summaryrefslogtreecommitdiff
path: root/Documentation/mm
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-03-15 03:43:30 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2024-03-15 03:43:30 +0300
commit902861e34c401696ed9ad17a54c8790e7e8e3069 (patch)
tree126324c3ec4101b1e17f002ef029d3ffb296ada7 /Documentation/mm
parent1bbeaf83dd7b5e3628b98bec66ff8fe2646e14aa (diff)
parent270700dd06ca41a4779c19eb46608f076bb7d40e (diff)
downloadlinux-902861e34c401696ed9ad17a54c8790e7e8e3069.tar.xz
Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ...
Diffstat (limited to 'Documentation/mm')
-rw-r--r--Documentation/mm/damon/design.rst70
-rw-r--r--Documentation/mm/damon/maintainer-profile.rst8
-rw-r--r--Documentation/mm/page_owner.rst45
3 files changed, 109 insertions, 14 deletions
diff --git a/Documentation/mm/damon/design.rst b/Documentation/mm/damon/design.rst
index 1bb69524a62e..5620aab9b385 100644
--- a/Documentation/mm/damon/design.rst
+++ b/Documentation/mm/damon/design.rst
@@ -31,6 +31,8 @@ DAMON subsystem is configured with three layers including
interfaces for the user space, on top of the core layer.
+.. _damon_design_configurable_operations_set:
+
Configurable Operations Set
---------------------------
@@ -63,6 +65,8 @@ modules that built on top of the core layer using the API, which can be easily
used by the user space end users.
+.. _damon_operations_set:
+
Operations Set Layer
====================
@@ -71,16 +75,26 @@ The monitoring operations are defined in two parts:
1. Identification of the monitoring target address range for the address space.
2. Access check of specific address range in the target space.
-DAMON currently provides the implementations of the operations for the physical
-and virtual address spaces. Below two subsections describe how those work.
+DAMON currently provides below three operation sets. Below two subsections
+describe how those work.
+
+ - vaddr: Monitor virtual address spaces of specific processes
+ - fvaddr: Monitor fixed virtual address ranges
+ - paddr: Monitor the physical address space of the system
+ .. _damon_design_vaddr_target_regions_construction:
+
VMA-based Target Address Range Construction
-------------------------------------------
-This is only for the virtual address space monitoring operations
-implementation. That for the physical address space simply asks users to
-manually set the monitoring target address ranges.
+A mechanism of ``vaddr`` DAMON operations set that automatically initializes
+and updates the monitoring target address regions so that entire memory
+mappings of the target processes can be covered.
+
+This mechanism is only for the ``vaddr`` operations set. In cases of
+``fvaddr`` and ``paddr`` operation sets, users are asked to manually set the
+monitoring target address ranges.
Only small parts in the super-huge virtual address space of the processes are
mapped to the physical memory and accessed. Thus, tracking the unmapped
@@ -294,9 +308,29 @@ not mandated to support all actions of the list. Hence, the availability of
specific DAMOS action depends on what operations set is selected to be used
together.
-Applying an action to a region is considered as changing the region's
-characteristics. Hence, DAMOS resets the age of regions when an action is
-applied to those.
+The list of the supported actions, their meaning, and DAMON operations sets
+that supports each action are as below.
+
+ - ``willneed``: Call ``madvise()`` for the region with ``MADV_WILLNEED``.
+ Supported by ``vaddr`` and ``fvaddr`` operations set.
+ - ``cold``: Call ``madvise()`` for the region with ``MADV_COLD``.
+ Supported by ``vaddr`` and ``fvaddr`` operations set.
+ - ``pageout``: Reclaim the region.
+ Supported by ``vaddr``, ``fvaddr`` and ``paddr`` operations set.
+ - ``hugepage``: Call ``madvise()`` for the region with ``MADV_HUGEPAGE``.
+ Supported by ``vaddr`` and ``fvaddr`` operations set.
+ - ``nohugepage``: Call ``madvise()`` for the region with ``MADV_NOHUGEPAGE``.
+ Supported by ``vaddr`` and ``fvaddr`` operations set.
+ - ``lru_prio``: Prioritize the region on its LRU lists.
+ Supported by ``paddr`` operations set.
+ - ``lru_deprio``: Deprioritize the region on its LRU lists.
+ Supported by ``paddr`` operations set.
+ - ``stat``: Do nothing but count the statistics.
+ Supported by all operations sets.
+
+Applying the actions except ``stat`` to a region is considered as changing the
+region's characteristics. Hence, DAMOS resets the age of regions when any such
+actions are applied to those.
.. _damon_design_damos_access_pattern:
@@ -364,12 +398,28 @@ Aim-oriented Feedback-driven Auto-tuning
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Automatic feedback-driven quota tuning. Instead of setting the absolute quota
-value, users can repeatedly provide numbers representing how much of their goal
-for the scheme is achieved as feedback. DAMOS then automatically tunes the
+value, users can specify the metric of their interest, and what target value
+they want the metric value to be. DAMOS then automatically tunes the
aggressiveness (the quota) of the corresponding scheme. For example, if DAMOS
is under achieving the goal, DAMOS automatically increases the quota. If DAMOS
is over achieving the goal, it decreases the quota.
