boot 9 Xen A Gujin B Qemu + C Arcturus Networks uCbootloader + E Extended (see ext_loader_type) + F Special (0xFF = undefined) Please contact <hpa@zytor.com> if you need a bootloader ID value assigned. @@ -453,6 +476,35 @@ Protocol: 2.01+ Set this field to the offset (from the beginning of the real-mode code) of the end of the setup stack/heap, minus 0x0200. +Field name: ext_loader_ver +Type: write (optional) +Offset/size: 0x226/1 +Protocol: 2.02+ + + This field is used as an extension of the version number in the + type_of_loader field. The total version number is considered to be + (type_of_loader & 0x0f) + (ext_loader_ver << 4). + + The use of this field is boot loader specific. If not written, it + is zero. + + Kernels prior to 2.6.31 did not recognize this field, but it is safe + to write for protocol version 2.02 or higher. + +Field name: ext_loader_type +Type: write (obligatory if (type_of_loader & 0xf0) == 0xe0) +Offset/size: 0x227/1 +Protocol: 2.02+ + + This field is used as an extension of the type number in + type_of_loader field. If the type in type_of_loader is 0xE, then + the actual type is (ext_loader_type + 0x10). + + This field is ignored if the type in type_of_loader is not 0xE. + + Kernels prior to 2.6.31 did not recognize this field, but it is safe + to write for protocol version 2.02 or higher. + Field name: cmd_line_ptr Type: write (obligatory) Offset/size: 0x228/4 @@ -482,11 +534,19 @@ Protocol: 2.03+ 0x37FFFFFF, you can start your ramdisk at 0x37FE0000.) Field name: kernel_alignment -Type: read (reloc) +Type: read/modify (reloc) Offset/size: 0x230/4 -Protocol: 2.05+ +Protocol: 2.05+ (read), 2.10+ (modify) + + Alignment unit required by the kernel (if relocatable_kernel is + true.) A relocatable kernel that is loaded at an alignment + incompatible with the value in this field will be realigned during + kernel initialization. - Alignment unit required by the kernel (if relocatable_kernel is true.) + Starting with protocol version 2.10, this reflects the kernel + alignment preferred for optimal performance; it is possible for the + loader to modify this field to permit a lesser alignment. See the + min_alignment and pref_address field below. Field name: relocatable_kernel Type: read (reloc) @@ -498,6 +558,22 @@ Protocol: 2.05+ After loading, the boot loader must set the code32_start field to point to the loaded code, or to a boot loader hook. +Field name: min_alignment +Type: read (reloc) +Offset/size: 0x235/1 +Protocol: 2.10+ + + This field, if nonzero, indicates as a power of two the minimum + alignment required, as opposed to preferred, by the kernel to boot. + If a boot loader makes use of this field, it should update the + kernel_alignment field with the alignment unit desired; typically: + + kernel_alignment = 1 << min_alignment + + There may be a considerable performance cost with an excessively + misaligned kernel. Therefore, a loader should typically try each + power-of-two alignment from kernel_alignment down to this alignment. + Field name: cmdline_size Type: read Offset/size: 0x238/4 @@ -582,6 +658,36 @@ Protocol: 2.09+ sure to consider the case where the linked list already contains entries. +Field name: pref_address +Type: read (reloc) +Offset/size: 0x258/8 +Protocol: 2.10+ + + This field, if nonzero, represents a preferred load address for the + kernel. A relocating bootloader should attempt to load at this + address if possible. + + A non-relocatable kernel will unconditionally move itself and to run + at this address. + +Field name: init_size +Type: read +Offset/size: 0x25c/4 + + This field indicates the amount of linear contiguous memory starting + at the kernel runtime start address that the kernel needs before it + is capable of examining its memory map. This is not the same thing + as the total amount of memory the kernel needs to boot, but it can + be used by a relocating boot loader to help select a safe load + address for the kernel. + + The kernel runtime start address is determined by the following algorithm: + + if (relocatable_kernel) + runtime_start = align_up(load_address, kernel_alignment) + else + runtime_start = pref_address + **** THE IMAGE CHECKSUM diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt index fa2bed07d21e..29a6ff8bc7d3 100644 --- a/Documentation/x86/x86_64/boot-options.txt +++ b/Documentation/x86/x86_64/boot-options.txt @@ -180,11 +180,6 @@ NUMA Otherwise, the remaining system RAM is allocated to an additional node. - numa=hotadd=percent - Only allow hotadd memory to preallocate page structures upto - percent of already available memory. - numa=hotadd=0 will disable hotadd memory. - ACPI acpi=off Don't enable ACPI diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt index 29b52b14d0b4..d6498e3cd713 100644 --- a/Documentation/x86/x86_64/mm.txt +++ b/Documentation/x86/x86_64/mm.txt @@ -6,10 +6,11 @@ Virtual memory map with 4 level page tables: 0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm hole caused by [48:63] sign extension ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole -ffff880000000000 - ffffc0ffffffffff (=57 TB) direct mapping of all phys. memory -ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole -ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space -ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB) +ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory +ffffc80000000000 - ffffc8ffffffffff (=40 bits) hole +ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space +ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole +ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB) ... unused hole ... ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0 ffffffffa0000000 - fffffffffff00000 (=1536 MB) module mapping space |