// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2017 Realtek Corporation */ #define _HAL_COM_PHYCFG_C_ #include #include #define PG_TXPWR_MSB_DIFF_S4BIT(_pg_v) (((_pg_v) & 0xf0) >> 4) #define PG_TXPWR_LSB_DIFF_S4BIT(_pg_v) ((_pg_v) & 0x0f) #define PG_TXPWR_MSB_DIFF_TO_S8BIT(_pg_v) ((PG_TXPWR_MSB_DIFF_S4BIT(_pg_v) & BIT3) ? (PG_TXPWR_MSB_DIFF_S4BIT(_pg_v) | 0xF0) : PG_TXPWR_MSB_DIFF_S4BIT(_pg_v)) #define PG_TXPWR_LSB_DIFF_TO_S8BIT(_pg_v) ((PG_TXPWR_LSB_DIFF_S4BIT(_pg_v) & BIT3) ? (PG_TXPWR_LSB_DIFF_S4BIT(_pg_v) | 0xF0) : PG_TXPWR_LSB_DIFF_S4BIT(_pg_v)) #define IS_PG_TXPWR_BASE_INVALID(_base) ((_base) > 63) #define IS_PG_TXPWR_DIFF_INVALID(_diff) ((_diff) > 7 || (_diff) < -8) #define PG_TXPWR_INVALID_BASE 255 #define PG_TXPWR_INVALID_DIFF 8 #if !IS_PG_TXPWR_BASE_INVALID(PG_TXPWR_INVALID_BASE) #error "PG_TXPWR_BASE definition has problem" #endif #if !IS_PG_TXPWR_DIFF_INVALID(PG_TXPWR_INVALID_DIFF) #error "PG_TXPWR_DIFF definition has problem" #endif #define PG_TXPWR_SRC_PG_DATA 0 #define PG_TXPWR_SRC_IC_DEF 1 #define PG_TXPWR_SRC_DEF 2 #define PG_TXPWR_SRC_NUM 3 static const char *const _pg_txpwr_src_str[] = { "PG_DATA", "IC_DEF", "DEF", "UNKNOWN" }; #define pg_txpwr_src_str(src) (((src) >= PG_TXPWR_SRC_NUM) ? _pg_txpwr_src_str[PG_TXPWR_SRC_NUM] : _pg_txpwr_src_str[(src)]) #ifndef DBG_PG_TXPWR_READ #define DBG_PG_TXPWR_READ 0 #endif #if DBG_PG_TXPWR_READ static void dump_pg_txpwr_info_2g(void *sel, struct TxPowerInfo24G *txpwr_info, u8 rfpath_num, u8 max_tx_cnt) { int path, group, tx_idx; RTW_PRINT_SEL(sel, "2.4G\n"); RTW_PRINT_SEL(sel, "CCK-1T base:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (group = 0; group < MAX_CHNL_GROUP_24G; group++) _RTW_PRINT_SEL(sel, "G%02d ", group); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (group = 0; group < MAX_CHNL_GROUP_24G; group++) _RTW_PRINT_SEL(sel, "%3u ", txpwr_info->IndexCCK_Base[path][group]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "CCK diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) _RTW_PRINT_SEL(sel, "%dT ", path + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", txpwr_info->CCK_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW40-1S base:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) _RTW_PRINT_SEL(sel, "G%02d ", group); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) _RTW_PRINT_SEL(sel, "%3u ", txpwr_info->IndexBW40_Base[path][group]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "OFDM diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) _RTW_PRINT_SEL(sel, "%dT ", path + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", txpwr_info->OFDM_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW20 diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) _RTW_PRINT_SEL(sel, "%dS ", path + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW20_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW40 diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) _RTW_PRINT_SEL(sel, "%dS ", path + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW40_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); } static void dump_pg_txpwr_info_5g(void *sel, struct TxPowerInfo5G *txpwr_info, u8 rfpath_num, u8 max_tx_cnt) { int path, group, tx_idx; RTW_PRINT_SEL(sel, "5G\n"); RTW_PRINT_SEL(sel, "BW40-1S base:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (group = 0; group < MAX_CHNL_GROUP_5G; group++) _RTW_PRINT_SEL(sel, "G%02d ", group); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (group = 0; group < MAX_CHNL_GROUP_5G; group++) _RTW_PRINT_SEL(sel, "%3u ", txpwr_info->IndexBW40_Base[path][group]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "OFDM diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) _RTW_PRINT_SEL(sel, "%dT ", path + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", txpwr_info->OFDM_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW20 diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) _RTW_PRINT_SEL(sel, "%dS ", path + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW20_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW40 diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) _RTW_PRINT_SEL(sel, "%dS ", path + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW40_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW80 diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) _RTW_PRINT_SEL(sel, "%dS ", path + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW80_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW160 diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) _RTW_PRINT_SEL(sel, "%dS ", path + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW160_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); } #endif /* DBG_PG_TXPWR_READ */ static const struct map_t pg_txpwr_def_info = MAP_ENT(0xB8, 1, 0xFF , MAPSEG_ARRAY_ENT(0x10, 168, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x04, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x04, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x04, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x04, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE) ); static const struct map_t rtl8723d_pg_txpwr_def_info = MAP_ENT(0xB8, 2, 0xFF , MAPSEG_ARRAY_ENT(0x10, 12, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02) , MAPSEG_ARRAY_ENT(0x3A, 12, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x21, 0x21, 0x21, 0x21, 0x21, 0x02) ); const struct map_t *hal_pg_txpwr_def_info(struct adapter *adapter) { u8 interface_type = 0; const struct map_t *map = NULL; interface_type = rtw_get_intf_type(adapter); switch (rtw_get_chip_type(adapter)) { case RTL8723D: map = &rtl8723d_pg_txpwr_def_info; break; } if (!map) { RTW_ERR("%s: unknown chip_type:%u\n" , __func__, rtw_get_chip_type(adapter)); rtw_warn_on(1); } return map; } static u8 hal_chk_pg_txpwr_info_2g(struct adapter *adapter, struct TxPowerInfo24G *pwr_info) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); u8 path, group, tx_idx; if (!pwr_info || !hal_chk_band_cap(adapter, BAND_CAP_2G)) return _SUCCESS; for (path = 0; path < MAX_RF_PATH; path++) { if (!HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path)) continue; for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { if (IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexCCK_Base[path][group]) || IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexBW40_Base[path][group])) return _FAIL; } for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) { if (!HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) continue; if (IS_PG_TXPWR_DIFF_INVALID(pwr_info->CCK_Diff[path][tx_idx]) || IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][tx_idx]) || IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW20_Diff[path][tx_idx]) || IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW40_Diff[path][tx_idx])) return _FAIL; } } return _SUCCESS; } static u8 hal_chk_pg_txpwr_info_5g(struct adapter *adapter, struct TxPowerInfo5G *pwr_info) { return _SUCCESS; } static inline void hal_init_pg_txpwr_info_2g(struct adapter *adapter, struct TxPowerInfo24G *pwr_info) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); u8 path, group, tx_idx; if (!pwr_info) return; memset(pwr_info, 0, sizeof(struct TxPowerInfo24G)); /* init with invalid value */ for (path = 0; path < MAX_RF_PATH; path++) { for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { pwr_info->IndexCCK_Base[path][group] = PG_TXPWR_INVALID_BASE; pwr_info->IndexBW40_Base[path][group] = PG_TXPWR_INVALID_BASE; } for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) { pwr_info->CCK_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF; pwr_info->OFDM_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF; pwr_info->BW20_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF; pwr_info->BW40_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF; } } /* init for dummy base and diff */ for (path = 0; path < MAX_RF_PATH; path++) { if (!HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path)) break; /* 2.4G BW40 base has 1 less group than CCK base*/ pwr_info->IndexBW40_Base[path][MAX_CHNL_GROUP_24G - 1] = 0; /* dummy diff */ pwr_info->CCK_Diff[path][0] = 0; /* 2.4G CCK-1TX */ pwr_info->BW40_Diff[path][0] = 0; /* 2.4G BW40-1S */ } } static inline void hal_init_pg_txpwr_info_5g(struct adapter *adapter, struct TxPowerInfo5G *pwr_info) { } #if DBG_PG_TXPWR_READ #define LOAD_PG_TXPWR_WARN_COND(_txpwr_src) 1 #else #define LOAD_PG_TXPWR_WARN_COND(_txpwr_src) (_txpwr_src > PG_TXPWR_SRC_PG_DATA) #endif static u16 hal_load_pg_txpwr_info_path_2g( struct adapter *adapter, struct TxPowerInfo24G *pwr_info, u32 path, u8 txpwr_src, const struct map_t *txpwr_map, u16 pg_offset) { #define PG_TXPWR_1PATH_BYTE_NUM_2G 18 struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); u16 offset = pg_offset; u8 group, tx_idx; u8 val; u8 tmp_base; s8 tmp_diff; if (!pwr_info || !hal_chk_band_cap(adapter, BAND_CAP_2G)) { offset += PG_TXPWR_1PATH_BYTE_NUM_2G; goto exit; } if (DBG_PG_TXPWR_READ) RTW_INFO("%s [%c] offset:0x%03x\n", __func__, rf_path_char(path), offset); for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path)) { tmp_base = map_read8(txpwr_map, offset); if (!IS_PG_TXPWR_BASE_INVALID(tmp_base) && IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexCCK_Base[path][group]) ) { pwr_info->IndexCCK_Base[path][group] = tmp_base; if (LOAD_PG_TXPWR_WARN_COND(txpwr_src)) RTW_INFO("[%c] 2G G%02d CCK-1T base:%u from %s\n", rf_path_char(path), group, tmp_base, pg_txpwr_src_str(txpwr_src)); } } offset++; } for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) { if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path)) { tmp_base = map_read8(txpwr_map, offset); if (!IS_PG_TXPWR_BASE_INVALID(tmp_base) && IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexBW40_Base[path][group]) ) { pwr_info->IndexBW40_Base[path][group] = tmp_base; if (LOAD_PG_TXPWR_WARN_COND(txpwr_src)) RTW_INFO("[%c] 2G G%02d BW40-1S base:%u from %s\n", rf_path_char(path), group, tmp_base, pg_txpwr_src_str(txpwr_src)); } } offset++; } for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) { if (tx_idx == 0) { if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) { val = map_read8(txpwr_map, offset); tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val); if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff) && IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW20_Diff[path][tx_idx]) ) { pwr_info->BW20_Diff[path][tx_idx] = tmp_diff; if (LOAD_PG_TXPWR_WARN_COND(txpwr_src)) RTW_INFO("[%c] 2G BW20-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src)); } tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val); if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff) && IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][tx_idx]) ) { pwr_info->OFDM_Diff[path][tx_idx] = tmp_diff; if (LOAD_PG_TXPWR_WARN_COND(txpwr_src)) RTW_INFO("[%c] 2G OFDM-%dT diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src)); } } offset++; } else { if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) { val = map_read8(txpwr_map, offset); tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val); if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff) && IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW40_Diff[path][tx_idx]) ) { pwr_info->BW40_Diff[path][tx_idx] = tmp_diff; if (LOAD_PG_TXPWR_WARN_COND(txpwr_src)) RTW_INFO("[%c] 2G BW40-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src)); } tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val); if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff) && IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW20_Diff[path][tx_idx]) ) { pwr_info->BW20_Diff[path][tx_idx] = tmp_diff; if (LOAD_PG_TXPWR_WARN_COND(txpwr_src)) RTW_INFO("[%c] 2G BW20-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src)); } } offset++; if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) { val = map_read8(txpwr_map, offset); tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val); if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff) && IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][tx_idx]) ) { pwr_info->OFDM_Diff[path][tx_idx] = tmp_diff; if (LOAD_PG_TXPWR_WARN_COND(txpwr_src)) RTW_INFO("[%c] 2G OFDM-%dT diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src)); } tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val); if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff) && IS_PG_TXPWR_DIFF_INVALID(pwr_info->CCK_Diff[path][tx_idx]) ) { pwr_info->CCK_Diff[path][tx_idx] = tmp_diff; if (LOAD_PG_TXPWR_WARN_COND(txpwr_src)) RTW_INFO("[%c] 2G CCK-%dT diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src)); } } offset++; } } if (offset != pg_offset + PG_TXPWR_1PATH_BYTE_NUM_2G) { RTW_ERR("%s parse %d bytes != %d\n", __func__, offset - pg_offset, PG_TXPWR_1PATH_BYTE_NUM_2G); rtw_warn_on(1); } exit: return offset; } static u16 hal_load_pg_txpwr_info_path_5g( struct adapter *adapter, struct TxPowerInfo5G *pwr_info, u32 path, u8 txpwr_src, const struct map_t *txpwr_map, u16 pg_offset) { #define PG_TXPWR_1PATH_BYTE_NUM_5G 24 u16 offset = pg_offset; offset += PG_TXPWR_1PATH_BYTE_NUM_5G; return offset; } static void hal_load_pg_txpwr_info( struct adapter *adapter, struct TxPowerInfo24G *pwr_info_2g, struct TxPowerInfo5G *pwr_info_5g, u8 *pg_data, bool AutoLoadFail ) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); u8 path; u16 pg_offset; u8 txpwr_src = PG_TXPWR_SRC_PG_DATA; struct map_t pg_data_map = MAP_ENT(184, 1, 0xFF, MAPSEG_PTR_ENT(0x00, 184, pg_data)); const struct map_t *txpwr_map = NULL; /* init with invalid value and some dummy base and diff */ hal_init_pg_txpwr_info_2g(adapter, pwr_info_2g); hal_init_pg_txpwr_info_5g(adapter, pwr_info_5g); select_src: pg_offset = 0x10; switch (txpwr_src) { case PG_TXPWR_SRC_PG_DATA: txpwr_map = &pg_data_map; break; case PG_TXPWR_SRC_IC_DEF: txpwr_map = hal_pg_txpwr_def_info(adapter); break; case PG_TXPWR_SRC_DEF: default: txpwr_map = &pg_txpwr_def_info; break; }; if (!txpwr_map) goto end_parse; for (path = 0; path < MAX_RF_PATH ; path++) { if (!HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path) && !HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path)) break; pg_offset = hal_load_pg_txpwr_info_path_2g(adapter, pwr_info_2g, path, txpwr_src, txpwr_map, pg_offset); pg_offset = hal_load_pg_txpwr_info_path_5g(adapter, pwr_info_5g, path, txpwr_src, txpwr_map, pg_offset); } if (hal_chk_pg_txpwr_info_2g(adapter, pwr_info_2g) == _SUCCESS && hal_chk_pg_txpwr_info_5g(adapter, pwr_info_5g) == _SUCCESS) goto exit; end_parse: txpwr_src++; if (txpwr_src < PG_TXPWR_SRC_NUM) goto select_src; if (hal_chk_pg_txpwr_info_2g(adapter, pwr_info_2g) != _SUCCESS || hal_chk_pg_txpwr_info_5g(adapter, pwr_info_5g) != _SUCCESS) rtw_warn_on(1); exit: #if DBG_PG_TXPWR_READ if (pwr_info_2g) dump_pg_txpwr_info_2g(RTW_DBGDUMP, pwr_info_2g, 4, 4); if (pwr_info_5g) dump_pg_txpwr_info_5g(RTW_DBGDUMP, pwr_info_5g, 4, 4); #endif return; } void hal_load_txpwr_info( struct adapter *adapter, struct TxPowerInfo24G *pwr_info_2g, struct TxPowerInfo5G *pwr_info_5g, u8 *pg_data ) { struct hal_com_data *hal_data = GET_HAL_DATA(adapter); struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); u8 max_tx_cnt = hal_spec->max_tx_cnt; u8 rfpath, ch_idx, group, tx_idx; /* load from pg data (or default value) */ hal_load_pg_txpwr_info(adapter, pwr_info_2g, pwr_info_5g, pg_data, false); /* transform to hal_data */ for (rfpath = 0; rfpath < MAX_RF_PATH; rfpath++) { if (!pwr_info_2g || !HAL_SPEC_CHK_RF_PATH_2G(hal_spec, rfpath)) goto bypass_2g; /* 2.4G base */ for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++) { u8 cck_group; if (rtw_get_ch_group(ch_idx + 1, &group, &cck_group) != BAND_ON_2_4G) continue; hal_data->Index24G_CCK_Base[rfpath][ch_idx] = pwr_info_2g->IndexCCK_Base[rfpath][cck_group]; hal_data->Index24G_BW40_Base[rfpath][ch_idx] = pwr_info_2g->IndexBW40_Base[rfpath][group]; } /* 2.4G diff */ for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) { if (tx_idx >= max_tx_cnt) break; hal_data->CCK_24G_Diff[rfpath][tx_idx] = pwr_info_2g->CCK_Diff[rfpath][tx_idx]; hal_data->OFDM_24G_Diff[rfpath][tx_idx] = pwr_info_2g->OFDM_Diff[rfpath][tx_idx]; hal_data->BW20_24G_Diff[rfpath][tx_idx] = pwr_info_2g->BW20_Diff[rfpath][tx_idx]; hal_data->BW40_24G_Diff[rfpath][tx_idx] = pwr_info_2g->BW40_Diff[rfpath][tx_idx]; } bypass_2g: ; } } void dump_hal_txpwr_info_2g(void *sel, struct adapter *adapter, u8 rfpath_num, u8 max_tx_cnt) { struct hal_com_data *hal_data = GET_HAL_DATA(adapter); int path, ch_idx, tx_idx; RTW_PRINT_SEL(sel, "2.4G\n"); RTW_PRINT_SEL(sel, "CCK-1T base:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++) _RTW_PRINT_SEL(sel, "%2d ", center_ch_2g[ch_idx]); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++) _RTW_PRINT_SEL(sel, "%2u ", hal_data->Index24G_CCK_Base[path][ch_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "CCK diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%dT ", tx_idx + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", hal_data->CCK_24G_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW40-1S base:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++) _RTW_PRINT_SEL(sel, "%2d ", center_ch_2g[ch_idx]); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++) _RTW_PRINT_SEL(sel, "%2u ", hal_data->Index24G_BW40_Base[path][ch_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "OFDM diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%dT ", tx_idx + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", hal_data->OFDM_24G_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW20 diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%dS ", tx_idx + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", hal_data->BW20_24G_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); RTW_PRINT_SEL(sel, "BW40 diff:\n"); RTW_PRINT_SEL(sel, "%4s ", ""); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%dS ", tx_idx + 1); _RTW_PRINT_SEL(sel, "\n"); for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) { RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path)); for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++) _RTW_PRINT_SEL(sel, "%2d ", hal_data->BW40_24G_Diff[path][tx_idx]); _RTW_PRINT_SEL(sel, "\n"); } RTW_PRINT_SEL(sel, "\n"); } void dump_hal_txpwr_info_5g(void *sel, struct adapter *adapter, u8 rfpath_num, u8 max_tx_cnt) { } /* * rtw_regsty_get_target_tx_power - * * Return dBm or -1 for undefined */ static s8 rtw_regsty_get_target_tx_power( struct adapter * Adapter, u8 Band, u8 RfPath, enum rate_section RateSection ) { struct registry_priv *regsty = adapter_to_regsty(Adapter); s8 value = 0; if (RfPath > RF_PATH_D) { RTW_PRINT("%s invalid RfPath:%d\n", __func__, RfPath); return -1; } if (Band != BAND_ON_2_4G) { RTW_PRINT("%s invalid Band:%d\n", __func__, Band); return -1; } if (RateSection >= RATE_SECTION_NUM) { RTW_PRINT("%s invalid RateSection:%d in Band:%d, RfPath:%d\n", __func__ , RateSection, Band, RfPath); return -1; } if (Band == BAND_ON_2_4G) value = regsty->target_tx_pwr_2g[RfPath][RateSection]; return value; } static bool rtw_regsty_chk_target_tx_power_valid(struct adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); int path, tx_num, band, rs; s8 target; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(adapter, band)) continue; for (path = 0; path < RF_PATH_MAX; path++) { if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path)) break; for (rs = 0; rs < RATE_SECTION_NUM; rs++) { tx_num = rate_section_to_tx_num(rs); if (tx_num >= hal_spec->tx_nss_num) continue; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) continue; if (IS_VHT_RATE_SECTION(rs)) continue; target = rtw_regsty_get_target_tx_power(adapter, band, path, rs); if (target == -1) { RTW_PRINT("%s return false for band:%d, path:%d, rs:%d, t:%d\n", __func__, band, path, rs, target); return false; } } } } return true; } /* * PHY_GetTxPowerByRateBase - * * Return 2 times of dBm */ u8 PHY_GetTxPowerByRateBase( struct adapter * Adapter, u8 Band, u8 RfPath, enum rate_section RateSection ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); u8 value = 0; if (RfPath > RF_PATH_D) { RTW_PRINT("%s invalid RfPath:%d\n", __func__, RfPath); return 0; } if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { RTW_PRINT("%s invalid Band:%d\n", __func__, Band); return 0; } if (RateSection >= RATE_SECTION_NUM || (Band == BAND_ON_5G && RateSection == CCK) ) { RTW_PRINT("%s invalid RateSection:%d in Band:%d, RfPath:%d\n", __func__ , RateSection, Band, RfPath); return 0; } if (Band == BAND_ON_2_4G) value = pHalData->TxPwrByRateBase2_4G[RfPath][RateSection]; else /* BAND_ON_5G */ value = pHalData->TxPwrByRateBase5G[RfPath][RateSection - 1]; return value; } static void phy_SetTxPowerByRateBase( struct adapter * Adapter, u8 Band, u8 RfPath, enum rate_section RateSection, u8 Value ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); if (RfPath > RF_PATH_D) { RTW_PRINT("%s invalid RfPath:%d\n", __func__, RfPath); return; } if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { RTW_PRINT("%s invalid Band:%d\n", __func__, Band); return; } if (RateSection >= RATE_SECTION_NUM || (Band == BAND_ON_5G && RateSection == CCK) ) { RTW_PRINT("%s invalid RateSection:%d in %sG, RfPath:%d\n", __func__ , RateSection, (Band == BAND_ON_2_4G) ? "2.4" : "5", RfPath); return; } if (Band == BAND_ON_2_4G) pHalData->TxPwrByRateBase2_4G[RfPath][RateSection] = Value; else /* BAND_ON_5G */ pHalData->TxPwrByRateBase5G[RfPath][RateSection - 1] = Value; } static inline bool phy_is_txpwr_by_rate_undefined_of_band_path(struct adapter *adapter, u8 band, u8 path) { struct hal_com_data *hal_data = GET_HAL_DATA(adapter); u8 rate_idx = 0; for (rate_idx = 0; rate_idx < TX_PWR_BY_RATE_NUM_RATE; rate_idx++) { if (hal_data->TxPwrByRateOffset[band][path][rate_idx] != 0) goto exit; } exit: return rate_idx >= TX_PWR_BY_RATE_NUM_RATE ? true : false; } static inline void phy_txpwr_by_rate_duplicate_band_path(struct adapter *adapter, u8 band, u8 s_path, u8 t_path) { struct hal_com_data *hal_data = GET_HAL_DATA(adapter); u8 rate_idx = 0; for (rate_idx = 0; rate_idx < TX_PWR_BY_RATE_NUM_RATE; rate_idx++) hal_data->TxPwrByRateOffset[band][t_path][rate_idx] = hal_data->TxPwrByRateOffset[band][s_path][rate_idx]; } static