diff options
author | David Rientjes <rientjes@google.com> | 2009-06-17 02:32:56 +0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-06-17 06:47:43 +0400 |
commit | 2ff05b2b4eac2e63d345fc731ea151a060247f53 (patch) | |
tree | 1840bc2d3b381eca5d39869499339b0fcc6eabbf /Documentation/filesystems | |
parent | c9e444103b5e7a5a3519f9913f59767f92e33baf (diff) | |
download | linux-2ff05b2b4eac2e63d345fc731ea151a060247f53.tar.xz |
oom: move oom_adj value from task_struct to mm_struct
The per-task oom_adj value is a characteristic of its mm more than the
task itself since it's not possible to oom kill any thread that shares the
mm. If a task were to be killed while attached to an mm that could not be
freed because another thread were set to OOM_DISABLE, it would have
needlessly been terminated since there is no potential for future memory
freeing.
This patch moves oomkilladj (now more appropriately named oom_adj) from
struct task_struct to struct mm_struct. This requires task_lock() on a
task to check its oom_adj value to protect against exec, but it's already
necessary to take the lock when dereferencing the mm to find the total VM
size for the badness heuristic.
This fixes a livelock if the oom killer chooses a task and another thread
sharing the same memory has an oom_adj value of OOM_DISABLE. This occurs
because oom_kill_task() repeatedly returns 1 and refuses to kill the
chosen task while select_bad_process() will repeatedly choose the same
task during the next retry.
Taking task_lock() in select_bad_process() to check for OOM_DISABLE and in
oom_kill_task() to check for threads sharing the same memory will be
removed in the next patch in this series where it will no longer be
necessary.
Writing to /proc/pid/oom_adj for a kthread will now return -EINVAL since
these threads are immune from oom killing already. They simply report an
oom_adj value of OOM_DISABLE.
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r-- | Documentation/filesystems/proc.txt | 15 |
1 files changed, 10 insertions, 5 deletions
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index cd8717a36271..ebff3c10a07f 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -1003,11 +1003,13 @@ CHAPTER 3: PER-PROCESS PARAMETERS 3.1 /proc/<pid>/oom_adj - Adjust the oom-killer score ------------------------------------------------------ -This file can be used to adjust the score used to select which processes -should be killed in an out-of-memory situation. Giving it a high score will -increase the likelihood of this process being killed by the oom-killer. Valid -values are in the range -16 to +15, plus the special value -17, which disables -oom-killing altogether for this process. +This file can be used to adjust the score used to select which processes should +be killed in an out-of-memory situation. The oom_adj value is a characteristic +of the task's mm, so all threads that share an mm with pid will have the same +oom_adj value. A high value will increase the likelihood of this process being +killed by the oom-killer. Valid values are in the range -16 to +15 as +explained below and a special value of -17, which disables oom-killing +altogether for threads sharing pid's mm. The process to be killed in an out-of-memory situation is selected among all others based on its badness score. This value equals the original memory size of the process @@ -1021,6 +1023,9 @@ the parent's score if they do not share the same memory. Thus forking servers are the prime candidates to be killed. Having only one 'hungry' child will make parent less preferable than the child. +/proc/<pid>/oom_adj cannot be changed for kthreads since they are immune from +oom-killing already. + /proc/<pid>/oom_score shows process' current badness score. The following heuristics are then applied: |