summaryrefslogtreecommitdiff
path: root/Documentation/cpu-freq/governors.txt
diff options
context:
space:
mode:
authorRafael J. Wysocki <rjw@rjwysocki.net>2017-03-14 01:59:57 +0300
committerJonathan Corbet <corbet@lwn.net>2017-03-14 02:08:42 +0300
commit2a0e49279850d28c450f27e51b419ce90bacdcdc (patch)
tree96e995e194a1bb9926a4f1c4fa01571bf218e148 /Documentation/cpu-freq/governors.txt
parent8fa1bb506fc9b5b0f7b5e42cee4f8213325a98ee (diff)
downloadlinux-2a0e49279850d28c450f27e51b419ce90bacdcdc.tar.xz
cpufreq: User/admin documentation update and consolidation
The user/admin documentation of cpufreq is badly outdated. It conains stale and/or inaccurate information along with things that are not particularly useful. Also, some of the important pieces are missing from it. For this reason, add a new user/admin document for cpufreq containing current information to admin-guide and drop the old outdated .txt documents it is replacing. Since there will be more PM documents in admin-guide going forward, create a separate directory for them and put the cpufreq document in there right away. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/cpu-freq/governors.txt')
-rw-r--r--Documentation/cpu-freq/governors.txt301
1 files changed, 0 insertions, 301 deletions
diff --git a/Documentation/cpu-freq/governors.txt b/Documentation/cpu-freq/governors.txt
deleted file mode 100644
index 61b3184b6c24..000000000000
--- a/Documentation/cpu-freq/governors.txt
+++ /dev/null
@@ -1,301 +0,0 @@
- CPU frequency and voltage scaling code in the Linux(TM) kernel
-
-
- L i n u x C P U F r e q
-
- C P U F r e q G o v e r n o r s
-
- - information for users and developers -
-
-
- Dominik Brodowski <linux@brodo.de>
- some additions and corrections by Nico Golde <nico@ngolde.de>
- Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Viresh Kumar <viresh.kumar@linaro.org>
-
-
-
- Clock scaling allows you to change the clock speed of the CPUs on the
- fly. This is a nice method to save battery power, because the lower
- the clock speed, the less power the CPU consumes.
-
-
-Contents:
----------
-1. What is a CPUFreq Governor?
-
-2. Governors In the Linux Kernel
-2.1 Performance
-2.2 Powersave
-2.3 Userspace
-2.4 Ondemand
-2.5 Conservative
-2.6 Schedutil
-
-3. The Governor Interface in the CPUfreq Core
-
-4. References
-
-
-1. What Is A CPUFreq Governor?
-==============================
-
-Most cpufreq drivers (except the intel_pstate and longrun) or even most
-cpu frequency scaling algorithms only allow the CPU frequency to be set
-to predefined fixed values. In order to offer dynamic frequency
-scaling, the cpufreq core must be able to tell these drivers of a
-"target frequency". So these specific drivers will be transformed to
-offer a "->target/target_index/fast_switch()" call instead of the
-"->setpolicy()" call. For set_policy drivers, all stays the same,
-though.
-
-How to decide what frequency within the CPUfreq policy should be used?
-That's done using "cpufreq governors".
-
-Basically, it's the following flow graph:
-
-CPU can be set to switch independently | CPU can only be set
- within specific "limits" | to specific frequencies
-
- "CPUfreq policy"
- consists of frequency limits (policy->{min,max})
- and CPUfreq governor to be used
- / \
- / \
- / the cpufreq governor decides
- / (dynamically or statically)
- / what target_freq to set within
- / the limits of policy->{min,max}
- / \
- / \
- Using the ->setpolicy call, Using the ->target/target_index/fast_switch call,
- the limits and the the frequency closest
- "policy" is set. to target_freq is set.
- It is assured that it
- is within policy->{min,max}
-
-
-2. Governors In the Linux Kernel
-================================
-
-2.1 Performance
----------------
-
-The CPUfreq governor "performance" sets the CPU statically to the
-highest frequency within the borders of scaling_min_freq and
-scaling_max_freq.
