summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorWei Yang <richard.weiyang@gmail.com>2017-07-07 01:36:34 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2017-07-07 02:24:30 +0300
commite6d0e1dcf5f07fb04704b87ffab749589d29cb02 (patch)
tree73c8033b1e0e8d539d0a132591ab8234834beb37
parenta93cf07bc3fb4e7bc924d33c387dabc85086ea38 (diff)
downloadlinux-e6d0e1dcf5f07fb04704b87ffab749589d29cb02.tar.xz
mm/slub.c: wrap kmem_cache->cpu_partial in config CONFIG_SLUB_CPU_PARTIAL
kmem_cache->cpu_partial is just used when CONFIG_SLUB_CPU_PARTIAL is set, so wrap it with config CONFIG_SLUB_CPU_PARTIAL will save some space on 32bit arch. This patch wraps kmem_cache->cpu_partial in config CONFIG_SLUB_CPU_PARTIAL and wraps its sysfs too. Link: http://lkml.kernel.org/r/20170502144533.10729-4-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r--include/linux/slub_def.h13
-rw-r--r--mm/slub.c69
2 files changed, 51 insertions, 31 deletions
diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h
index a3e9492fed02..cc0faf3a90be 100644
--- a/include/linux/slub_def.h
+++ b/include/linux/slub_def.h
@@ -86,7 +86,9 @@ struct kmem_cache {
int size; /* The size of an object including meta data */
int object_size; /* The size of an object without meta data */
int offset; /* Free pointer offset. */
+#ifdef CONFIG_SLUB_CPU_PARTIAL
int cpu_partial; /* Number of per cpu partial objects to keep around */
+#endif
struct kmem_cache_order_objects oo;
/* Allocation and freeing of slabs */
@@ -131,6 +133,17 @@ struct kmem_cache {
struct kmem_cache_node *node[MAX_NUMNODES];
};
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+#define slub_cpu_partial(s) ((s)->cpu_partial)
+#define slub_set_cpu_partial(s, n) \
+({ \
+ slub_cpu_partial(s) = (n); \
+})
+#else
+#define slub_cpu_partial(s) (0)
+#define slub_set_cpu_partial(s, n)
+#endif // CONFIG_SLUB_CPU_PARTIAL
+
#ifdef CONFIG_SYSFS
#define SLAB_SUPPORTS_SYSFS
void sysfs_slab_release(struct kmem_cache *);
diff --git a/mm/slub.c b/mm/slub.c
index 48071c541275..388f66d1da5e 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -1829,7 +1829,7 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
stat(s, CPU_PARTIAL_NODE);
}
if (!kmem_cache_has_cpu_partial(s)
- || available > s->cpu_partial / 2)
+ || available > slub_cpu_partial(s) / 2)
break;
}
@@ -3404,6 +3404,39 @@ static void set_min_partial(struct kmem_cache *s, unsigned long min)
s->min_partial = min;
}
+static void set_cpu_partial(struct kmem_cache *s)
+{
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ /*
+ * cpu_partial determined the maximum number of objects kept in the
+ * per cpu partial lists of a processor.
+ *
+ * Per cpu partial lists mainly contain slabs that just have one
+ * object freed. If they are used for allocation then they can be
+ * filled up again with minimal effort. The slab will never hit the
+ * per node partial lists and therefore no locking will be required.
+ *
+ * This setting also determines
+ *
+ * A) The number of objects from per cpu partial slabs dumped to the
+ * per node list when we reach the limit.
+ * B) The number of objects in cpu partial slabs to extract from the
+ * per node list when we run out of per cpu objects. We only fetch
+ * 50% to keep some capacity around for frees.
+ */
+ if (!kmem_cache_has_cpu_partial(s))
+ s->cpu_partial = 0;
+ else if (s->size >= PAGE_SIZE)
+ s->cpu_partial = 2;
+ else if (s->size >= 1024)
+ s->cpu_partial = 6;
+ else if (s->size >= 256)
+ s->cpu_partial = 13;
+ else
+ s->cpu_partial = 30;
+#endif
+}
+
/*
* calculate_sizes() determines the order and the distribution of data within
* a slab object.
@@ -3562,33 +3595,7 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
*/
set_min_partial(s, ilog2(s->size) / 2);
- /*
- * cpu_partial determined the maximum number of objects kept in the
- * per cpu partial lists of a processor.
- *
- * Per cpu partial lists mainly contain slabs that just have one
- * object freed. If they are used for allocation then they can be
- * filled up again with minimal effort. The slab will never hit the
- * per node partial lists and therefore no locking will be required.
- *
- * This setting also determines
- *
- * A) The number of objects from per cpu partial slabs dumped to the
- * per node list when we reach the limit.
- * B) The number of objects in cpu partial slabs to extract from the
- * per node list when we run out of per cpu objects. We only fetch
- * 50% to keep some capacity around for frees.
- */
- if (!kmem_cache_has_cpu_partial(s))
- s->cpu_partial = 0;
- else if (s->size >= PAGE_SIZE)
- s->cpu_partial = 2;
- else if (s->size >= 1024)
- s->cpu_partial = 6;
- else if (s->size >= 256)
- s->cpu_partial = 13;
- else
- s->cpu_partial = 30;
+ set_cpu_partial(s);
#ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000;
@@ -3975,7 +3982,7 @@ void __kmemcg_cache_deactivate(struct kmem_cache *s)
* Disable empty slabs caching. Used to avoid pinning offline
* memory cgroups by kmem pages that can be freed.
*/
- s->cpu_partial = 0;
+ slub_set_cpu_partial(s, 0);
s->min_partial = 0;
/*
@@ -4915,7 +4922,7 @@ SLAB_ATTR(min_partial);
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%u\n", s->cpu_partial);
+ return sprintf(buf, "%u\n", slub_cpu_partial(s));
}
static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
@@ -4930,7 +4937,7 @@ static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
if (objects && !kmem_cache_has_cpu_partial(s))
return -EINVAL;
- s->cpu_partial = objects;
+ slub_set_cpu_partial(s, objects);
flush_all(s);
return length;
}