// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2017 Realtek Corporation */ #define _HAL_INTF_C_ #include #include const u32 _chip_type_to_odm_ic_type[] = { 0, ODM_RTL8188E, ODM_RTL8192E, ODM_RTL8812, ODM_RTL8821, ODM_RTL8723B, ODM_RTL8814A, ODM_RTL8703B, ODM_RTL8188F, ODM_RTL8822B, ODM_RTL8723D, ODM_RTL8821C, 0, }; void rtw_hal_chip_configure(struct adapter *adapt) { adapt->hal_func.intf_chip_configure(adapt); } /* * Description: * Read chip internal ROM data * * Return: * _SUCCESS success * _FAIL fail */ u8 rtw_hal_read_chip_info(struct adapter *adapt) { u8 rtn = _SUCCESS; u8 hci_type = rtw_get_intf_type(adapt); unsigned long start = rtw_get_current_time(); /* before access eFuse, make sure card enable has been called */ if ((hci_type == RTW_SDIO || hci_type == RTW_GSPI) && !rtw_is_hw_init_completed(adapt)) rtw_hal_power_on(adapt); rtn = adapt->hal_func.read_adapter_info(adapt); if ((hci_type == RTW_SDIO || hci_type == RTW_GSPI) && !rtw_is_hw_init_completed(adapt)) rtw_hal_power_off(adapt); RTW_INFO("%s in %d ms\n", __func__, rtw_get_passing_time_ms(start)); return rtn; } void rtw_hal_read_chip_version(struct adapter *adapt) { adapt->hal_func.read_chip_version(adapt); rtw_odm_init_ic_type(adapt); } void rtw_hal_def_value_init(struct adapter *adapt) { if (is_primary_adapter(adapt)) { adapt->hal_func.init_default_value(adapt); rtw_init_hal_com_default_value(adapt); { struct dvobj_priv *dvobj = adapter_to_dvobj(adapt); struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapt); /* hal_spec is ready here */ dvobj->macid_ctl.num = rtw_min(hal_spec->macid_num, MACID_NUM_SW_LIMIT); dvobj->cam_ctl.sec_cap = hal_spec->sec_cap; dvobj->cam_ctl.num = rtw_min(hal_spec->sec_cam_ent_num, SEC_CAM_ENT_NUM_SW_LIMIT); } } } u8 rtw_hal_data_init(struct adapter *adapt) { if (is_primary_adapter(adapt)) { adapt->hal_data_sz = sizeof(struct hal_com_data); adapt->HalData = vzalloc(adapt->hal_data_sz); if (!adapt->HalData) { RTW_INFO("cant not alloc memory for HAL DATA\n"); return _FAIL; } } return _SUCCESS; } void rtw_hal_data_deinit(struct adapter *adapt) { if (is_primary_adapter(adapt)) { if (adapt->HalData) { #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE phy_free_filebuf(adapt); #endif vfree(adapt->HalData); adapt->HalData = NULL; adapt->hal_data_sz = 0; } } } void rtw_hal_free_data(struct adapter *adapt) { /* free HAL Data */ rtw_hal_data_deinit(adapt); } void rtw_hal_dm_init(struct adapter *adapt) { if (is_primary_adapter(adapt)) { struct hal_com_data * pHalData = GET_HAL_DATA(adapt); adapt->hal_func.dm_init(adapt); spin_lock_init(&pHalData->IQKSpinLock); phy_load_tx_power_ext_info(adapt, 1); } } void rtw_hal_dm_deinit(struct adapter *adapt) { if (is_primary_adapter(adapt)) adapt->hal_func.dm_deinit(adapt); } void rtw_hal_sw_led_init(struct adapter *adapt) { if (adapt->hal_func.InitSwLeds) adapt->hal_func.InitSwLeds(adapt); } void rtw_hal_sw_led_deinit(struct adapter *adapt) { if (adapt->hal_func.DeInitSwLeds) adapt->hal_func.DeInitSwLeds(adapt); } u32 rtw_hal_power_on(struct adapter *adapt) { u32 ret = 0; struct hal_com_data * pHalData = GET_HAL_DATA(adapt); ret = adapt->hal_func.hal_power_on(adapt); if ((ret == _SUCCESS) && (pHalData->EEPROMBluetoothCoexist)) rtw_btcoex_PowerOnSetting(adapt); return ret; } void rtw_hal_power_off(struct adapter *adapt) { struct macid_ctl_t *macid_ctl = &adapt->dvobj->macid_ctl; memset(macid_ctl->h2c_msr, 0, MACID_NUM_SW_LIMIT); rtw_btcoex_PowerOffSetting(adapt); adapt->hal_func.hal_power_off(adapt); } static void rtw_hal_init_opmode(struct adapter *adapt) { enum ndis_802_11_network_infrastructure networkType = Ndis802_11InfrastructureMax; struct mlme_priv *pmlmepriv = &(adapt->mlmepriv); int fw_state; fw_state = get_fwstate(pmlmepriv); if (fw_state & WIFI_ADHOC_STATE) networkType = Ndis802_11IBSS; else if (fw_state & WIFI_STATION_STATE) networkType = Ndis802_11Infrastructure; else if (fw_state & WIFI_AP_STATE) networkType = Ndis802_11APMode; else return; rtw_setopmode_cmd(adapt, networkType, RTW_CMDF_DIRECTLY); } uint rtw_hal_init(struct adapter *adapt) { uint status = _SUCCESS; struct dvobj_priv *dvobj = adapter_to_dvobj(adapt); struct hal_com_data * pHalData = GET_HAL_DATA(adapt); int i; status = adapt->hal_func.hal_init(adapt); if (status == _SUCCESS) { pHalData->hw_init_completed = true; rtw_restore_mac_addr(adapt); if (adapt->registrypriv.notch_filter == 1) rtw_hal_notch_filter(adapt, 1); for (i = 0; i < dvobj->iface_nums; i++) rtw_sec_restore_wep_key(dvobj->adapters[i]); rtw_led_control(adapt, LED_CTL_POWER_ON); init_hw_mlme_ext(adapt); rtw_hal_init_opmode(adapt); rtw_bb_rf_gain_offset(adapt); } else { pHalData->hw_init_completed = false; RTW_INFO("rtw_hal_init: hal_init fail\n"); } return status; } uint rtw_hal_deinit(struct adapter *adapt) { uint status = _SUCCESS; struct hal_com_data * pHalData = GET_HAL_DATA(adapt); status = adapt->hal_func.hal_deinit(adapt); if (status == _SUCCESS) { rtw_led_control(adapt, LED_CTL_POWER_OFF); pHalData->hw_init_completed = false; } else RTW_INFO("\n rtw_hal_deinit: hal_init fail\n"); return status; } u8 rtw_hal_set_hwreg(struct adapter *adapt, u8 variable, u8 *val) { return adapt->hal_func.set_hw_reg_handler(adapt, variable, val); } void rtw_hal_get_hwreg(struct adapter *adapt, u8 variable, u8 *val) { adapt->hal_func.GetHwRegHandler(adapt, variable, val); } u8 rtw_hal_set_def_var(struct adapter *adapt, enum hal_def_variable eVariable, void * pValue) { return adapt->hal_func.SetHalDefVarHandler(adapt, eVariable, pValue); } u8 rtw_hal_get_def_var(struct adapter *adapt, enum hal_def_variable eVariable, void * pValue) { return adapt->hal_func.get_hal_def_var_handler(adapt, eVariable, pValue); } void rtw_hal_set_odm_var(struct adapter *adapt, enum hal_odm_variable eVariable, void * pValue1, bool bSet) { adapt->hal_func.SetHalODMVarHandler(adapt, eVariable, pValue1, bSet); } void