void phy_txpwr_by_rate_chk_for_path_dup(struct adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); struct hal_com_data *hal_data = GET_HAL_DATA(adapter); u8 band, path; s8 src_path; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) for (path = RF_PATH_A; path < RF_PATH_MAX; path++) hal_data->txpwr_by_rate_undefined_band_path[band][path] = 0; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(adapter, band)) continue; for (path = RF_PATH_A; path < RF_PATH_MAX; path++) { if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path)) continue; if (phy_is_txpwr_by_rate_undefined_of_band_path(adapter, band, path)) hal_data->txpwr_by_rate_undefined_band_path[band][path] = 1; } } for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(adapter, band)) continue; src_path = -1; for (path = RF_PATH_A; path < RF_PATH_MAX; path++) { if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path)) continue; /* find src */ if (src_path == -1 && hal_data->txpwr_by_rate_undefined_band_path[band][path] == 0) src_path = path; } if (src_path == -1) { RTW_ERR("%s all power by rate undefined\n", __func__); continue; } for (path = RF_PATH_A; path < RF_PATH_MAX; path++) { if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path)) continue; /* duplicate src to undefined one */ if (hal_data->txpwr_by_rate_undefined_band_path[band][path] == 1) { RTW_INFO("%s duplicate %s [%c] to [%c]\n", __func__ , band_str(band), rf_path_char(src_path), rf_path_char(path)); phy_txpwr_by_rate_duplicate_band_path(adapter, band, src_path, path); } } } } static void phy_StoreTxPowerByRateBase( struct adapter * pAdapter ) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(pAdapter); struct registry_priv *regsty = adapter_to_regsty(pAdapter); u8 rate_sec_base[RATE_SECTION_NUM] = { MGN_11M, MGN_54M, MGN_MCS7, MGN_MCS15, MGN_MCS23, MGN_MCS31, MGN_VHT1SS_MCS7, MGN_VHT2SS_MCS7, MGN_VHT3SS_MCS7, MGN_VHT4SS_MCS7, }; u8 band, path, rs, tx_num, base; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(pAdapter, band)) continue; for (path = RF_PATH_A; path < RF_PATH_MAX; path++) { if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path)) break; for (rs = 0; rs < RATE_SECTION_NUM; rs++) { tx_num = rate_section_to_tx_num(rs); if (tx_num >= hal_spec->tx_nss_num) continue; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) continue; if (IS_VHT_RATE_SECTION(rs)) continue; if (regsty->target_tx_pwr_valid) base = 2 * rtw_regsty_get_target_tx_power(pAdapter, band, path, rs); else base = _PHY_GetTxPowerByRate(pAdapter, band, path, rate_sec_base[rs]); phy_SetTxPowerByRateBase(pAdapter, band, path, rs, base); } } } } void PHY_GetRateValuesOfTxPowerByRate( struct adapter * pAdapter, u32 RegAddr, u32 BitMask, u32 Value, u8 *Rate, s8 *PwrByRateVal, u8 *RateNum ) { u8 i; switch (RegAddr) { case rTxAGC_A_Rate18_06: case rTxAGC_B_Rate18_06: Rate[0] = MGN_6M; Rate[1] = MGN_9M; Rate[2] = MGN_12M; Rate[3] = MGN_18M; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_Rate54_24: case rTxAGC_B_Rate54_24: Rate[0] = MGN_24M; Rate[1] = MGN_36M; Rate[2] = MGN_48M; Rate[3] = MGN_54M; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_CCK1_Mcint: Rate[0] = MGN_1M; PwrByRateVal[0] = (s8)((((Value >> (8 + 4)) & 0xF)) * 10 + ((Value >> 8) & 0xF)); *RateNum = 1; break; case rTxAGC_B_CCK11_A_CCK2_11: if (BitMask == 0xffffff00) { Rate[0] = MGN_2M; Rate[1] = MGN_5_5M; Rate[2] = MGN_11M; for (i = 1; i < 4; ++i) { PwrByRateVal[i - 1] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 3; } else if (BitMask == 0x000000ff) { Rate[0] = MGN_11M; PwrByRateVal[0] = (s8)((((Value >> 4) & 0xF)) * 10 + (Value & 0xF)); *RateNum = 1; } break; case rTxAGC_A_Mcs03_Mcs00: case rTxAGC_B_Mcs03_Mcs00: Rate[0] = MGN_MCS0; Rate[1] = MGN_MCS1; Rate[2] = MGN_MCS2; Rate[3] = MGN_MCS3; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_Mcs07_Mcs04: case rTxAGC_B_Mcs07_Mcs04: Rate[0] = MGN_MCS4; Rate[1] = MGN_MCS5; Rate[2] = MGN_MCS6; Rate[3] = MGN_MCS7; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_Mcs11_Mcs08: case rTxAGC_B_Mcs11_Mcs08: Rate[0] = MGN_MCS8; Rate[1] = MGN_MCS9; Rate[2] = MGN_MCS10; Rate[3] = MGN_MCS11; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_A_Mcs15_Mcs12: case rTxAGC_B_Mcs15_Mcs12: Rate[0] = MGN_MCS12; Rate[1] = MGN_MCS13; Rate[2] = MGN_MCS14; Rate[3] = MGN_MCS15; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case rTxAGC_B_CCK1_55_Mcint: Rate[0] = MGN_1M; Rate[1] = MGN_2M; Rate[2] = MGN_5_5M; for (i = 1; i < 4; ++i) { PwrByRateVal[i - 1] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 3; break; case 0xC20: case 0xE20: case 0x1820: case 0x1a20: Rate[0] = MGN_1M; Rate[1] = MGN_2M; Rate[2] = MGN_5_5M; Rate[3] = MGN_11M; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC24: case 0xE24: case 0x1824: case 0x1a24: Rate[0] = MGN_6M; Rate[1] = MGN_9M; Rate[2] = MGN_12M; Rate[3] = MGN_18M; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC28: case 0xE28: case 0x1828: case 0x1a28: Rate[0] = MGN_24M; Rate[1] = MGN_36M; Rate[2] = MGN_48M; Rate[3] = MGN_54M; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC2C: case 0xE2C: case 0x182C: case 0x1a2C: Rate[0] = MGN_MCS0; Rate[1] = MGN_MCS1; Rate[2] = MGN_MCS2; Rate[3] = MGN_MCS3; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC30: case 0xE30: case 0x1830: case 0x1a30: Rate[0] = MGN_MCS4; Rate[1] = MGN_MCS5; Rate[2] = MGN_MCS6; Rate[3] = MGN_MCS7; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC34: case 0xE34: case 0x1834: case 0x1a34: Rate[0] = MGN_MCS8; Rate[1] = MGN_MCS9; Rate[2] = MGN_MCS10; Rate[3] = MGN_MCS11; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC38: case 0xE38: case 0x1838: case 0x1a38: Rate[0] = MGN_MCS12; Rate[1] = MGN_MCS13; Rate[2] = MGN_MCS14; Rate[3] = MGN_MCS15; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC3C: case 0xE3C: case 0x183C: case 0x1a3C: Rate[0] = MGN_VHT1SS_MCS0; Rate[1] = MGN_VHT1SS_MCS1; Rate[2] = MGN_VHT1SS_MCS2; Rate[3] = MGN_VHT1SS_MCS3; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC40: case 0xE40: case 0x1840: case 0x1a40: Rate[0] = MGN_VHT1SS_MCS4; Rate[1] = MGN_VHT1SS_MCS5; Rate[2] = MGN_VHT1SS_MCS6; Rate[3] = MGN_VHT1SS_MCS7; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC44: case 0xE44: case 0x1844: case 0x1a44: Rate[0] = MGN_VHT1SS_MCS8; Rate[1] = MGN_VHT1SS_MCS9; Rate[2] = MGN_VHT2SS_MCS0; Rate[3] = MGN_VHT2SS_MCS1; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC48: case 0xE48: case 0x1848: case 0x1a48: Rate[0] = MGN_VHT2SS_MCS2; Rate[1] = MGN_VHT2SS_MCS3; Rate[2] = MGN_VHT2SS_MCS4; Rate[3] = MGN_VHT2SS_MCS5; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xC4C: case 0xE4C: case 0x184C: case 0x1a4C: Rate[0] = MGN_VHT2SS_MCS6; Rate[1] = MGN_VHT2SS_MCS7; Rate[2] = MGN_VHT2SS_MCS8; Rate[3] = MGN_VHT2SS_MCS9; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCD8: case 0xED8: case 0x18D8: case 0x1aD8: Rate[0] = MGN_MCS16; Rate[1] = MGN_MCS17; Rate[2] = MGN_MCS18; Rate[3] = MGN_MCS19; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCDC: case 0xEDC: case 0x18DC: case 0x1aDC: Rate[0] = MGN_MCS20; Rate[1] = MGN_MCS21; Rate[2] = MGN_MCS22; Rate[3] = MGN_MCS23; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCE0: case 0xEE0: case 0x18E0: case 0x1aE0: Rate[0] = MGN_VHT3SS_MCS0; Rate[1] = MGN_VHT3SS_MCS1; Rate[2] = MGN_VHT3SS_MCS2; Rate[3] = MGN_VHT3SS_MCS3; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCE4: case 0xEE4: case 0x18E4: case 0x1aE4: Rate[0] = MGN_VHT3SS_MCS4; Rate[1] = MGN_VHT3SS_MCS5; Rate[2] = MGN_VHT3SS_MCS6; Rate[3] = MGN_VHT3SS_MCS7; for (i = 0; i < 4; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 4; break; case 0xCE8: case 0xEE8: case 0x18E8: case 0x1aE8: Rate[0] = MGN_VHT3SS_MCS8; Rate[1] = MGN_VHT3SS_MCS9; for (i = 0; i < 2; ++i) { PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 + ((Value >> (i * 8)) & 0xF)); } *RateNum = 2; break; default: RTW_PRINT("Invalid RegAddr 0x%x in %s()\n", RegAddr, __func__); break; }; } static void PHY_StoreTxPowerByRateNew( struct adapter * pAdapter, u32 Band, u32 RfPath, u32 RegAddr, u32 BitMask, u32 Data ) { struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter); u8 i = 0, rates[4] = {0}, rateNum = 0; s8 PwrByRateVal[4] = {0}; PHY_GetRateValuesOfTxPowerByRate(pAdapter, RegAddr, BitMask, Data, rates, PwrByRateVal, &rateNum); if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { RTW_PRINT("Invalid Band %d\n", Band); return; } if (RfPath > RF_PATH_D) { RTW_PRINT("Invalid RfPath %d\n", RfPath); return; } for (i = 0; i < rateNum; ++i) { u8 rate_idx = PHY_GetRateIndexOfTxPowerByRate(rates[i]); pHalData->TxPwrByRateOffset[Band][RfPath][rate_idx] = PwrByRateVal[i]; } } void PHY_InitTxPowerByRate( struct adapter * pAdapter ) { struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter); u8 band = 0, rfPath = 0, rate = 0; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band) for (rfPath = 0; rfPath < TX_PWR_BY_RATE_NUM_RF; ++rfPath) for (rate = 0; rate < TX_PWR_BY_RATE_NUM_RATE; ++rate) pHalData->TxPwrByRateOffset[band][rfPath][rate] = 0; } void phy_store_tx_power_by_rate( struct adapter * pAdapter, u32 Band, u32 RfPath, u32 TxNum, u32 RegAddr, u32 BitMask, u32 Data ) { struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter); struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv; if (pDM_Odm->phy_reg_pg_version > 0) PHY_StoreTxPowerByRateNew(pAdapter, Band, RfPath, RegAddr, BitMask, Data); else RTW_INFO("Invalid PHY_REG_PG.txt version %d\n", pDM_Odm->phy_reg_pg_version); } static void phy_ConvertTxPowerByRateInDbmToRelativeValues( struct adapter * pAdapter ) { u8 base = 0, i = 0, value = 0, band = 0, path = 0; u8 cckRates[4] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M}, ofdmRates[8] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M}, mcs0_7Rates[8] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7}, mcs8_15Rates[8] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15}, mcs16_23Rates[8] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23}, vht1ssRates[10] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9}, vht2ssRates[10] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4, MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9}, vht3ssRates[10] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9}; /* RTW_INFO("===>PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" ); */ for (band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band) { for (path = RF_PATH_A; path <= RF_PATH_D; ++path) { /* CCK */ if (band == BAND_ON_2_4G) { base = PHY_GetTxPowerByRateBase(pAdapter, band, path, CCK); for (i = 0; i < sizeof(cckRates); ++i) { value = PHY_GetTxPowerByRate(pAdapter, band, path, cckRates[i]); PHY_SetTxPowerByRate(pAdapter, band, path, cckRates[i], value - base); } } /* OFDM */ base = PHY_GetTxPowerByRateBase(pAdapter, band, path, OFDM); for (i = 0; i < sizeof(ofdmRates); ++i) { value = PHY_GetTxPowerByRate(pAdapter, band, path, ofdmRates[i]); PHY_SetTxPowerByRate(pAdapter, band, path, ofdmRates[i], value - base); } /* HT MCS0~7 */ base = PHY_GetTxPowerByRateBase(pAdapter, band, path, HT_1SS); for (i = 0; i < sizeof(mcs0_7Rates); ++i) { value = PHY_GetTxPowerByRate(pAdapter, band, path, mcs0_7Rates[i]); PHY_SetTxPowerByRate(pAdapter, band, path, mcs0_7Rates[i], value - base); } /* HT MCS8~15 */ base = PHY_GetTxPowerByRateBase(pAdapter, band, path, HT_2SS); for (i = 0; i < sizeof(mcs8_15Rates); ++i) { value = PHY_GetTxPowerByRate(pAdapter, band, path, mcs8_15Rates[i]); PHY_SetTxPowerByRate(pAdapter, band, path, mcs8_15Rates[i], value - base); } /* HT MCS16~23 */ base = PHY_GetTxPowerByRateBase(pAdapter, band, path, HT_3SS); for (i = 0; i < sizeof(mcs16_23Rates); ++i) { value = PHY_GetTxPowerByRate(pAdapter, band, path, mcs16_23Rates[i]); PHY_SetTxPowerByRate(pAdapter, band, path, mcs16_23Rates[i], value - base); } /* VHT 1SS */ base = PHY_GetTxPowerByRateBase(pAdapter, band, path, VHT_1SS); for (i = 0; i < sizeof(vht1ssRates); ++i) { value = PHY_GetTxPowerByRate(pAdapter, band, path, vht1ssRates[i]); PHY_SetTxPowerByRate(pAdapter, band, path, vht1ssRates[i], value - base); } /* VHT 2SS */ base = PHY_GetTxPowerByRateBase(pAdapter, band, path, VHT_2SS); for (i = 0; i < sizeof(vht2ssRates); ++i) { value = PHY_GetTxPowerByRate(pAdapter, band, path, vht2ssRates[i]); PHY_SetTxPowerByRate(pAdapter, band, path, vht2ssRates[i], value - base); } /* VHT 3SS */ base = PHY_GetTxPowerByRateBase(pAdapter, band, path, VHT_3SS); for (i = 0; i < sizeof(vht3ssRates); ++i) { value = PHY_GetTxPowerByRate(pAdapter, band, path, vht3ssRates[i]); PHY_SetTxPowerByRate(pAdapter, band, path, vht3ssRates[i], value - base); } } } /* RTW_INFO("<===PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" ); */ } /* * This function must be called if the value in the PHY_REG_PG.txt(or header) * is exact dBm values */ void PHY_TxPowerByRateConfiguration( struct adapter * pAdapter ) { phy_txpwr_by_rate_chk_for_path_dup(pAdapter); phy_StoreTxPowerByRateBase(pAdapter); phy_ConvertTxPowerByRateInDbmToRelativeValues(pAdapter); } void phy_set_tx_power_index_by_rate_section( struct adapter * pAdapter, enum rf_path RFPath, u8 Channel, u8 RateSection ) { struct hal_com_data * pHalData = GET_HAL_DATA(pAdapter); if (RateSection >= RATE_SECTION_NUM) { RTW_INFO("Invalid RateSection %d in %s", RateSection, __func__); rtw_warn_on(1); goto exit; } if (RateSection == CCK && pHalData->current_band_type != BAND_ON_2_4G) goto exit; PHY_SetTxPowerIndexByRateArray(pAdapter, RFPath, pHalData->current_channel_bw, Channel, rates_by_sections[RateSection].rates, rates_by_sections[RateSection].rate_num); exit: return; } static bool phy_GetChnlIndex( u8 Channel, u8 *ChannelIdx ) { u8 i = 0; bool bIn24G = true; if (Channel <= 14) { bIn24G = true; *ChannelIdx = Channel - 1; } else { bIn24G = false; for (i = 0; i < CENTER_CH_5G_ALL_NUM; ++i) { if (center_ch_5g_all[i] == Channel) { *ChannelIdx = i; return bIn24G; } } } return bIn24G; } u8 PHY_GetTxPowerIndexBase( struct adapter * pAdapter, enum rf_path RFPath, u8 Rate, u8 ntx_idx, enum channel_width BandWidth, u8 Channel, bool *bIn24G ) { struct hal_com_data * pHalData = GET_HAL_DATA(pAdapter); u8 txPower = 0; u8 chnlIdx = (Channel - 1); if (!HAL_IsLegalChannel(pAdapter, Channel)) { chnlIdx = 0; RTW_INFO("Illegal channel!!\n"); } *bIn24G = phy_GetChnlIndex(Channel, &chnlIdx); if (*bIn24G) { if (IS_CCK_RATE(Rate)) { /* CCK-nTX */ txPower = pHalData->Index24G_CCK_Base[RFPath][chnlIdx]; txPower += pHalData->CCK_24G_Diff[RFPath][RF_1TX]; if (ntx_idx >= RF_2TX) txPower += pHalData->CCK_24G_Diff[RFPath][RF_2TX]; if (ntx_idx >= RF_3TX) txPower += pHalData->CCK_24G_Diff[RFPath][RF_3TX]; if (ntx_idx >= RF_4TX) txPower += pHalData->CCK_24G_Diff[RFPath][RF_4TX]; goto exit; } txPower = pHalData->Index24G_BW40_Base[RFPath][chnlIdx]; /* OFDM-nTX */ if ((MGN_6M <= Rate && Rate <= MGN_54M) && !IS_CCK_RATE(Rate)) { txPower += pHalData->OFDM_24G_Diff[RFPath][RF_1TX]; if (ntx_idx >= RF_2TX) txPower += pHalData->OFDM_24G_Diff[RFPath][RF_2TX]; if (ntx_idx >= RF_3TX) txPower += pHalData->OFDM_24G_Diff[RFPath][RF_3TX]; if (ntx_idx >= RF_4TX) txPower += pHalData->OFDM_24G_Diff[RFPath][RF_4TX]; goto exit; } /* BW20-nS */ if (BandWidth == CHANNEL_WIDTH_20) { if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][RF_1TX]; if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][RF_2TX]; if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][RF_3TX]; if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][RF_4TX]; goto exit; } /* BW40-nS */ if (BandWidth == CHANNEL_WIDTH_40) { if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][RF_1TX]; if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][RF_2TX]; if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][RF_3TX]; if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][RF_4TX]; goto exit; } /* Willis suggest adopt BW 40M power index while in BW 80 mode */ if (BandWidth == CHANNEL_WIDTH_80) { if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][RF_1TX]; if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][RF_2TX]; if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][RF_3TX]; if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][RF_4TX]; goto exit; } } exit: return txPower; } s8 PHY_GetTxPowerTrackingOffset( struct adapter * pAdapter, enum rf_path RFPath, u8 Rate ) { struct hal_com_data * pHalData = GET_HAL_DATA(pAdapter); struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv; s8 offset = 0; if (!pDM_Odm->rf_calibrate_info.txpowertrack_control) return offset; if ((Rate == MGN_1M) || (Rate == MGN_2M) || (Rate == MGN_5_5M) || (Rate == MGN_11M)) { offset = pDM_Odm->rf_calibrate_info.remnant_cck_swing_idx; /*RTW_INFO("+Remnant_CCKSwingIdx = 0x%x\n", RFPath, Rate, pRFCalibrateInfo->Remnant_CCKSwingIdx);*/ } else { offset = pDM_Odm->rf_calibrate_info.remnant_ofdm_swing_idx[RFPath]; /*RTW_INFO("+Remanant_OFDMSwingIdx[RFPath %u][Rate 0x%x] = 0x%x\n", RFPath, Rate, pRFCalibrateInfo->Remnant_OFDMSwingIdx[RFPath]); */ } return offset; } /*The same as MRateToHwRate in hal_com.c*/ u8 PHY_GetRateIndexOfTxPowerByRate( u8 Rate ) { u8 index = 0; switch (Rate) { case MGN_1M: index = 0; break; case MGN_2M: index = 1; break; case MGN_5_5M: index = 2; break; case MGN_11M: index = 3; break; case MGN_6M: index = 4; break; case MGN_9M: index = 5; break; case MGN_12M: index = 6; break; case MGN_18M: index = 7; break; case MGN_24M: index = 8; break; case MGN_36M: index = 9; break; case MGN_48M: index = 10; break; case MGN_54M: index = 11; break; case MGN_MCS0: index = 12; break; case MGN_MCS1: index = 13; break; case MGN_MCS2: index = 14; break; case MGN_MCS3: index = 15; break; case MGN_MCS4: index = 16; break; case MGN_MCS5: index = 17; break; case MGN_MCS6: index = 18; break; case MGN_MCS7: index = 19; break; case MGN_MCS8: index = 20; break; case MGN_MCS9: index = 21; break; case MGN_MCS10: index = 22; break; case MGN_MCS11: index = 23; break; case MGN_MCS12: index = 24; break; case MGN_MCS13: index = 25; break; case MGN_MCS14: index = 26; break; case MGN_MCS15: index = 27; break; case MGN_MCS16: index = 28; break; case MGN_MCS17: index = 29; break; case MGN_MCS18: index = 30; break; case MGN_MCS19: index = 31; break; case MGN_MCS20: index = 32; break; case MGN_MCS21: index = 33; break; case MGN_MCS22: index = 34; break; case MGN_MCS23: index = 35; break; case MGN_MCS24: index = 36; break; case MGN_MCS25: index = 37; break; case MGN_MCS26: index = 38; break; case MGN_MCS27: index = 39; break; case MGN_MCS28: index = 40; break; case MGN_MCS29: index = 41; break; case MGN_MCS30: index = 42; break; case MGN_MCS31: index = 43; break; case MGN_VHT1SS_MCS0: index = 44; break; case MGN_VHT1SS_MCS1: index = 45; break; case MGN_VHT1SS_MCS2: index = 46; break; case MGN_VHT1SS_MCS3: index = 47; break; case MGN_VHT1SS_MCS4: index = 48; break; case MGN_VHT1SS_MCS5: index = 49; break; case MGN_VHT1SS_MCS6: index = 50; break; case MGN_VHT1SS_MCS7: index = 51; break; case MGN_VHT1SS_MCS8: index = 52; break; case MGN_VHT1SS_MCS9: index = 53; break; case MGN_VHT2SS_MCS0: index = 54; break; case MGN_VHT2SS_MCS1: index = 55; break; case MGN_VHT2SS_MCS2: index = 56; break; case MGN_VHT2SS_MCS3: index = 57; break; case MGN_VHT2SS_MCS4: index = 58; break; case MGN_VHT2SS_MCS5: index = 59; break; case MGN_VHT2SS_MCS6: index = 60; break; case MGN_VHT2SS_MCS7: index = 61; break; case MGN_VHT2SS_MCS8: index = 62; break; case MGN_VHT2SS_MCS9: index = 63; break; case MGN_VHT3SS_MCS0: index = 64; break; case MGN_VHT3SS_MCS1: index = 65; break; case MGN_VHT3SS_MCS2: index = 66; break; case MGN_VHT3SS_MCS3: index = 67; break; case MGN_VHT3SS_MCS4: index = 68; break; case MGN_VHT3SS_MCS5: index = 69; break; case MGN_VHT3SS_MCS6: index = 70; break; case MGN_VHT3SS_MCS7: index = 71; break; case MGN_VHT3SS_MCS8: index = 72; break; case MGN_VHT3SS_MCS9: index = 73; break; case MGN_VHT4SS_MCS0: index = 74; break; case MGN_VHT4SS_MCS1: index = 75; break; case MGN_VHT4SS_MCS2: index = 76; break; case MGN_VHT4SS_MCS3: index = 77; break; case MGN_VHT4SS_MCS4: index = 78; break; case MGN_VHT4SS_MCS5: index = 79; break; case MGN_VHT4SS_MCS6: index = 80; break; case MGN_VHT4SS_MCS7: index = 81; break; case MGN_VHT4SS_MCS8: index = 82; break; case MGN_VHT4SS_MCS9: index = 83; break; default: RTW_INFO("Invalid rate 0x%x in %s\n", Rate, __func__); break; }; return index; } s8 _PHY_GetTxPowerByRate( struct adapter * pAdapter, u8 Band, enum rf_path RFPath, u8 Rate ) { struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter); s8 value = 0; u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate); if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { RTW_INFO("Invalid band %d in %s\n", Band, __func__); goto exit; } if (RFPath > RF_PATH_D) { RTW_INFO("Invalid RfPath %d in %s\n", RFPath, __func__); goto exit; } if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) { RTW_INFO("Invalid RateIndex %d in %s\n", rateIndex, __func__); goto exit; } value = pHalData->TxPwrByRateOffset[Band][RFPath][rateIndex]; exit: return value; } s8 PHY_GetTxPowerByRate( struct adapter * pAdapter, u8 Band, enum rf_path RFPath, u8 Rate ) { if (!phy_is_tx_power_by_rate_needed(pAdapter)) return 0; return _PHY_GetTxPowerByRate(pAdapter, Band, RFPath, Rate); } void PHY_SetTxPowerByRate( struct adapter * pAdapter, u8 Band, enum rf_path RFPath, u8 Rate, s8 Value ) { struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter); u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate); if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { RTW_INFO("Invalid band %d in %s\n", Band, __func__); return; } if (RFPath > RF_PATH_D) { RTW_INFO("Invalid RfPath %d in %s\n", RFPath, __func__); return; } if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) { RTW_INFO("Invalid RateIndex %d in %s\n", rateIndex, __func__); return; } pHalData->TxPwrByRateOffset[Band][RFPath][rateIndex] = Value; } void phy_set_tx_power_level_by_path( struct adapter * Adapter, u8 channel, u8 path ) { struct hal_com_data * pHalData = GET_HAL_DATA(Adapter); bool bIsIn24G = (pHalData->current_band_type == BAND_ON_2_4G); /* if ( pMgntInfo->RegNByteAccess == 0 ) */ { if (bIsIn24G) phy_set_tx_power_index_by_rate_section(Adapter, path, channel, CCK); phy_set_tx_power_index_by_rate_section(Adapter, path, channel, OFDM); phy_set_tx_power_index_by_rate_section(Adapter, path, channel, HT_MCS0_MCS7); if (pHalData->NumTotalRFPath >= 2) phy_set_tx_power_index_by_rate_section(Adapter, path, channel, HT_MCS8_MCS15); } } void PHY_SetTxPowerIndexByRateArray( struct adapter * pAdapter, enum rf_path RFPath, enum channel_width BandWidth, u8 Channel, u8 *Rates, u8 RateArraySize ) { u32 powerIndex = 0; int i = 0; for (i = 0; i < RateArraySize; ++i) { powerIndex = phy_get_tx_power_index(pAdapter, RFPath, Rates[i], BandWidth, Channel); PHY_SetTxPowerIndex(pAdapter, powerIndex, RFPath, Rates[i]); } } #ifdef CONFIG_TXPWR_LIMIT const char *const _txpwr_lmt_rs_str[] = { "CCK", "OFDM", "HT", "VHT", "UNKNOWN", }; static s8 phy_GetChannelIndexOfTxPowerLimit( u8 Band, u8 Channel ) { s8 channelIndex = -1; u8 i = 0; if (Band == BAND_ON_2_4G) channelIndex = Channel - 1; else if (Band == BAND_ON_5G) { for (i = 0; i < CENTER_CH_5G_ALL_NUM; ++i) { if (center_ch_5g_all[i] == Channel) channelIndex = i; } } else RTW_PRINT("Invalid Band %d in %s\n", Band, __func__); if (channelIndex == -1) RTW_PRINT("Invalid Channel %d of Band %d in %s\n", Channel, Band, __func__); return channelIndex; } /* * return txpwr limit absolute value * MAX_POWER_INDEX is returned when NO limit */ s8 phy_get_txpwr_lmt_abs( struct adapter * Adapter, const char *regd_name, BAND_TYPE Band, enum channel_width bw, u8 tlrs, u8 ntx_idx, u8 cch, u8 lock ) { struct dvobj_priv *dvobj = adapter_to_dvobj(Adapter); struct rf_ctl_t *rfctl = adapter_to_rfctl(Adapter); struct hal_com_data *hal_data = GET_HAL_DATA(Adapter); struct txpwr_lmt_ent *ent = NULL; unsigned long irqL; struct list_head *cur, *head; s8 ch_idx; u8 is_ww_regd = 0; s8 lmt = MAX_POWER_INDEX; if ((Adapter->registrypriv.RegEnableTxPowerLimit == 2 && hal_data->EEPROMRegulatory != 1) || Adapter->registrypriv.RegEnableTxPowerLimit == 0) goto exit; if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { RTW_ERR("%s invalid band:%u\n", __func__, Band); rtw_warn_on(1); goto exit; } if (Band == BAND_ON_5G && tlrs == TXPWR_LMT_RS_CCK) { RTW_ERR("5G has no CCK\n"); goto exit; } if (lock) _enter_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL); if (!regd_name) /* no regd_name specified, use currnet */ regd_name = rfctl->regd_name; if (rfctl->txpwr_regd_num == 0 || strcmp(regd_name, regd_str(TXPWR_LMT_NONE)) == 0) goto release_lock; if (strcmp(regd_name, regd_str(TXPWR_LMT_WW)) == 0) is_ww_regd = 1; if (!is_ww_regd) { ent = _rtw_txpwr_lmt_get_by_name(rfctl, regd_name); if (!ent) goto release_lock; } ch_idx = phy_GetChannelIndexOfTxPowerLimit(Band, cch); if (ch_idx == -1) goto release_lock; if (Band == BAND_ON_2_4G) { if (!is_ww_regd) { lmt = ent->lmt_2g[bw][tlrs][ch_idx][ntx_idx]; if (lmt != -MAX_POWER_INDEX) goto release_lock; } /* search for min value for WW regd or WW limit */ lmt = MAX_POWER_INDEX; head = &rfctl->txpwr_lmt_list; cur = get_next(head); while ((!rtw_end_of_queue_search(head, cur))) { ent = container_of(cur, struct txpwr_lmt_ent, list); cur = get_next(cur); if (ent->lmt_2g[bw][tlrs][ch_idx][ntx_idx] != -MAX_POWER_INDEX) lmt = rtw_min(lmt, ent->lmt_2g[bw][tlrs][ch_idx][ntx_idx]); } } release_lock: if (lock) _exit_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL); exit: return lmt; } /* * return txpwr limit diff value * MAX_POWER_INDEX is returned when NO limit */ inline s8 phy_get_txpwr_lmt(struct adapter *adapter , const char *regd_name , BAND_TYPE band, enum channel_width bw , u8 rfpath, u8 rs, u8 ntx_idx, u8 cch, u8 lock ) { u8 tlrs; s8 lmt = MAX_POWER_INDEX; if (IS_CCK_RATE_SECTION(rs)) tlrs = TXPWR_LMT_RS_CCK; else if (IS_OFDM_RATE_SECTION(rs)) tlrs = TXPWR_LMT_RS_OFDM; else if (IS_HT_RATE_SECTION(rs)) tlrs = TXPWR_LMT_RS_HT; else if (IS_VHT_RATE_SECTION(rs)) tlrs = TXPWR_LMT_RS_VHT; else { RTW_ERR("%s invalid rs %u\n", __func__, rs); rtw_warn_on(1); goto exit; } lmt = phy_get_txpwr_lmt_abs(adapter, regd_name, band, bw, tlrs, ntx_idx, cch, lock); if (lmt != MAX_POWER_INDEX) { /* return diff value */ lmt = lmt - PHY_GetTxPowerByRateBase(adapter, band, rfpath, rs); } exit: return lmt; } /* * May search for secondary channels for min limit * return txpwr limit diff value */ s8 PHY_GetTxPowerLimit(struct adapter *adapter , const char *regd_name , BAND_TYPE band, enum channel_width bw , u8 rfpath, u8 rate, u8 ntx_idx, u8 cch) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter); struct hal_com_data *hal_data = GET_HAL_DATA(adapter); bool no_sc = false; s8 tlrs = -1, rs = -1; s8 lmt = MAX_POWER_INDEX; u8 tmp_cch = 0; u8 tmp_bw; u8 bw_bmp = 0; s8 min_lmt = MAX_POWER_INDEX; u8 final_bw = bw, final_cch = cch; unsigned long irqL; if (IS_CCK_RATE(rate)) { tlrs = TXPWR_LMT_RS_CCK; rs = CCK; } else if (IS_OFDM_RATE(rate)) { tlrs = TXPWR_LMT_RS_OFDM; rs = OFDM; } else if (IS_HT_RATE(rate)) { tlrs = TXPWR_LMT_RS_HT; rs = HT_1SS + (IS_HT1SS_RATE(rate) ? 0 : IS_HT2SS_RATE(rate) ? 1 : IS_HT3SS_RATE(rate) ? 2 : IS_HT4SS_RATE(rate) ? 3 : 0); } else if (IS_VHT_RATE(rate)) { tlrs = TXPWR_LMT_RS_VHT; rs = VHT_1SS + (IS_VHT1SS_RATE(rate) ? 0 : IS_VHT2SS_RATE(rate) ? 1 : IS_VHT3SS_RATE(rate) ? 2 : IS_VHT4SS_RATE(rate) ? 3 : 0); } else { RTW_ERR("%s invalid rate 0x%x\n", __func__, rate); rtw_warn_on(1); goto exit; } if (no_sc) { /* use the input center channel and bandwidth directly */ tmp_cch = cch; bw_bmp = ch_width_to_bw_cap(bw); } else { /* * find the possible tx bandwidth bmp for this rate, and then will get center channel for each bandwidth * if no possible tx bandwidth bmp, select valid bandwidth up to current RF bandwidth into bmp */ if (tlrs == TXPWR_LMT_RS_CCK || tlrs == TXPWR_LMT_RS_OFDM) bw_bmp = BW_CAP_20M; /* CCK, OFDM only BW 20M */ else if (tlrs == TXPWR_LMT_RS_HT) { bw_bmp = rtw_get_tx_bw_bmp_of_ht_rate(dvobj, rate, bw); if (bw_bmp == 0) bw_bmp = ch_width_to_bw_cap(bw > CHANNEL_WIDTH_40 ? CHANNEL_WIDTH_40 : bw); } else if (tlrs == TXPWR_LMT_RS_VHT) { bw_bmp = rtw_get_tx_bw_bmp_of_vht_rate(dvobj, rate, bw); if (bw_bmp == 0) bw_bmp = ch_width_to_bw_cap(bw > CHANNEL_WIDTH_160 ? CHANNEL_WIDTH_160 : bw); } else rtw_warn_on(1); } if (bw_bmp == 0) goto exit; _enter_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL); /* loop for each possible tx bandwidth to find minimum limit */ for (tmp_bw = CHANNEL_WIDTH_20; tmp_bw <= bw; tmp_bw++) { if (!(ch_width_to_bw_cap(tmp_bw) & bw_bmp)) continue; if (!no_sc) { if (tmp_bw == CHANNEL_WIDTH_20) tmp_cch = hal_data->cch_20; else if (tmp_bw == CHANNEL_WIDTH_40) tmp_cch = hal_data->cch_40; else if (tmp_bw == CHANNEL_WIDTH_80) tmp_cch = hal_data->cch_80; else { tmp_cch = 0; rtw_warn_on(1); } } lmt = phy_get_txpwr_lmt_abs(adapter, regd_name, band, tmp_bw, tlrs, ntx_idx, tmp_cch, 0); if (min_lmt >= lmt) { min_lmt = lmt; final_cch = tmp_cch; final_bw = tmp_bw; } } _exit_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL); if (min_lmt != MAX_POWER_INDEX) { /* return diff value */ min_lmt = min_lmt - PHY_GetTxPowerByRateBase(adapter, band, rfpath, rs); } exit: return min_lmt; } static void phy_txpwr_lmt_cck_ofdm_mt_chk(struct adapter *adapter) { struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter); struct txpwr_lmt_ent *ent; struct list_head *cur, *head; u8 channel, tlrs, ntx_idx; rfctl->txpwr_lmt_2g_cck_ofdm_state = 0; head = &rfctl->txpwr_lmt_list; cur = get_next(head); while ((!rtw_end_of_queue_search(head, cur))) { ent = container_of(cur, struct txpwr_lmt_ent, list); cur = get_next(cur); /* check 2G CCK, OFDM state*/ for (tlrs = TXPWR_LMT_RS_CCK; tlrs <= TXPWR_LMT_RS_OFDM; tlrs++) { for (ntx_idx = RF_1TX; ntx_idx < MAX_TX_COUNT; ntx_idx++) { for (channel = 0; channel < CENTER_CH_2G_NUM; ++channel) { if (ent->lmt_2g[CHANNEL_WIDTH_20][tlrs][channel][ntx_idx] != MAX_POWER_INDEX) { if (tlrs == TXPWR_LMT_RS_CCK) rfctl->txpwr_lmt_2g_cck_ofdm_state |= TXPWR_LMT_HAS_CCK_1T << ntx_idx; else rfctl->txpwr_lmt_2g_cck_ofdm_state |= TXPWR_LMT_HAS_OFDM_1T << ntx_idx; break; } } } } /* if 2G OFDM multi-TX is not defined, reference HT20 */ for (channel = 0; channel < CENTER_CH_2G_NUM; ++channel) { for (ntx_idx = RF_2TX; ntx_idx < MAX_TX_COUNT; ntx_idx++) { if (rfctl->txpwr_lmt_2g_cck_ofdm_state & (TXPWR_LMT_HAS_OFDM_1T << ntx_idx)) continue; ent->lmt_2g[CHANNEL_WIDTH_20][TXPWR_LMT_RS_OFDM][channel][ntx_idx] = ent->lmt_2g[CHANNEL_WIDTH_20][TXPWR_LMT_RS_HT][channel][ntx_idx]; } } } } static void phy_txpwr_lmt_post_hdl(struct adapter *adapter) { struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter); unsigned long irqL; _enter_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL); phy_txpwr_lmt_cck_ofdm_mt_chk(adapter); _exit_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL); } bool GetS1ByteIntegerFromStringInDecimal( char *str, s8 *val ) { u8 negative = 0; u16 i = 0; *val = 0; while (str[i] != '\0') { if (i == 0 && (str[i] == '+' || str[i] == '-')) { if (str[i] == '-') negative = 1; } else if (str[i] >= '0' && str[i] <= '9') { *val *= 10; *val += (str[i] - '0'); } else return false; ++i; } if (negative) *val = -*val; return true; } #endif /* CONFIG_TXPWR_LIMIT */ /* * phy_set_tx_power_limit - Parsing TX power limit from phydm array, called by odm_ConfigBB_TXPWR_LMT_XXX in phydm */ void phy_set_tx_power_limit( struct PHY_DM_STRUCT *pDM_Odm, u8 *Regulation, u8 *Band, u8 *Bandwidth, u8 *RateSection, u8 *ntx, u8 *Channel, u8 *PowerLimit ) { #ifdef CONFIG_TXPWR_LIMIT struct adapter * Adapter = pDM_Odm->adapter; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); u8 band = 0, bandwidth = 0, tlrs = 0, channel; u8 ntx_idx; s8 powerLimit = 0, prevPowerLimit, channelIndex; if (!GetU1ByteIntegerFromStringInDecimal((char *)Channel, &channel) || !GetS1ByteIntegerFromStringInDecimal((char *)PowerLimit, &powerLimit)) { RTW_PRINT("Illegal index of power limit table [ch %s][val %s]\n", Channel, PowerLimit); return; } if (powerLimit < -MAX_POWER_INDEX || powerLimit > MAX_POWER_INDEX) RTW_PRINT("Illegal power limit value [ch %s][val %s]\n", Channel, PowerLimit); powerLimit = powerLimit > MAX_POWER_INDEX ? MAX_POWER_INDEX : powerLimit; powerLimit = powerLimit < -MAX_POWER_INDEX ? -MAX_POWER_INDEX + 1 : powerLimit; if (eqNByte(RateSection, (u8 *)("CCK"), 3)) tlrs = TXPWR_LMT_RS_CCK; else if (eqNByte(RateSection, (u8 *)("OFDM"), 4)) tlrs = TXPWR_LMT_RS_OFDM; else if (eqNByte(RateSection, (u8 *)("HT"), 2)) tlrs = TXPWR_LMT_RS_HT; else if (eqNByte(RateSection, (u8 *)("VHT"), 3)) tlrs = TXPWR_LMT_RS_VHT; else { RTW_PRINT("Wrong rate section:%s\n", RateSection); return; } if (eqNByte(ntx, (u8 *)("1T"), 2)) ntx_idx = RF_1TX; else if (eqNByte(ntx, (u8 *)("2T"), 2)) ntx_idx = RF_2TX; else if (eqNByte(ntx, (u8 *)("3T"), 2)) ntx_idx = RF_3TX; else if (eqNByte(ntx, (u8 *)("4T"), 2)) ntx_idx = RF_4TX; else { RTW_PRINT("Wrong tx num:%s\n", ntx); return; } if (eqNByte(Bandwidth, (u8 *)("20M"), 3)) bandwidth = CHANNEL_WIDTH_20; else if (eqNByte(Bandwidth, (u8 *)("40M"), 3)) bandwidth = CHANNEL_WIDTH_40; else if (eqNByte(Bandwidth, (u8 *)("80M"), 3)) bandwidth = CHANNEL_WIDTH_80; else if (eqNByte(Bandwidth, (u8 *)("160M"), 4)) bandwidth = CHANNEL_WIDTH_160; else { RTW_PRINT("unknown bandwidth: %s\n", Bandwidth); return; } if (eqNByte(Band, (u8 *)("2.4G"), 4)) { band = BAND_ON_2_4G; channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_2_4G, channel); if (channelIndex == -1) { RTW_PRINT("unsupported channel: %d at 2.4G\n", channel); return; } if (bandwidth >= MAX_2_4G_BANDWIDTH_NUM) { RTW_PRINT("unsupported bandwidth: %s at 2.4G\n", Bandwidth); return; } rtw_txpwr_lmt_add(adapter_to_rfctl(Adapter), Regulation, band, bandwidth, tlrs, ntx_idx, channelIndex, powerLimit); } else { RTW_PRINT("unknown/unsupported band:%s\n", Band); return; } #endif } u8 phy_get_tx_power_index( struct adapter * pAdapter, enum rf_path RFPath, u8 Rate, enum channel_width BandWidth, u8 Channel ) { return rtw_hal_get_tx_power_index(pAdapter, RFPath, Rate, BandWidth, Channel, NULL); } void PHY_SetTxPowerIndex( struct adapter * pAdapter, u32 PowerIndex, enum rf_path RFPath, u8 Rate ) { PHY_SetTxPowerIndex_8723D(pAdapter, PowerIndex, RFPath, Rate); } void dump_tx_power_idx_title(void *sel, struct adapter *adapter) { struct hal_com_data *hal_data = GET_HAL_DATA(adapter); u8 bw = hal_data->current_channel_bw; RTW_PRINT_SEL(sel, "%s", ch_width_str(bw)); if (bw >= CHANNEL_WIDTH_80) _RTW_PRINT_SEL(sel, ", cch80:%u", hal_data->cch_80); if (bw >= CHANNEL_WIDTH_40) _RTW_PRINT_SEL(sel, ", cch40:%u", hal_data->cch_40); _RTW_PRINT_SEL(sel, ", cch20:%u\n", hal_data->cch_20); RTW_PRINT_SEL(sel, "%-4s %-9s %2s %-3s %-4s %-3s %-4s %-4s %-3s %-5s\n" , "path", "rate", "", "pwr", "base", "", "(byr", "lmt)", "tpt", "ebias"); } void dump_tx_power_idx_by_path_rs(void *sel, struct adapter *adapter, u8 rfpath, u8 rs) { struct hal_com_data *hal_data = GET_HAL_DATA(adapter); struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); u8 power_idx; struct txpwr_idx_comp tic; u8 tx_num, i; u8 band = hal_data->current_band_type; u8 cch = hal_data->current_channel; u8 bw = hal_data->current_channel_bw; if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, rfpath)) return; if (rs >= RATE_SECTION_NUM) return; tx_num = rate_section_to_tx_num(rs); if (tx_num >= hal_spec->tx_nss_num || tx_num >= hal_spec->max_tx_cnt) return; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) return; if (IS_VHT_RATE_SECTION(rs)) return; for (i = 0; i < rates_by_sections[rs].rate_num; i++) { power_idx = rtw_hal_get_tx_power_index(adapter, rfpath, rates_by_sections[rs].rates[i], bw, cch, &tic); RTW_PRINT_SEL(sel, "%4c %9s %uT %3u %4u %3d (%3d %3d) %3d %5d\n" , rf_path_char(rfpath), MGN_RATE_STR(rates_by_sections[rs].rates[i]), tic.ntx_idx + 1 , power_idx, tic.base, (tic.by_rate > tic.limit ? tic.limit : tic.by_rate), tic.by_rate, tic.limit, tic.tpt, tic.ebias); } } void dump_tx_power_idx(void *sel, struct adapter *adapter) { u8 rfpath, rs; dump_tx_power_idx_title(sel, adapter); for (rfpath = RF_PATH_A; rfpath < RF_PATH_MAX; rfpath++) for (rs = CCK; rs < RATE_SECTION_NUM; rs++) dump_tx_power_idx_by_path_rs(sel, adapter, rfpath, rs); } bool phy_is_tx_power_limit_needed(struct adapter *adapter) { #ifdef CONFIG_TXPWR_LIMIT if (regsty->RegEnableTxPowerLimit == 1 || (regsty->RegEnableTxPowerLimit == 2 && hal_data->EEPROMRegulatory == 1)) return true; #endif return false; } bool phy_is_tx_power_by_rate_needed(struct adapter *adapter) { struct hal_com_data *hal_data = GET_HAL_DATA(adapter); struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter)); if (regsty->RegEnableTxPowerByRate == 1 || (regsty->RegEnableTxPowerByRate == 2 && hal_data->EEPROMRegulatory != 2)) return true; return false; } int phy_load_tx_power_by_rate(struct adapter *adapter, u8 chk_file) { struct hal_com_data *hal_data = GET_HAL_DATA(adapter); int ret = _FAIL; hal_data->txpwr_by_rate_loaded = 0; PHY_InitTxPowerByRate(adapter); /* tx power limit is based on tx power by rate */ hal_data->txpwr_limit_loaded = 0; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (chk_file && phy_ConfigBBWithPgParaFile(adapter, PHY_FILE_PHY_REG_PG) == _SUCCESS ) { hal_data->txpwr_by_rate_from_file = 1; goto post_hdl; } #endif #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_SUCCESS == odm_config_bb_with_header_file(&hal_data->odmpriv, CONFIG_BB_PHY_REG_PG)) { RTW_INFO("default power by rate loaded\n"); hal_data->txpwr_by_rate_from_file = 0; goto post_hdl; } #endif RTW_ERR("%s():Read Tx power by rate fail\n", __func__); goto exit; post_hdl: if (hal_data->odmpriv.phy_reg_pg_value_type != PHY_REG_PG_EXACT_VALUE) { rtw_warn_on(1); goto exit; } PHY_TxPowerByRateConfiguration(adapter); hal_data->txpwr_by_rate_loaded = 1; ret = _SUCCESS; exit: return ret; } #ifdef CONFIG_TXPWR_LIMIT int phy_load_tx_power_limit(struct adapter *adapter, u8 chk_file) { struct hal_com_data *hal_data = GET_HAL_DATA(adapter); struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter)); struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter); int ret = _FAIL; hal_data->txpwr_limit_loaded = 0; rtw_regd_exc_list_free(rfctl); rtw_txpwr_lmt_list_free(rfctl); if (!hal_data->txpwr_by_rate_loaded && !regsty->target_tx_pwr_valid) { RTW_ERR("%s():Read Tx power limit before target tx power is specify\n", __func__); goto exit; } #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (chk_file && PHY_ConfigRFWithPowerLimitTableParaFile(adapter, PHY_FILE_TXPWR_LMT) == _SUCCESS ) { hal_data->txpwr_limit_from_file = 1; goto post_hdl; } #endif #ifdef CONFIG_EMBEDDED_FWIMG if (odm_config_rf_with_header_file(&hal_data->odmpriv, CONFIG_RF_TXPWR_LMT, RF_PATH_A) == HAL_STATUS_SUCCESS) { RTW_INFO("default power limit loaded\n"); hal_data->txpwr_limit_from_file = 0; goto post_hdl; } #endif RTW_ERR("%s():Read Tx power limit fail\n", __func__); goto exit; post_hdl: phy_txpwr_lmt_post_hdl(adapter); rtw_txpwr_init_regd(rfctl); hal_data->txpwr_limit_loaded = 1; ret = _SUCCESS; exit: return ret; } #endif /* CONFIG_TXPWR_LIMIT */ void phy_load_tx_power_ext_info(struct adapter *adapter, u8 chk_file) { struct registry_priv *regsty = adapter_to_regsty(adapter); /* check registy target tx power */ regsty->target_tx_pwr_valid = rtw_regsty_chk_target_tx_power_valid(adapter); /* power by rate and limit */ if (phy_is_tx_power_by_rate_needed(adapter) || (phy_is_tx_power_limit_needed(adapter) && !regsty->target_tx_pwr_valid)) phy_load_tx_power_by_rate(adapter, chk_file); #ifdef CONFIG_TXPWR_LIMIT if (phy_is_tx_power_limit_needed(adapter)) phy_load_tx_power_limit(adapter, chk_file); #endif } inline void phy_reload_tx_power_ext_info(struct adapter *adapter) { phy_load_tx_power_ext_info(adapter, 1); } inline void phy_reload_default_tx_power_ext_info(struct adapter *adapter) { phy_load_tx_power_ext_info(adapter, 0); } void dump_tx_power_ext_info(void *sel, struct adapter *adapter) { struct registry_priv *regsty = adapter_to_regsty(adapter); struct hal_com_data *hal_data = GET_HAL_DATA(adapter); if (regsty->target_tx_pwr_valid) RTW_PRINT_SEL(sel, "target_tx_power: from registry\n"); else if (phy_is_tx_power_by_rate_needed(adapter)) RTW_PRINT_SEL(sel, "target_tx_power: from power by rate\n"); else RTW_PRINT_SEL(sel, "target_tx_power: unavailable\n"); RTW_PRINT_SEL(sel, "tx_power_by_rate: %s, %s, %s\n" , phy_is_tx_power_by_rate_needed(adapter) ? "enabled" : "disabled" , hal_data->txpwr_by_rate_loaded ? "loaded" : "unloaded" , hal_data->txpwr_by_rate_from_file ? "file" : "default" ); RTW_PRINT_SEL(sel, "tx_power_limit: %s, %s, %s\n" , phy_is_tx_power_limit_needed(adapter) ? "enabled" : "disabled" , hal_data->txpwr_limit_loaded ? "loaded" : "unloaded" , hal_data->txpwr_limit_from_file ? "file" : "default" ); } void dump_target_tx_power(void *sel, struct adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); struct hal_com_data *hal_data = GET_HAL_DATA(adapter); struct registry_priv *regsty = adapter_to_regsty(adapter); int path, tx_num, band, rs; u8 target; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(adapter, band)) continue; for (path = 0; path < RF_PATH_MAX; path++) { if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path)) break; RTW_PRINT_SEL(sel, "[%s][%c]%s\n", band_str(band), rf_path_char(path) , (!regsty->target_tx_pwr_valid && hal_data->txpwr_by_rate_undefined_band_path[band][path]) ? "(dup)" : ""); for (rs = 0; rs < RATE_SECTION_NUM; rs++) { tx_num = rate_section_to_tx_num(rs); if (tx_num >= hal_spec->tx_nss_num) continue; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) continue; if (IS_VHT_RATE_SECTION(rs)) continue; target = PHY_GetTxPowerByRateBase(adapter, band, path, rs); if (target % 2) _RTW_PRINT_SEL(sel, "%7s: %2d.5\n", rate_section_str(rs), target / 2); else _RTW_PRINT_SEL(sel, "%7s: %4d\n", rate_section_str(rs), target / 2); } } } return; } void dump_tx_power_by_rate(void *sel, struct adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); struct hal_com_data *hal_data = GET_HAL_DATA(adapter); int path, tx_num, band, n, rs; u8 rate_num, max_rate_num, base; s8 by_rate_offset; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(adapter, band)) continue; for (path = 0; path < RF_PATH_MAX; path++) { if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path)) break; RTW_PRINT_SEL(sel, "[%s][%c]%s\n", band_str(band), rf_path_char(path) , hal_data->txpwr_by_rate_undefined_band_path[band][path] ? "(dup)" : ""); for (rs = 0; rs < RATE_SECTION_NUM; rs++) { tx_num = rate_section_to_tx_num(rs); if (tx_num >= hal_spec->tx_nss_num) continue; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) continue; if (IS_VHT_RATE_SECTION(rs)) continue; max_rate_num = 8; rate_num = rate_section_rate_num(rs); base = PHY_GetTxPowerByRateBase(adapter, band, path, rs); RTW_PRINT_SEL(sel, "%7s: ", rate_section_str(rs)); /* dump power by rate in db */ for (n = rate_num - 1; n >= 0; n--) { by_rate_offset = PHY_GetTxPowerByRate(adapter, band, path, rates_by_sections[rs].rates[n]); if ((base + by_rate_offset) % 2) _RTW_PRINT_SEL(sel, "%2d.5 ", (base + by_rate_offset) / 2); else _RTW_PRINT_SEL(sel, "%4d ", (base + by_rate_offset) / 2); } for (n = 0; n < max_rate_num - rate_num; n++) _RTW_PRINT_SEL(sel, "%4s ", ""); _RTW_PRINT_SEL(sel, "|"); /* dump power by rate in offset */ for (n = rate_num - 1; n >= 0; n--) { by_rate_offset = PHY_GetTxPowerByRate(adapter, band, path, rates_by_sections[rs].rates[n]); _RTW_PRINT_SEL(sel, "%3d ", by_rate_offset); } RTW_PRINT_SEL(sel, "\n"); } } } } /* * phy file path is stored in global char array rtw_phy_para_file_path * need to care about racing */ int rtw_get_phy_file_path(struct adapter *adapter, const char *file_name) { #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE int len = 0; if (file_name) { len += snprintf(rtw_phy_para_file_path, PATH_LENGTH_MAX, "%s", rtw_phy_file_path); #if defined(REALTEK_CONFIG_PATH_WITH_IC_NAME_FOLDER) len += snprintf(rtw_phy_para_file_path + len, PATH_LENGTH_MAX - len, "%s/", hal_spec->ic_name); #endif len += snprintf(rtw_phy_para_file_path + len, PATH_LENGTH_MAX - len, "%s", file_name); return true; } #endif return false; } #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE int phy_ConfigMACWithParaFile( struct adapter * Adapter, char *pFileName ) { struct hal_com_data * pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; if (!