+The goal can be specified with three parameters, namely ``target_metric``,
+``target_value``, and ``current_value``. The auto-tuning mechanism tries to
+make ``current_value`` of ``target_metric`` be same to ``target_value``.
+Currently, two ``target_metric`` are provided.
+
+- ``user_input``: User-provided value. Users could use any metric that they
+ has interest in for the value. Use space main workload's latency or
+ throughput, system metrics like free memory ratio or memory pressure stall
+ time (PSI) could be examples. Note that users should explicitly set
+ ``current_value`` on their own in this case. In other words, users should
+ repeatedly provide the feedback.
+- ``some_mem_psi_us``: System-wide ``some`` memory pressure stall information
+ in microseconds that measured from last quota reset to next quota reset.
+ DAMOS does the measurement on its own, so only ``target_value`` need to be
+ set by users at the initial time. In other words, DAMOS does self-feedback.
+
.. _damon_design_damos_watermarks:
diff --git a/Documentation/mm/damon/maintainer-profile.rst b/Documentation/mm/damon/maintainer-profile.rst
index a84c14e59053..5a306e4de22e 100644
--- a/Documentation/mm/damon/maintainer-profile.rst
+++ b/Documentation/mm/damon/maintainer-profile.rst
@@ -21,8 +21,8 @@ be queued in mm-stable [3]_ , and finally pull-requested to the mainline by the
memory management subsystem maintainer.
Note again the patches for review should be made against the mm-unstable
-tree[1] whenever possible. damon/next is only for preview of others' works in
-progress.
+tree [1]_ whenever possible. damon/next is only for preview of others' works
+in progress.
Submit checklist addendum
-------------------------
@@ -41,8 +41,8 @@ Further doing below and putting the results will be helpful.
Key cycle dates
---------------
-Patches can be sent anytime. Key cycle dates of the mm-unstable[1] and
-mm-stable[3] trees depend on the memory management subsystem maintainer.
+Patches can be sent anytime. Key cycle dates of the mm-unstable [1]_ and
+mm-stable [3]_ trees depend on the memory management subsystem maintainer.
Review cadence
--------------
diff --git a/Documentation/mm/page_owner.rst b/Documentation/mm/page_owner.rst
index 62e3f7ab23cc..0d0334cd5179 100644
--- a/Documentation/mm/page_owner.rst
+++ b/Documentation/mm/page_owner.rst
@@ -24,6 +24,11 @@ fragmentation statistics can be obtained through gfp flag information of
each page. It is already implemented and activated if page owner is
enabled. Other usages are more than welcome.
+It can also be used to show all the stacks and their outstanding
+allocations, which gives us a quick overview of where the memory is going
+without the need to screen through all the pages and match the allocation
+and free operation.
+
page owner is disabled by default. So, if you'd like to use it, you need
to add "page_owner=on" to your boot cmdline. If the kernel is built
with page owner and page owner is disabled in runtime due to not enabling
@@ -68,6 +73,46 @@ Usage
4) Analyze information from page owner::
+ cat /sys/kernel/debug/page_owner_stacks/show_stacks > stacks.txt
+ cat stacks.txt
+ prep_new_page+0xa9/0x120
+ get_page_from_freelist+0x7e6/0x2140
+ __alloc_pages+0x18a/0x370
+ new_slab+0xc8/0x580
+ ___slab_alloc+0x1f2/0xaf0
+ __slab_alloc.isra.86+0x22/0x40
+ kmem_cache_alloc+0x31b/0x350
+ __khugepaged_enter+0x39/0x100
+ dup_mmap+0x1c7/0x5ce
+ copy_process+0x1afe/0x1c90
+ kernel_clone+0x9a/0x3c0
+ __do_sys_clone+0x66/0x90
+ do_syscall_64+0x7f/0x160
+ entry_SYSCALL_64_after_hwframe+0x6c/0x74
+ stack_count: 234
+ ...
+ ...
+ echo 7000 > /sys/kernel/debug/page_owner_stacks/count_threshold
+ cat /sys/kernel/debug/page_owner_stacks/show_stacks> stacks_7000.txt
+ cat stacks_7000.txt
+ prep_new_page+0xa9/0x120
+ get_page_from_freelist+0x7e6/0x2140
+ __alloc_pages+0x18a/0x370
+ alloc_pages_mpol+0xdf/0x1e0
+ folio_alloc+0x14/0x50
+ filemap_alloc_folio+0xb0/0x100
+ page_cache_ra_unbounded+0x97/0x180
+ filemap_fault+0x4b4/0x1200
+ __do_fault+0x2d/0x110
+ do_pte_missing+0x4b0/0xa30
+ __handle_mm_fault+0x7fa/0xb70
+ handle_mm_fault+0x125/0x300
+ do_user_addr_fault+0x3c9/0x840
+ exc_page_fault+0x68/0x150
+ asm_exc_page_fault+0x22/0x30
+ stack_count: 8248
+ ...
+
cat /sys/kernel/debug/page_owner > page_owner_full.txt
./page_owner_sort page_owner_full.txt sorted_page_owner.txt