rtw_hal_get_odm_var(struct adapter *adapt, enum hal_odm_variable eVariable, void * pValue1, void * pValue2) { adapt->hal_func.GetHalODMVarHandler(adapt, eVariable, pValue1, pValue2); } /* FOR SDIO & PCIE */ void rtw_hal_enable_interrupt(struct adapter *adapt) { } /* FOR SDIO & PCIE */ void rtw_hal_disable_interrupt(struct adapter *adapt) { } u8 rtw_hal_check_ips_status(struct adapter *adapt) { u8 val = false; if (adapt->hal_func.check_ips_status) val = adapt->hal_func.check_ips_status(adapt); else RTW_INFO("%s: hal_func.check_ips_status is NULL!\n", __func__); return val; } int rtw_hal_fw_dl(struct adapter *adapt, bool wowlan) { return adapt->hal_func.fw_dl(adapt, wowlan); } u32 rtw_hal_inirp_init(struct adapter *adapt) { if (is_primary_adapter(adapt)) return adapt->hal_func.inirp_init(adapt); return _SUCCESS; } u32 rtw_hal_inirp_deinit(struct adapter *adapt) { if (is_primary_adapter(adapt)) return adapt->hal_func.inirp_deinit(adapt); return _SUCCESS; } /* for USB Auto-suspend */ u8 rtw_hal_intf_ps_func(struct adapter *adapt, enum hal_intf_ps_func efunc_id, u8 *val) { if (adapt->hal_func.interface_ps_func) return adapt->hal_func.interface_ps_func(adapt, efunc_id, val); return _FAIL; } int rtw_hal_xmitframe_enqueue(struct adapter *adapt, struct xmit_frame *pxmitframe) { return adapt->hal_func.hal_xmitframe_enqueue(adapt, pxmitframe); } int rtw_hal_xmit(struct adapter *adapt, struct xmit_frame *pxmitframe) { return adapt->hal_func.hal_xmit(adapt, pxmitframe); } /* * [IMPORTANT] This function would be run in interrupt context. */ int rtw_hal_mgnt_xmit(struct adapter *adapt, struct xmit_frame *pmgntframe) { update_mgntframe_attrib_addr(adapt, pmgntframe); #if defined(CONFIG_IEEE80211W) || defined(CONFIG_RTW_MESH) if ((!MLME_IS_MESH(adapt) && SEC_IS_BIP_KEY_INSTALLED(&adapt->securitypriv)) #ifdef CONFIG_RTW_MESH || (MLME_IS_MESH(adapt) && adapt->mesh_info.mesh_auth_id) #endif ) rtw_mgmt_xmitframe_coalesce(adapt, pmgntframe->pkt, pmgntframe); #endif return adapt->hal_func.mgnt_xmit(adapt, pmgntframe); } int rtw_hal_init_xmit_priv(struct adapter *adapt) { return adapt->hal_func.init_xmit_priv(adapt); } void rtw_hal_free_xmit_priv(struct adapter *adapt) { adapt->hal_func.free_xmit_priv(adapt); } int rtw_hal_init_recv_priv(struct adapter *adapt) { return adapt->hal_func.init_recv_priv(adapt); } void rtw_hal_free_recv_priv(struct adapter *adapt) { adapt->hal_func.free_recv_priv(adapt); } static void rtw_sta_ra_registed(struct adapter *adapt, struct sta_info *psta) { struct hal_com_data *hal_data = GET_HAL_DATA(adapt); if (!psta) { RTW_ERR(FUNC_ADPT_FMT" sta is NULL\n", FUNC_ADPT_ARG(adapt)); rtw_warn_on(1); return; } if (MLME_IS_AP(adapt) || MLME_IS_MESH(adapt)) { if (psta->cmn.aid > adapt->stapriv.max_aid) { RTW_ERR("station aid %d exceed the max number\n", psta->cmn.aid); rtw_warn_on(1); return; } rtw_ap_update_sta_ra_info(adapt, psta); } psta->cmn.ra_info.ra_bw_mode = rtw_get_tx_bw_mode(adapt, psta); /*set