summaryrefslogtreecommitdiff
path: root/Documentation/block
diff options
context:
space:
mode:
authorJens Axboe <axboe@fb.com>2016-11-09 22:38:14 +0300
committerJens Axboe <axboe@fb.com>2016-11-10 23:53:40 +0300
commit87760e5eef359788047d6fd54fc12eec74ce0d27 (patch)
tree0c394ea517cc093d8fe837ad5a7201d0d30c7afe /Documentation/block
parente34cbd307477ae07c5d8a8d0bd15e65a9ddaba5c (diff)
downloadlinux-87760e5eef359788047d6fd54fc12eec74ce0d27.tar.xz
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot more smooth, and has way less impact on other system activity. Background writeback should be, by definition, background activity. The fact that we flush huge bundles of it at the time means that it potentially has heavy impacts on foreground workloads, which isn't ideal. We can't easily limit the sizes of writes that we do, since that would impact file system layout in the presence of delayed allocation. So just throttle back buffered writeback, unless someone is waiting for it. The algorithm for when to throttle takes its inspiration in the CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors the minimum latencies of requests over a window of time. In that window of time, if the minimum latency of any request exceeds a given target, then a scale count is incremented and the queue depth is shrunk. The next monitoring window is shrunk accordingly. Unlike CoDel, if we hit a window that exhibits good behavior, then we simply increment the scale count and re-calculate the limits for that scale value. This prevents us from oscillating between a close-to-ideal value and max all the time, instead remaining in the windows where we get good behavior. Unlike CoDel, blk-wb allows the scale count to to negative. This happens if we primarily have writes going on. Unlike positive scale counts, this doesn't change the size of the monitoring window. When the heavy writers finish, blk-bw quickly snaps back to it's stable state of a zero scale count. The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency target to me met. It defaults to 2 msec for non-rotational storage, and 75 msec for rotational storage. Setting this value to '0' disables blk-wb. Generally, a user would not have to touch this setting. We don't enable WBT on devices that are managed with CFQ, and have a non-root block cgroup attached. If we have a proportional share setup on this particular disk, then the wbt throttling will interfere with that. We don't have a strong need for wbt for that case, since we will rely on CFQ doing that for us. Signed-off-by: Jens Axboe <axboe@fb.com>
Diffstat (limited to 'Documentation/block')
-rw-r--r--Documentation/block/queue-sysfs.txt7
1 files changed, 7 insertions, 0 deletions
diff --git a/Documentation/block/queue-sysfs.txt b/Documentation/block/queue-sysfs.txt
index 2a3904030dea..87abf1ac2939 100644
--- a/Documentation/block/queue-sysfs.txt
+++ b/Documentation/block/queue-sysfs.txt
@@ -169,5 +169,12 @@ This is the number of bytes the device can write in a single write-same
command. A value of '0' means write-same is not supported by this
device.
+wb_lat_usec (RW)
+----------------
+If the device is registered for writeback throttling, then this file shows
+the target minimum read latency. If this latency is exceeded in a given
+window of time (see wb_window_usec), then the writeback throttling will start
+scaling back writes.
+
Jens Axboe <jens.axboe@oracle.com>, February 2009