(Adapter->registrypriv.load_phy_file & LOAD_MAC_PARA_FILE)) return rtStatus; memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->mac_reg_len == 0) && (!pHalData->mac_reg)) { rtw_get_phy_file_path(Adapter, pFileName); if (rtw_is_file_readable(rtw_phy_para_file_path)) { rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->mac_reg = vzalloc(rlen); if (pHalData->mac_reg) { memcpy(pHalData->mac_reg, pHalData->para_file_buf, rlen); pHalData->mac_reg_len = rlen; } else RTW_INFO("%s mac_reg alloc fail !\n", __func__); } } } else { if ((pHalData->mac_reg_len != 0) && (pHalData->mac_reg)) { memcpy(pHalData->para_file_buf, pHalData->mac_reg, pHalData->mac_reg_len); rtStatus = _SUCCESS; } else RTW_INFO("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { /* Get 1st hex value as register offset */ if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if (u4bRegOffset == 0xffff) { /* Ending. */ break; } /* Get 2nd hex value as register value. */ szLine += u4bMove; if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) rtw_write8(Adapter, u4bRegOffset, (u8)u4bRegValue); } } } } else RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } int phy_ConfigBBWithParaFile( struct adapter * Adapter, char *pFileName, u32 ConfigType ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; char *pBuf = NULL; u32 *pBufLen = NULL; if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_PARA_FILE)) return rtStatus; switch (ConfigType) { case CONFIG_BB_PHY_REG: pBuf = pHalData->bb_phy_reg; pBufLen = &pHalData->bb_phy_reg_len; break; case CONFIG_BB_AGC_TAB: pBuf = pHalData->bb_agc_tab; pBufLen = &pHalData->bb_agc_tab_len; break; default: RTW_INFO("Unknown ConfigType!! %d\r\n", ConfigType); break; } memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pBufLen) && (*pBufLen == 0) && (!pBuf)) { rtw_get_phy_file_path(Adapter, pFileName); if (rtw_is_file_readable(rtw_phy_para_file_path)) { rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pBuf = vzalloc(rlen); if (pBuf) { memcpy(pBuf, pHalData->para_file_buf, rlen); *pBufLen = rlen; switch (ConfigType) { case CONFIG_BB_PHY_REG: pHalData->bb_phy_reg = pBuf; break; case CONFIG_BB_AGC_TAB: pHalData->bb_agc_tab = pBuf; break; } } else RTW_INFO("%s(): ConfigType %d alloc fail !\n", __func__, ConfigType); } } } else { if ((pBufLen) && (*pBufLen != 0) && (pBuf)) { memcpy(pHalData->para_file_buf, pBuf, *pBufLen); rtStatus = _SUCCESS; } else RTW_INFO("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { /* Get 1st hex value as register offset. */ if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if (u4bRegOffset == 0xffff) { /* Ending. */ break; } else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) { rtw_msleep_os(50); } else if (u4bRegOffset == 0xfd) rtw_mdelay_os(5); else if (u4bRegOffset == 0xfc) rtw_mdelay_os(1); else if (u4bRegOffset == 0xfb) rtw_udelay_os(50); else if (u4bRegOffset == 0xfa) rtw_udelay_os(5); else if (u4bRegOffset == 0xf9) rtw_udelay_os(1); /* Get 2nd hex value as register value. */ szLine += u4bMove; if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { /* RTW_INFO("[BB-ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue); */ phy_set_bb_reg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue); if (u4bRegOffset == 0xa24) pHalData->odmpriv.rf_calibrate_info.rega24 = u4bRegValue; /* Add 1us delay between BB/RF register setting. */ rtw_udelay_os(1); } } } } } else RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } static void phy_DecryptBBPgParaFile( struct adapter * Adapter, char *buffer ) { u32 i = 0, j = 0; u8 map[95] = {0}; u8 currentChar; char *BufOfLines, *ptmp; /* RTW_INFO("=====>phy_DecryptBBPgParaFile()\n"); */ /* 32 the ascii code of the first visable char, 126 the last one */ for (i = 0; i < 95; ++i) map[i] = (u8)(94 - i); ptmp = buffer; i = 0; for (BufOfLines = GetLineFromBuffer(ptmp); BufOfLines; BufOfLines = GetLineFromBuffer(ptmp)) { /* RTW_INFO("Encrypted Line: %s\n", BufOfLines); */ for (j = 0; j < strlen(BufOfLines); ++j) { currentChar = BufOfLines[j]; if (currentChar == '\0') break; currentChar -= (u8)((((i + j) * 3) % 128)); BufOfLines[j] = map[currentChar - 32] + 32; } /* RTW_INFO("Decrypted Line: %s\n", BufOfLines ); */ if (strlen(BufOfLines) != 0) i++; BufOfLines[strlen(BufOfLines)] = '\n'; } } static int phy_ParseBBPgParaFile( struct adapter * Adapter, char *buffer ) { int rtStatus = _SUCCESS; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); char *szLine, *ptmp; u32 u4bRegOffset, u4bRegMask, u4bRegValue; u32 u4bMove; bool firstLine = true; u8 tx_num = 0; u8 band = 0, rf_path = 0; /* RTW_INFO("=====>phy_ParseBBPgParaFile()\n"); */ if (Adapter->registrypriv.RegDecryptCustomFile == 1) phy_DecryptBBPgParaFile(Adapter, buffer); ptmp = buffer; for (szLine = GetLineFromBuffer(ptmp); szLine; szLine = GetLineFromBuffer(ptmp)) { if (isAllSpaceOrTab(szLine, sizeof(*szLine))) continue; if (!IsCommentString(szLine)) { /* Get header info (relative value or exact value) */ if (firstLine) { if (eqNByte(szLine, (u8 *)("#[v1]"), 5)) { pHalData->odmpriv.phy_reg_pg_version = szLine[3] - '0'; /* RTW_INFO("This is a new format PHY_REG_PG.txt\n"); */ } else if (eqNByte(szLine, (u8 *)("#[v0]"), 5)) { pHalData->odmpriv.phy_reg_pg_version = szLine[3] - '0'; /* RTW_INFO("This is a old format PHY_REG_PG.txt ok\n"); */ } else { RTW_INFO("The format in PHY_REG_PG are invalid %s\n", szLine); return _FAIL; } if (eqNByte(szLine + 5, (u8 *)("[Exact]#"), 8)) { pHalData->odmpriv.phy_reg_pg_value_type = PHY_REG_PG_EXACT_VALUE; /* RTW_INFO("The values in PHY_REG_PG are exact values ok\n"); */ firstLine = false; continue; } else if (eqNByte(szLine + 5, (u8 *)("[Relative]#"), 11)) { pHalData->odmpriv.phy_reg_pg_value_type = PHY_REG_PG_RELATIVE_VALUE; /* RTW_INFO("The values in PHY_REG_PG are relative values ok\n"); */ firstLine = false; continue; } else { RTW_INFO("The values in PHY_REG_PG are invalid %s\n", szLine); return _FAIL; } } if (pHalData->odmpriv.phy_reg_pg_version == 0) { /* Get 1st hex value as register offset. */ if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { szLine += u4bMove; if (u4bRegOffset == 0xffff) { /* Ending. */ break; } /* Get 2nd hex value as register mask. */ if (GetHexValueFromString(szLine, &u4bRegMask, &u4bMove)) szLine += u4bMove; else return _FAIL; if (pHalData->odmpriv.phy_reg_pg_value_type == PHY_REG_PG_RELATIVE_VALUE) { /* Get 3rd hex value as register value. */ if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { phy_store_tx_power_by_rate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, u4bRegValue); /* RTW_INFO("[ADDR] %03X=%08X Mask=%08x\n", u4bRegOffset, u4bRegValue, u4bRegMask); */ } else return _FAIL; } else if (pHalData->odmpriv.phy_reg_pg_value_type == PHY_REG_PG_EXACT_VALUE) { u32 combineValue = 0; u8 integer = 0, fraction = 0; if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* RTW_INFO(" %d", integer ); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* RTW_INFO(" %d", integer ); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* RTW_INFO(" %d", integer ); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* RTW_INFO(" %d", integer ); */ phy_store_tx_power_by_rate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, combineValue); /* RTW_INFO("[ADDR] 0x%3x = 0x%4x\n", u4bRegOffset, combineValue ); */ } } } else if (pHalData->odmpriv.phy_reg_pg_version > 0) { u32 index = 0; if (eqNByte(szLine, "0xffff", 6)) break; if (!eqNByte("#[END]#", szLine, 7)) { /* load the table label info */ if (szLine[0] == '#') { index = 0; if (eqNByte(szLine, "#[2.4G]" , 7)) { band = BAND_ON_2_4G; index += 8; } else if (eqNByte(szLine, "#[5G]", 5)) { band = BAND_ON_5G; index += 6; } else { RTW_INFO("Invalid band %s in PHY_REG_PG.txt\n", szLine); return _FAIL; } rf_path = szLine[index] - 'A'; /* RTW_INFO(" Table label Band %d, RfPath %d\n", band, rf_path ); */ } else { /* load rows of tables */ if (szLine[1] == '1') tx_num = RF_1TX; else if (szLine[1] == '2') tx_num = RF_2TX; else if (szLine[1] == '3') tx_num = RF_3TX; else if (szLine[1] == '4') tx_num = RF_4TX; else { RTW_INFO("Invalid row in PHY_REG_PG.txt '%c'(%d)\n", szLine[1], szLine[1]); return _FAIL; } while (szLine[index] != ']') ++index; ++index;/* skip ] */ /* Get 2nd hex value as register offset. */ szLine += index; if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) szLine += u4bMove; else return _FAIL; /* Get 2nd hex value as register mask. */ if (GetHexValueFromString(szLine, &u4bRegMask, &u4bMove)) szLine += u4bMove; else return _FAIL; if (pHalData->odmpriv.phy_reg_pg_value_type == PHY_REG_PG_RELATIVE_VALUE) { /* Get 3rd hex value as register value. */ if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { phy_store_tx_power_by_rate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, u4bRegValue); /* RTW_INFO("[ADDR] %03X (tx_num %d) =%08X Mask=%08x\n", u4bRegOffset, tx_num, u4bRegValue, u4bRegMask); */ } else return _FAIL; } else if (pHalData->odmpriv.phy_reg_pg_value_type == PHY_REG_PG_EXACT_VALUE) { u32 combineValue = 0; u8 integer = 0, fraction = 0; if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* RTW_INFO(" %d", integer ); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* RTW_INFO(" %d", integer ); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* RTW_INFO(" %d", integer ); */ if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove)) szLine += u4bMove; else return _FAIL; integer *= 2; if (fraction == 5) integer += 1; combineValue <<= 8; combineValue |= (((integer / 10) << 4) + (integer % 10)); /* RTW_INFO(" %d", integer ); */ phy_store_tx_power_by_rate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, combineValue); /* RTW_INFO("[ADDR] 0x%3x (tx_num %d) = 0x%4x\n", u4bRegOffset, tx_num, combineValue ); */ } } } } } } /* RTW_INFO("<=====phy_ParseBBPgParaFile()\n"); */ return rtStatus; } int phy_ConfigBBWithPgParaFile( struct adapter * Adapter, const char *pFileName) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_PG_PARA_FILE)) return rtStatus; memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if (!pHalData->bb_phy_reg_pg) { rtw_get_phy_file_path(Adapter, pFileName); if (rtw_is_file_readable(rtw_phy_para_file_path)) { rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->bb_phy_reg_pg = vzalloc(rlen); if (pHalData->bb_phy_reg_pg) { memcpy(pHalData->bb_phy_reg_pg, pHalData->para_file_buf, rlen); pHalData->bb_phy_reg_pg_len = rlen; } else RTW_INFO("%s bb_phy_reg_pg alloc fail !\n", __func__); } } } else { if ((pHalData->bb_phy_reg_pg_len != 0) && (pHalData->bb_phy_reg_pg)) { memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len); rtStatus = _SUCCESS; } else RTW_INFO("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { /* RTW_INFO("phy_ConfigBBWithPgParaFile(): read %s ok\n", pFileName); */ phy_ParseBBPgParaFile(Adapter, pHalData->para_file_buf); } else RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } #if (MP_DRIVER == 1) int phy_ConfigBBWithMpParaFile( struct adapter * Adapter, char *pFileName ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_MP_PARA_FILE)) return rtStatus; memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->bb_phy_reg_mp_len == 0) && (!pHalData->bb_phy_reg_mp)) { rtw_get_phy_file_path(Adapter, pFileName); if (rtw_is_file_readable(rtw_phy_para_file_path)) { rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->bb_phy_reg_mp = vzalloc(rlen); if (pHalData->bb_phy_reg_mp) { memcpy(pHalData->bb_phy_reg_mp, pHalData->para_file_buf, rlen); pHalData->bb_phy_reg_mp_len = rlen; } else RTW_INFO("%s bb_phy_reg_mp alloc fail !