summaryrefslogtreecommitdiff
path: root/Documentation/networking/ipvlan.txt
diff options
context:
space:
mode:
authorMauro Carvalho Chehab <mchehab+huawei@kernel.org>2020-04-28 01:01:51 +0300
committerDavid S. Miller <davem@davemloft.net>2020-04-29 00:40:18 +0300
commit1dc2a785954bf4e562d0c85bea435ee56f705db5 (patch)
tree51c32ded925b85410c0826822b864f8bea6d9259 /Documentation/networking/ipvlan.txt
parent19093313cb0486d568232934bb80dd422d891623 (diff)
downloadlinux-1dc2a785954bf4e562d0c85bea435ee56f705db5.tar.xz
docs: networking: convert ipvlan.txt to ReST
- add SPDX header; - adjust titles and chapters, adding proper markups; - mark code blocks and literals as such; - adjust identation, whitespaces and blank lines; - add to networking/index.rst. Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'Documentation/networking/ipvlan.txt')
-rw-r--r--Documentation/networking/ipvlan.txt146
1 files changed, 0 insertions, 146 deletions
diff --git a/Documentation/networking/ipvlan.txt b/Documentation/networking/ipvlan.txt
deleted file mode 100644
index 27a38e50c287..000000000000
--- a/Documentation/networking/ipvlan.txt
+++ /dev/null
@@ -1,146 +0,0 @@
-
- IPVLAN Driver HOWTO
-
-Initial Release:
- Mahesh Bandewar <maheshb AT google.com>
-
-1. Introduction:
- This is conceptually very similar to the macvlan driver with one major
-exception of using L3 for mux-ing /demux-ing among slaves. This property makes
-the master device share the L2 with it's slave devices. I have developed this
-driver in conjunction with network namespaces and not sure if there is use case
-outside of it.
-
-
-2. Building and Installation:
- In order to build the driver, please select the config item CONFIG_IPVLAN.
-The driver can be built into the kernel (CONFIG_IPVLAN=y) or as a module
-(CONFIG_IPVLAN=m).
-
-
-3. Configuration:
- There are no module parameters for this driver and it can be configured
-using IProute2/ip utility.
-
- ip link add link <master> name <slave> type ipvlan [ mode MODE ] [ FLAGS ]
- where
- MODE: l3 (default) | l3s | l2
- FLAGS: bridge (default) | private | vepa
-
- e.g.
- (a) Following will create IPvlan link with eth0 as master in
- L3 bridge mode
- bash# ip link add link eth0 name ipvl0 type ipvlan
- (b) This command will create IPvlan link in L2 bridge mode.
- bash# ip link add link eth0 name ipvl0 type ipvlan mode l2 bridge
- (c) This command will create an IPvlan device in L2 private mode.
- bash# ip link add link eth0 name ipvlan type ipvlan mode l2 private
- (d) This command will create an IPvlan device in L2 vepa mode.
- bash# ip link add link eth0 name ipvlan type ipvlan mode l2 vepa
-
-
-4. Operating modes:
- IPvlan has two modes of operation - L2 and L3. For a given master device,
-you can select one of these two modes and all slaves on that master will
-operate in the same (selected) mode. The RX mode is almost identical except
-that in L3 mode the slaves wont receive any multicast / broadcast traffic.
-L3 mode is more restrictive since routing is controlled from the other (mostly)
-default namespace.
-
-4.1 L2 mode:
- In this mode TX processing happens on the stack instance attached to the
-slave device and packets are switched and queued to the master device to send
-out. In this mode the slaves will RX/TX multicast and broadcast (if applicable)
-as well.
-
-4.2 L3 mode:
- In this mode TX processing up to L3 happens on the stack instance attached
-to the slave device and packets are switched to the stack instance of the
-master device for the L2 processing and routing from that instance will be
-used before packets are queued on the outbound device. In this mode the slaves
-will not receive nor can send multicast / broadcast traffic.
-
-4.3 L3S mode:
- This is very similar to the L3 mode except that iptables (conn-tracking)
-works in this mode and hence it is L3-symmetric (L3s). This will have slightly less
-performance but that shouldn't matter since you are choosing this mode over plain-L3
-mode to make conn-tracking work.
-
-5. Mode flags:
- At this time following mode flags are available
-
-5.1 bridge:
- This is the default option. To configure the IPvlan port in this mode,
-user can choose to either add this option on the command-line or don't specify
-anything. This is the traditional mode where slaves can cross-talk among
-themselves apart from talking through the master device.
-
-5.2 private:
- If this option is added to the command-line, the port is set in private
-mode. i.e. port won't allow cross communication between slaves.
-
-5.3 vepa:
- If this is added to the command-line, the port is set in VEPA mode.
-i.e. port will offload switching functionality to the external entity as
-described in 802.1Qbg
-Note: VEPA mode in IPvlan has limitations. IPvlan uses the mac-address of the
-master-device, so the packets which are emitted in this mode for the adjacent
-neighbor will have source and destination mac same. This will make the switch /
-router send the redirect message.
-
-6. What to choose (macvlan vs. ipvlan)?
- These two devices are very similar in many regards and the specific use
-case could very well define which device to choose. if one of the following
-situations defines your use case then you can choose to use ipvlan -
- (a) The Linux host that is connected to the external switch / router has
-policy configured that allows only one mac per port.
- (b) No of virtual devices created on a master exceed the mac capacity and
-puts the NIC in promiscuous mode and degraded performance is a concern.
- (c) If the slave device is to be put into the hostile / untrusted network
-namespace where L2 on the slave could be changed / misused.
-
-
-6. Example configuration:
-
- +=============================================================+
- | Host: host1 |
- | |
- | +----------------------+ +----------------------+ |
- | | NS:ns0 | | NS:ns1 | |
- | | | | | |
- | | | | | |
- | | ipvl0 | | ipvl1 | |
- | +----------#-----------+ +-----------#----------+ |
- | # # |
- | ################################ |
- | # eth0 |
- +==============================#==============================+
-
-
- (a) Create two network namespaces - ns0, ns1
- ip netns add ns0
- ip netns add ns1
-
- (b) Create two ipvlan slaves on eth0 (master device)
- ip link add link eth0 ipvl0 type ipvlan mode l2
- ip link add link eth0 ipvl1 type ipvlan mode l2
-
- (c) Assign slaves to the respective network namespaces
- ip link set dev ipvl0 netns ns0
- ip link set dev ipvl1 netns ns1
-
- (d) Now switch to the namespace (ns0 or ns1) to configure the slave devices
- - For ns0
- (1) ip netns exec ns0 bash
- (2) ip link set dev ipvl0 up
- (3) ip link set dev lo up
- (4) ip -4 addr add 127.0.0.1 dev lo
- (5) ip -4 addr add $IPADDR dev ipvl0
- (6) ip -4 route add default via $ROUTER dev ipvl0
- - For ns1
- (1) ip netns exec ns1 bash
- (2) ip link set dev ipvl1 up
- (3) ip link set dev lo up
- (4) ip -4 addr add 127.0.0.1 dev lo
- (5) ip -4 addr add $IPADDR dev ipvl1
- (6) ip -4 route add default via $ROUTER dev ipvl1