-
-
-2.2 Powersave
--------------
-
-The CPUfreq governor "powersave" sets the CPU statically to the
-lowest frequency within the borders of scaling_min_freq and
-scaling_max_freq.
-
-
-2.3 Userspace
--------------
-
-The CPUfreq governor "userspace" allows the user, or any userspace
-program running with UID "root", to set the CPU to a specific frequency
-by making a sysfs file "scaling_setspeed" available in the CPU-device
-directory.
-
-
-2.4 Ondemand
-------------
-
-The CPUfreq governor "ondemand" sets the CPU frequency depending on the
-current system load. Load estimation is triggered by the scheduler
-through the update_util_data->func hook; when triggered, cpufreq checks
-the CPU-usage statistics over the last period and the governor sets the
-CPU accordingly. The CPU must have the capability to switch the
-frequency very quickly.
-
-Sysfs files:
-
-* sampling_rate:
-
- Measured in uS (10^-6 seconds), this is how often you want the kernel
- to look at the CPU usage and to make decisions on what to do about the
- frequency. Typically this is set to values of around '10000' or more.
- It's default value is (cmp. with users-guide.txt): transition_latency
- * 1000. Be aware that transition latency is in ns and sampling_rate
- is in us, so you get the same sysfs value by default. Sampling rate
- should always get adjusted considering the transition latency to set
- the sampling rate 750 times as high as the transition latency in the
- bash (as said, 1000 is default), do:
-
- $ echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate
-
-* sampling_rate_min:
-
- The sampling rate is limited by the HW transition latency:
- transition_latency * 100
-
- Or by kernel restrictions:
- - If CONFIG_NO_HZ_COMMON is set, the limit is 10ms fixed.
- - If CONFIG_NO_HZ_COMMON is not set or nohz=off boot parameter is
- used, the limits depend on the CONFIG_HZ option:
- HZ=1000: min=20000us (20ms)
- HZ=250: min=80000us (80ms)
- HZ=100: min=200000us (200ms)
-
- The highest value of kernel and HW latency restrictions is shown and
- used as the minimum sampling rate.
-
-* up_threshold:
-
- This defines what the average CPU usage between the samplings of
- 'sampling_rate' needs to be for the kernel to make a decision on
- whether it should increase the frequency. For example when it is set
- to its default value of '95' it means that between the checking
- intervals the CPU needs to be on average more than 95% in use to then
- decide that the CPU frequency needs to be increased.
-
-* ignore_nice_load:
-
- This parameter takes a value of '0' or '1'. When set to '0' (its
- default), all processes are counted towards the 'cpu utilisation'
- value. When set to '1', the processes that are run with a 'nice'
- value will not count (and thus be ignored) in the overall usage
- calculation. This is useful if you are running a CPU intensive
- calculation on your laptop that you do not care how long it takes to
- complete as you can 'nice' it and prevent it from taking part in the
- deciding process of whether to increase your CPU frequency.
-
-* sampling_down_factor:
-
- This parameter controls the rate at which the kernel makes a decision
- on when to decrease the frequency while running at top speed. When set
- to 1 (the default) decisions to reevaluate load are made at the same
- interval regardless of current clock speed. But when set to greater
- than 1 (e.g. 100) it acts as a multiplier for the scheduling interval
- for reevaluating load when the CPU is at its top speed due to high
- load. This improves performance by reducing the overhead of load
- evaluation and helping the CPU stay at its top speed when truly busy,
- rather than shifting back and forth in speed. This tunable has no
- effect on behavior at lower speeds/lower CPU loads.
-
-* powersave_bias:
-
- This parameter takes a value between 0 to 1000. It defines the
- percentage (times 10) value of the target frequency that will be
- shaved off of the target. For example, when set to 100 -- 10%, when
- ondemand governor would have targeted 1000 MHz, it will target
- 1000 MHz - (10% of 1000 MHz) = 900 MHz instead. This is set to 0
- (disabled) by default.
-
- When AMD frequency sensitivity powersave bias driver --
- drivers/cpufreq/amd_freq_sensitivity.c is loaded, this parameter
- defines the workload frequency sensitivity threshold in which a lower
- frequency is chosen instead of ondemand governor's original target.