correct initial date rate for each mac_id */ hal_data->INIDATA_RATE[psta->cmn.mac_id] = psta->init_rate; rtw_phydm_ra_registed(adapt, psta); } void rtw_hal_update_ra_mask(struct sta_info *psta) { struct adapter *adapt; if (!psta) return; adapt = psta->adapt; rtw_sta_ra_registed(adapt, psta); } /* Start specifical interface thread */ void rtw_hal_start_thread(struct adapter *adapt) { } /* Start specifical interface thread */ void rtw_hal_stop_thread(struct adapter *adapt) { } u32 rtw_hal_read_bbreg(struct adapter *adapt, u32 RegAddr, u32 BitMask) { u32 data = 0; if (adapt->hal_func.read_bbreg) data = adapt->hal_func.read_bbreg(adapt, RegAddr, BitMask); return data; } void rtw_hal_write_bbreg(struct adapter *adapt, u32 RegAddr, u32 BitMask, u32 Data) { if (adapt->hal_func.write_bbreg) adapt->hal_func.write_bbreg(adapt, RegAddr, BitMask, Data); } u32 rtw_hal_read_rfreg(struct adapter *adapt, enum rf_path eRFPath, u32 RegAddr, u32 BitMask) { u32 data = 0; if (adapt->hal_func.read_rfreg) { data = adapt->hal_func.read_rfreg(adapt, eRFPath, RegAddr, BitMask); if (match_rf_read_sniff_ranges(eRFPath, RegAddr, BitMask)) { RTW_INFO("DBG_IO rtw_hal_read_rfreg(%u, 0x%04x, 0x%08x) read:0x%08x(0x%08x)\n" , eRFPath, RegAddr, BitMask, (data << PHY_CalculateBitShift(BitMask)), data); } } return data; } void rtw_hal_write_rfreg(struct adapter *adapt, enum rf_path eRFPath, u32 RegAddr, u32 BitMask, u32 Data) { if (adapt->hal_func.write_rfreg) { if (match_rf_write_sniff_ranges(eRFPath, RegAddr, BitMask)) { RTW_INFO("DBG_IO rtw_hal_write_rfreg(%u, 0x%04x, 0x%08x) write:0x%08x(0x%08x)\n" , eRFPath, RegAddr, BitMask, (Data << PHY_CalculateBitShift(BitMask)), Data); } adapt->hal_func.write_rfreg(adapt, eRFPath, RegAddr, BitMask, Data); } } void rtw_hal_set_chnl_bw(struct adapter *adapt, u8 channel, enum channel_width Bandwidth, u8 Offset40, u8 Offset80) { struct hal_com_data * pHalData = GET_HAL_DATA(adapt); u8 cch_80 = Bandwidth == CHANNEL_WIDTH_80 ? channel : 0; u8 cch_40 = Bandwidth == CHANNEL_WIDTH_40 ? channel : 0; u8 cch_20 = Bandwidth == CHANNEL_WIDTH_20 ? channel : 0; if (rtw_phydm_is_iqk_in_progress(adapt)) RTW_ERR("%s, %d, IQK may race condition\n", __func__, __LINE__); if (cch_80 != 0) cch_40 = rtw_get_scch_by_cch_offset(cch_80, CHANNEL_WIDTH_80, Offset80); if (cch_40 != 0) cch_20 = rtw_get_scch_by_cch_offset(cch_40, CHANNEL_WIDTH_40, Offset40); pHalData->cch_80 = cch_80; pHalData->cch_40 = cch_40; pHalData->cch_20 = cch_20; adapt->hal_func.set_chnl_bw_handler(adapt, channel, Bandwidth, Offset40, Offset80); } void rtw_hal_set_tx_power_level(struct adapter *adapt, u8 channel) { if (adapt->hal_func.set_tx_power_level_handler) adapt->hal_func.set_tx_power_level_handler(adapt, channel); } void rtw_hal_get_tx_power_level(struct adapter *adapt, int *powerlevel) { if (adapt->hal_func.get_tx_power_level_handler) adapt->hal_func.get_tx_power_level_handler(adapt, powerlevel); } void rtw_hal_dm_watchdog(struct