- The frequency sensitivity is a hardware reported (on AMD Family 16h
- Processors and above) value between 0 to 100% that tells software how
- the performance of the workload running on a CPU will change when
- frequency changes. A workload with sensitivity of 0% (memory/IO-bound)
- will not perform any better on higher core frequency, whereas a
- workload with sensitivity of 100% (CPU-bound) will perform better
- higher the frequency. When the driver is loaded, this is set to 400 by
- default -- for CPUs running workloads with sensitivity value below
- 40%, a lower frequency is chosen. Unloading the driver or writing 0
- will disable this feature.
-
-
-2.5 Conservative
-----------------
-
-The CPUfreq governor "conservative", much like the "ondemand"
-governor, sets the CPU frequency depending on the current usage. It
-differs in behaviour in that it gracefully increases and decreases the
-CPU speed rather than jumping to max speed the moment there is any load
-on the CPU. This behaviour is more suitable in a battery powered
-environment. The governor is tweaked in the same manner as the
-"ondemand" governor through sysfs with the addition of:
-
-* freq_step:
-
- This describes what percentage steps the cpu freq should be increased
- and decreased smoothly by. By default the cpu frequency will increase
- in 5% chunks of your maximum cpu frequency. You can change this value
- to anywhere between 0 and 100 where '0' will effectively lock your CPU
- at a speed regardless of its load whilst '100' will, in theory, make
- it behave identically to the "ondemand" governor.
-
-* down_threshold:
-
- Same as the 'up_threshold' found for the "ondemand" governor but for
- the opposite direction. For example when set to its default value of
- '20' it means that if the CPU usage needs to be below 20% between
- samples to have the frequency decreased.
-
-* sampling_down_factor:
-
- Similar functionality as in "ondemand" governor. But in
- "conservative", it controls the rate at which the kernel makes a
- decision on when to decrease the frequency while running in any speed.
- Load for frequency increase is still evaluated every sampling rate.
-
-
-2.6 Schedutil
--------------
-
-The "schedutil" governor aims at better integration with the Linux
-kernel scheduler. Load estimation is achieved through the scheduler's
-Per-Entity Load Tracking (PELT) mechanism, which also provides
-information about the recent load [1]. This governor currently does
-load based DVFS only for tasks managed by CFS. RT and DL scheduler tasks
-are always run at the highest frequency. Unlike all the other
-governors, the code is located under the kernel/sched/ directory.
-
-Sysfs files:
-
-* rate_limit_us:
-
- This contains a value in microseconds. The governor waits for
- rate_limit_us time before reevaluating the load again, after it has
- evaluated the load once.
-
-For an in-depth comparison with the other governors refer to [2].
-
-
-3. The Governor Interface in the CPUfreq Core
-=============================================
-
-A new governor must register itself with the CPUfreq core using
-"cpufreq_register_governor". The struct cpufreq_governor, which has to
-be passed to that function, must contain the following values:
-
-governor->name - A unique name for this governor.
-governor->owner - .THIS_MODULE for the governor module (if appropriate).
-
-plus a set of hooks to the functions implementing the governor's logic.
-
-The CPUfreq governor may call the CPU processor driver using one of
-these two functions:
-
-int cpufreq_driver_target(struct cpufreq_policy *policy,
- unsigned int target_freq,
- unsigned int relation);
-
-int __cpufreq_driver_target(struct cpufreq_policy *policy,
- unsigned int target_freq,
- unsigned int relation);
-
-target_freq must be within policy->min and policy->max, of course.
-What's the difference between these two functions? When your governor is
-in a direct code path of a call to governor callbacks, like
-governor->start(), the policy->rwsem is still held in the cpufreq core,
-and there's no need to lock it again (in fact, this would cause a
-deadlock). So use __cpufreq_driver_target only in these cases. In all
-other cases (for example, when there's a "daemonized" function that
-wakes up every second), use cpufreq_driver_target to take policy->rwsem
-before the command is passed to the cpufreq driver.
-
-4. References
-=============
-
-[1] Per-entity load tracking: https://lwn.net/Articles/531853/
-[2] Improvements in CPU frequency management: https://lwn.net/Articles/682391/
-