adapter *adapt) { rtw_hal_turbo_edca(adapt); adapt->hal_func.hal_dm_watchdog(adapt); #ifdef CONFIG_PCI_DYNAMIC_ASPM rtw_pci_aspm_config_dynamic_l1_ilde_time(adapt); #endif } void rtw_hal_bcn_related_reg_setting(struct adapter *adapt) { adapt->hal_func.SetBeaconRelatedRegistersHandler(adapt); } void rtw_hal_notch_filter(struct adapter *adapter, bool enable) { if (adapter->hal_func.hal_notch_filter) adapter->hal_func.hal_notch_filter(adapter, enable); } #ifdef CONFIG_FW_C2H_REG inline bool rtw_hal_c2h_valid(struct adapter *adapter, u8 *buf) { struct hal_com_data *HalData = GET_HAL_DATA(adapter); struct hal_version *hal_ver = &HalData->version_id; bool ret = _FAIL; ret = C2H_ID_88XX(buf) || C2H_PLEN_88XX(buf); return ret; } inline int rtw_hal_c2h_evt_read(struct adapter *adapter, u8 *buf) { struct hal_com_data *HalData = GET_HAL_DATA(adapter); struct hal_version *hal_ver = &HalData->version_id; int ret = _FAIL; ret = c2h_evt_read_88xx(adapter, buf); return ret; } bool rtw_hal_c2h_reg_hdr_parse(struct adapter *adapter, u8 *buf, u8 *id, u8 *seq, u8 *plen, u8 **payload) { struct hal_com_data *HalData = GET_HAL_DATA(adapter); struct hal_version *hal_ver = &HalData->version_id; bool ret = _FAIL; *id = C2H_ID_88XX(buf); *seq = C2H_SEQ_88XX(buf); *plen = C2H_PLEN_88XX(buf); *payload = C2H_PAYLOAD_88XX(buf); ret = _SUCCESS; return ret; } #endif /* CONFIG_FW_C2H_REG */ bool rtw_hal_c2h_pkt_hdr_parse(struct adapter *adapter, u8 *buf, u16 len, u8 *id, u8 *seq, u8 *plen, u8 **payload) { bool ret = _FAIL; if (!buf || len > 256 || len < 3) goto exit; *id = C2H_ID_88XX(buf); *seq = C2H_SEQ_88XX(buf); *plen = len - 2; *payload = C2H_PAYLOAD_88XX(buf); ret = _SUCCESS; exit: return ret; } int c2h_handler(struct adapter *adapter, u8 id, u8 seq, u8 plen, u8 *payload) { u8 sub_id = 0; int ret = _SUCCESS; switch (id) { case C2H_FW_SCAN_COMPLETE: RTW_INFO("[C2H], FW Scan Complete\n"); break; case C2H_BT_INFO: rtw_btcoex_BtInfoNotify(adapter, plen, payload); break; case C2H_BT_MP_INFO: rtw_btcoex_BtMpRptNotify(adapter, plen, payload); break; case C2H_MAILBOX_STATUS: RTW_DBG_DUMP("C2H_MAILBOX_STATUS: ", payload, plen); break; case C2H_WLAN_INFO: rtw_btcoex_WlFwDbgInfoNotify(adapter, payload, plen); break; case C2H_IQK_FINISH: c2h_iqk_offload(adapter, payload, plen); break; case C2H_MAC_HIDDEN_RPT: c2h_mac_hidden_rpt_hdl(adapter, payload, plen); break; case C2H_MAC_HIDDEN_RPT_2: c2h_mac_hidden_rpt_2_hdl(adapter, payload, plen); break; case C2H_DEFEATURE_DBG: c2h_defeature_dbg_hdl(adapter, payload, plen); break; case C2H_CUSTOMER_STR_RPT: c2h_customer_str_rpt_hdl(adapter, payload, plen); break; case C2H_CUSTOMER_STR_RPT_2: c2h_customer_str_rpt_2_hdl(adapter, payload, plen); break; case C2H_EXTEND: sub_id = payload[0]; __attribute__((__fallthrough__)); default: if (!phydm_c2H_content_parsing(adapter_to_phydm(adapter), id, plen, payload)) ret = _FAIL; break; } if (ret != _SUCCESS) { if (id == C2H_EXTEND) RTW_WARN("%s: unknown C2H(0x%02x, 0x%02x)\n", __func__, id, sub_id); else RTW_WARN("%s: unknown C2H(0x%02x)\n", __func__, id); } return ret; } int rtw_hal_c2h_handler(struct adapter *adapter, u8 id, u8 seq, u8 plen, u8 *payload) { int ret = _FAIL; ret = adapter->hal_func.c2h_handler(adapter, id, seq, plen, payload); if (ret != _SUCCESS) ret = c2h_handler(adapter, id, seq, plen, payload); return ret; } int rtw_hal_c2h_id_handle_directly(struct adapter *adapter, u8 id, u8 seq, u8 plen, u8 *payload) { switch (id) { case C2H_CCX_TX_RPT: case C2H_BT_MP_INFO: case C2H_FW_CHNL_SWITCH_COMPLETE: case C2H_IQK_FINISH: case C2H_MCC: case C2H_BCN_EARLY_RPT: case C2H_AP_REQ_TXRPT: case C2H_SPC_STAT: return true; default: return false; } } int rtw_hal_is_disable_sw_channel_plan(struct adapter * adapt) { return GET_HAL_DATA(adapt)->bDisableSWChannelPlan; } static int _rtw_hal_macid_sleep(struct adapter *adapter, u8 macid, u8 sleep) { struct macid_ctl_t *macid_ctl = adapter_to_macidctl(adapter); u16 reg_sleep; u8 bit_shift; u32 val32; int ret = _FAIL; if (macid >= macid_ctl->num) { RTW_ERR(ADPT_FMT" %s invalid macid(%u)\n" , ADPT_ARG(adapter), sleep ? "sleep" : "wakeup" , macid); goto exit; } if (macid < 32) { reg_sleep = macid_ctl->reg_sleep_m0; bit_shift = macid; #if (MACID_NUM_SW_LIMIT > 32) } else if (macid < 64) { reg_sleep = macid_ctl->reg_sleep_m1; bit_shift = macid - 32; #endif #if (MACID_NUM_SW_LIMIT > 64) } else if (macid < 96) { reg_sleep = macid_ctl->reg_sleep_m2; bit_shift = macid - 64; #endif #if (MACID_NUM_SW_LIMIT > 96) } else if (macid < 128) { reg_sleep = macid_ctl->reg_sleep_m3; bit_shift = macid - 96; #endif } else { rtw_warn_on(1); goto exit; } if (!reg_sleep) { rtw_warn_on(1); goto exit; } val32 = rtw_read32(adapter, reg_sleep); RTW_INFO(ADPT_FMT" %s macid=%d, ori reg_0x%03x=0x%08x\n" , ADPT_ARG(adapter), sleep ? "sleep" : "wakeup" , macid, reg_sleep, val32); ret = _SUCCESS; if (sleep) { if (val32 & BIT(bit_shift)) goto exit; val32 |= BIT(bit_shift); } else { if (!(val32 & BIT(bit_shift))) goto exit; val32 &= ~BIT(bit_shift); } rtw_write32(adapter, reg_sleep, val32); exit: return ret; } inline int rtw_hal_macid_sleep(struct adapter *adapter, u8 macid) { return _rtw_hal_macid_sleep(adapter, macid, 1); } inline int rtw_hal_macid_wakeup(struct adapter *adapter, u8 macid) { return _rtw_hal_macid_sleep(adapter, macid, 0); } static int _rtw_hal_macid_bmp_sleep(struct adapter *adapter, struct macid_bmp *bmp, u8 sleep) { struct macid_ctl_t *macid_ctl = adapter_to_macidctl(adapter); u16 reg_sleep; u32 *m = &bmp->m0; u8 mid = 0; u32 val32; do { if (*m == 0) goto move_next; if (mid == 0) reg_sleep = macid_ctl->reg_sleep_m0; #if (MACID_NUM_SW_LIMIT > 32) else if (mid == 1) reg_sleep = macid_ctl->reg_sleep_m1; #endif #if (MACID_NUM_SW_LIMIT > 64) else if (mid == 2) reg_sleep = macid_ctl->reg_sleep_m2; #endif #if (MACID_NUM_SW_LIMIT > 96) else if (mid == 3) reg_sleep = macid_ctl->reg_sleep_m3; #endif else { rtw_warn_on(1); break; } if (!reg_sleep) { rtw_warn_on(1); break; } val32 = rtw_read32(adapter, reg_sleep); RTW_INFO(ADPT_FMT" %s m%u=0x%08x, ori reg_0x%03x=0x%08x\n" , ADPT_ARG(adapter), sleep ? "sleep" : "wakeup" , mid, *m, reg_sleep, val32); if (sleep) { if ((val32 & *m) == *m) goto move_next; val32 |= *m; } else { if ((val32 & *m) == 0) goto move_next; val32 &= ~(*m); } rtw_write32(adapter, reg_sleep, val32); move_next: m++; mid++; } while (mid * 32 < MACID_NUM_SW_LIMIT); return _SUCCESS; } inline int rtw_hal_macid_sleep_all_used(struct adapter *adapter) { struct macid_ctl_t *macid_ctl = adapter_to_macidctl(adapter); return _rtw_hal_macid_bmp_sleep(adapter, &macid_ctl->used, 1); } inline int rtw_hal_macid_wakeup_all_used(struct adapter *adapter) { struct macid_ctl_t *macid_ctl = adapter_to_macidctl(adapter); return _rtw_hal_macid_bmp_sleep(adapter, &macid_ctl->used, 0); } int rtw_hal_fill_h2c_cmd(struct adapter * adapt, u8 ElementID, u32 CmdLen, u8 *pCmdBuffer) { struct adapter *pri_adapter = GET_PRIMARY_ADAPTER(adapt); if (GET_HAL_DATA(pri_adapter)->bFWReady) return adapt->hal_func.fill_h2c_cmd(adapt, ElementID, CmdLen, pCmdBuffer); else if (adapt->registrypriv.mp_mode == 0) RTW_PRINT(FUNC_ADPT_FMT" FW doesn't exit when no MP mode, by pass H2C id:0x%02x\n" , FUNC_ADPT_ARG(adapt), ElementID); return _FAIL; } void rtw_hal_fill_fake_txdesc(struct adapter *adapt, u8 *pDesc, u32 BufferLen, u8 IsPsPoll, u8 IsBTQosNull, u8 bDataFrame) { adapt->hal_func.fill_fake_txdesc(adapt, pDesc, BufferLen, IsPsPoll, IsBTQosNull, bDataFrame); } u8 rtw_hal_get_txbuff_rsvd_page_num(struct adapter *adapter, bool wowlan) { u8 num = 0; if (adapter->hal_func.hal_get_tx_buff_rsvd_page_num) { num = adapter->hal_func.hal_get_tx_buff_rsvd_page_num(adapter, wowlan); } return num; } void rtw_hal_fw_correct_bcn(struct adapter *adapt) { if (adapt->hal_func.fw_correct_bcn) adapt->hal_func.fw_correct_bcn(adapt); } void rtw_hal_set_tx_power_index(struct adapter * adapt, u32 powerindex, enum rf_path rfpath, u8 rate) { return adapt->hal_func.set_tx_power_index_handler(adapt, powerindex, rfpath, rate); } u8 rtw_hal_get_tx_power_index(struct adapter * adapt, enum rf_path rfpath, u8 rate, u8 bandwidth, u8 channel, struct txpwr_idx_comp *tic) { return adapt->hal_func.get_tx_power_index_handler(adapt, rfpath, rate, bandwidth, channel, tic); } #define rtw_hal_error_msg(ops_fun) \ RTW_PRINT("### %s - Error : Please hook hal_func.%s ###\n", __func__, ops_fun) u8 rtw_hal_ops_check(struct adapter *adapt) { u8 ret = _SUCCESS; /*** initialize section ***/ if (!adapt->hal_func.read_chip_version) { rtw_hal_error_msg("read_chip_version"); ret = _FAIL; } if (!adapt->hal_func.init_default_value) { rtw_hal_error_msg("init_default_value"); ret = _FAIL; } if (!adapt->hal_func.intf_chip_configure) { rtw_hal_error_msg("intf_chip_configure"); ret = _FAIL; } if (!adapt->hal_func.read_adapter_info) { rtw_hal_error_msg("read_adapter_info"); ret = _FAIL; } if (!adapt->hal_func.hal_power_on) { rtw_hal_error_msg("hal_power_on"); ret = _FAIL; } if (!adapt->hal_func.hal_power_off) { rtw_hal_error_msg("hal_power_off"); ret = _FAIL; } if (!adapt->hal_func.hal_init) { rtw_hal_error_msg("hal_init"); ret = _FAIL; } if (!adapt->hal_func.hal_deinit) { rtw_hal_error_msg("hal_deinit"); ret = _FAIL; } /*** xmit section ***/ if (!adapt->hal_func.init_xmit_priv) { rtw_hal_error_msg("init_xmit_priv"); ret = _FAIL; } if (!adapt->hal_func.free_xmit_priv) { rtw_hal_error_msg("free_xmit_priv"); ret = _FAIL; } if (!adapt->hal_func.hal_xmit) { rtw_hal_error_msg("hal_xmit"); ret = _FAIL; } if (!adapt->hal_func.mgnt_xmit) { rtw_hal_error_msg("mgnt_xmit"); ret = _FAIL; } if (!adapt->hal_func.hal_xmitframe_enqueue) { rtw_hal_error_msg("hal_xmitframe_enqueue"); ret = _FAIL; } /*** recv section ***/ if (!adapt->hal_func.init_recv_priv) { rtw_hal_error_msg("init_recv_priv"); ret = _FAIL; } if (!adapt->hal_func.free_recv_priv) { rtw_hal_error_msg("free_recv_priv"); ret = _FAIL; } if (!adapt->hal_func.inirp_init) { rtw_hal_error_msg("inirp_init"); ret = _FAIL; } if (!adapt->hal_func.inirp_deinit) { rtw_hal_error_msg("inirp_deinit"); ret = _FAIL; } /*** DM section ***/ if (!adapt->hal_func.dm_init) { rtw_hal_error_msg("dm_init"); ret = _FAIL; } if (!adapt->hal_func.dm_deinit) { rtw_hal_error_msg("dm_deinit"); ret = _FAIL; } if (!adapt->hal_func.hal_dm_watchdog) { rtw_hal_error_msg("hal_dm_watchdog"); ret = _FAIL; } /*** xxx section ***/ if (!adapt->hal_func.set_chnl_bw_handler) { rtw_hal_error_msg("set_chnl_bw_handler"); ret = _FAIL; } if (!adapt->hal_func.set_hw_reg_handler) { rtw_hal_error_msg("set_hw_reg_handler"); ret = _FAIL; } if (!adapt->hal_func.GetHwRegHandler) { rtw_hal_error_msg("GetHwRegHandler"); ret = _FAIL; } if (!adapt->hal_func.get_hal_def_var_handler) { rtw_hal_error_msg("get_hal_def_var_handler"); ret = _FAIL; } if (!adapt->hal_func.SetHalDefVarHandler) { rtw_hal_error_msg("SetHalDefVarHandler"); ret = _FAIL; } if (!adapt->hal_func.GetHalODMVarHandler) { rtw_hal_error_msg("GetHalODMVarHandler"); ret = _FAIL; } if (!adapt->hal_func.SetHalODMVarHandler) { rtw_hal_error_msg("SetHalODMVarHandler"); ret = _FAIL; } if (!adapt->hal_func.SetBeaconRelatedRegistersHandler) { rtw_hal_error_msg("SetBeaconRelatedRegistersHandler"); ret = _FAIL; } if (!adapt->hal_func.fill_h2c_cmd) { rtw_hal_error_msg("fill_h2c_cmd"); ret = _FAIL; } if (!adapt->hal_func.c2h_handler) { rtw_hal_error_msg("c2h_handler"); ret = _FAIL; } if (!adapt->hal_func.fill_fake_txdesc) { rtw_hal_error_msg("fill_fake_txdesc"); ret = _FAIL; } if (!adapt->hal_func.hal_get_tx_buff_rsvd_page_num) { rtw_hal_error_msg("hal_get_tx_buff_rsvd_page_num"); ret = _FAIL; } if (!adapt->hal_func.fw_dl) { rtw_hal_error_msg("fw_dl"); ret = _FAIL; } if (!adapt->hal_func.get_tx_power_index_handler) { rtw_hal_error_msg("get_tx_power_index_handler"); ret = _FAIL; } /*** SReset section ***/ return ret; }