\n", __func__); } } } else { if ((pHalData->bb_phy_reg_mp_len != 0) && (pHalData->bb_phy_reg_mp)) { memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_mp, pHalData->bb_phy_reg_mp_len); rtStatus = _SUCCESS; } else RTW_INFO("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { /* RTW_INFO("phy_ConfigBBWithMpParaFile(): read %s ok\n", pFileName); */ ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { /* Get 1st hex value as register offset. */ if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if (u4bRegOffset == 0xffff) { /* Ending. */ break; } else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) { rtw_msleep_os(50); } else if (u4bRegOffset == 0xfd) rtw_mdelay_os(5); else if (u4bRegOffset == 0xfc) rtw_mdelay_os(1); else if (u4bRegOffset == 0xfb) rtw_udelay_os(50); else if (u4bRegOffset == 0xfa) rtw_udelay_os(5); else if (u4bRegOffset == 0xf9) rtw_udelay_os(1); /* Get 2nd hex value as register value. */ szLine += u4bMove; if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { /* RTW_INFO("[ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue); */ phy_set_bb_reg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue); /* Add 1us delay between BB/RF register setting. */ rtw_udelay_os(1); } } } } } else RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } #endif int PHY_ConfigRFWithParaFile( struct adapter * Adapter, char *pFileName, enum rf_path eRFPath ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; u16 i; char *pBuf = NULL; u32 *pBufLen = NULL; if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_PARA_FILE)) return rtStatus; switch (eRFPath) { case RF_PATH_A: pBuf = pHalData->rf_radio_a; pBufLen = &pHalData->rf_radio_a_len; break; case RF_PATH_B: pBuf = pHalData->rf_radio_b; pBufLen = &pHalData->rf_radio_b_len; break; default: RTW_INFO("Unknown RF path!! %d\r\n", eRFPath); break; } memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pBufLen) && (*pBufLen == 0) && (!pBuf)) { rtw_get_phy_file_path(Adapter, pFileName); if (rtw_is_file_readable(rtw_phy_para_file_path)) { rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pBuf = vzalloc(rlen); if (pBuf) { memcpy(pBuf, pHalData->para_file_buf, rlen); *pBufLen = rlen; switch (eRFPath) { case RF_PATH_A: pHalData->rf_radio_a = pBuf; break; case RF_PATH_B: pHalData->rf_radio_b = pBuf; break; default: RTW_INFO("Unknown RF path!! %d\r\n", eRFPath); break; } } else RTW_INFO("%s(): eRFPath=%d alloc fail !\n", __func__, eRFPath); } } } else { if ((pBufLen) && (*pBufLen != 0) && (pBuf)) { memcpy(pHalData->para_file_buf, pBuf, *pBufLen); rtStatus = _SUCCESS; } else RTW_INFO("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { /* RTW_INFO("%s(): read %s successfully\n", __func__, pFileName); */ ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { /* Get 1st hex value as register offset. */ if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) { /* Delay specific ms. Only RF configuration require delay. */ rtw_msleep_os(50); } else if (u4bRegOffset == 0xfd) { /* delay_ms(5); */ for (i = 0; i < 100; i++) rtw_udelay_os(MAX_STALL_TIME); } else if (u4bRegOffset == 0xfc) { /* delay_ms(1); */ for (i = 0; i < 20; i++) rtw_udelay_os(MAX_STALL_TIME); } else if (u4bRegOffset == 0xfb) rtw_udelay_os(50); else if (u4bRegOffset == 0xfa) rtw_udelay_os(5); else if (u4bRegOffset == 0xf9) rtw_udelay_os(1); else if (u4bRegOffset == 0xffff) break; /* Get 2nd hex value as register value. */ szLine += u4bMove; if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { phy_set_rf_reg(Adapter, eRFPath, u4bRegOffset, bRFRegOffsetMask, u4bRegValue); /* Temp add, for frequency lock, if no delay, that may cause */ /* frequency shift, ex: 2412MHz => 2417MHz */ /* If frequency shift, the following action may works. */ /* Fractional-N table in radio_a.txt */ /* 0x2a 0x00001 */ /* channel 1 */ /* 0x2b 0x00808 frequency divider. */ /* 0x2b 0x53333 */ /* 0x2c 0x0000c */ rtw_udelay_os(1); } } } } } else RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } static void initDeltaSwingIndexTables( struct adapter * Adapter, char *Band, char *Path, char *Sign, char *Channel, char *Rate, char *Data ) { #define STR_EQUAL_5G(_band, _path, _sign, _rate, _chnl) \ ((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\ (strcmp(Rate, _rate) == 0) && (strcmp(Channel, _chnl) == 0)\ ) #define STR_EQUAL_2G(_band, _path, _sign, _rate) \ ((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\ (strcmp(Rate, _rate) == 0)\ ) #define STORE_SWING_TABLE(_array, _iteratedIdx) \ do { \ for (token = strsep(&Data, delim); token; token = strsep(&Data, delim)) {\ sscanf(token, "%d", &idx);\ _array[_iteratedIdx++] = (u8)idx;\ } } while (0)\ struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv; struct odm_rf_calibration_structure *pRFCalibrateInfo = &(pDM_Odm->rf_calibrate_info); u32 j = 0; char *token; char delim[] = ","; u32 idx = 0; /* RTW_INFO("===>initDeltaSwingIndexTables(): Band: %s;\nPath: %s;\nSign: %s;\nChannel: %s;\nRate: %s;\n, Data: %s;\n", */ /* Band, Path, Sign, Channel, Rate, Data); */ if (STR_EQUAL_2G("2G", "A", "+", "CCK")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2g_cck_a_p, j); else if (STR_EQUAL_2G("2G", "A", "-", "CCK")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2g_cck_a_n, j); else if (STR_EQUAL_2G("2G", "B", "+", "CCK")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2g_cck_b_p, j); else if (STR_EQUAL_2G("2G", "B", "-", "CCK")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2g_cck_b_n, j); else if (STR_EQUAL_2G("2G", "A", "+", "ALL")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2ga_p, j); else if (STR_EQUAL_2G("2G", "A", "-", "ALL")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2ga_n, j); else if (STR_EQUAL_2G("2G", "B", "+", "ALL")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2gb_p, j); else if (STR_EQUAL_2G("2G", "B", "-", "ALL")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2gb_n, j); else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "0")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_p[0], j); else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "0")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_n[0], j); else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "0")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_p[0], j); else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "0")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_n[0], j); else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "1")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_p[1], j); else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "1")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_n[1], j); else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "1")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_p[1], j); else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "1")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_n[1], j); else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "2")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_p[2], j); else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "2")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_n[2], j); else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "2")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_p[2], j); else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "2")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_n[2], j); else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "3")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_p[3], j); else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "3")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_n[3], j); else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "3")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_p[3], j); else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "3")) STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_n[3], j); else RTW_INFO("===>initDeltaSwingIndexTables(): The input is invalid!!\n"); } int PHY_ConfigRFWithTxPwrTrackParaFile( struct adapter * Adapter, char *pFileName ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 i = 0; if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_TRACK_PARA_FILE)) return rtStatus; memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->rf_tx_pwr_track_len == 0) && (!pHalData->rf_tx_pwr_track)) { rtw_get_phy_file_path(Adapter, pFileName); if (rtw_is_file_readable(rtw_phy_para_file_path)) { rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->rf_tx_pwr_track = vzalloc(rlen); if (pHalData->rf_tx_pwr_track) { memcpy(pHalData->rf_tx_pwr_track, pHalData->para_file_buf, rlen); pHalData->rf_tx_pwr_track_len = rlen; } else RTW_INFO("%s rf_tx_pwr_track alloc fail !\n", __func__); } } } else { if ((pHalData->rf_tx_pwr_track_len != 0) && (pHalData->rf_tx_pwr_track)) { memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len); rtStatus = _SUCCESS; } else RTW_INFO("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) { /* RTW_INFO("%s(): read %s successfully\n", __func__, pFileName); */ ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine; szLine = GetLineFromBuffer(ptmp)) { if (!IsCommentString(szLine)) { char band[5] = "", path[5] = "", sign[5] = ""; char chnl[5] = "", rate[10] = ""; char data[300] = ""; /* 100 is too small */ if (strlen(szLine) < 10 || szLine[0] != '[') continue; strncpy(band, szLine + 1, 2); strncpy(path, szLine + 5, 1); strncpy(sign, szLine + 8, 1); i = 10; /* szLine+10 */ if (!ParseQualifiedString(szLine, &i, rate, '[', ']')) { /* RTW_INFO("Fail to parse rate!\n"); */ } if (!ParseQualifiedString(szLine, &i, chnl, '[', ']')) { /* RTW_INFO("Fail to parse channel group!\n"); */ } while (szLine[i] != '{' && i < strlen(szLine)) i++; if (!ParseQualifiedString(szLine, &i, data, '{', '}')) { /* RTW_INFO("Fail to parse data!\n"); */ } initDeltaSwingIndexTables(Adapter, band, path, sign, chnl, rate, data); } } } else RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } #ifdef CONFIG_TXPWR_LIMIT #define PARSE_RET_NO_HDL 0 #define PARSE_RET_SUCCESS 1 #define PARSE_RET_FAIL 2 /* * @@Ver=2.0 * or * @@DomainCode=0x28, Regulation=C6 * or * @@CountryCode=GB, Regulation=C7 */ static u8 parse_reg_exc_config(struct adapter *adapter, char *szLine) { #define VER_PREFIX "Ver=" #define DOMAIN_PREFIX "DomainCode=0x" #define COUNTRY_PREFIX "CountryCode=" #define REG_PREFIX "Regulation=" const u8 ver_prefix_len = strlen(VER_PREFIX); const u8 domain_prefix_len = strlen(DOMAIN_PREFIX); const u8 country_prefix_len = strlen(COUNTRY_PREFIX); const u8 reg_prefix_len = strlen(REG_PREFIX); u32 i, i_val_s, i_val_e; u32 j; u8 domain = 0xFF; char *country = NULL; u8 parse_reg = 0; if (szLine[0] != '@' || szLine[1] != '@') return PARSE_RET_NO_HDL; i = 2; if (strncmp(szLine + i, VER_PREFIX, ver_prefix_len) == 0) ; /* nothing to do */ else if (strncmp(szLine + i, DOMAIN_PREFIX, domain_prefix_len) == 0) { /* get string after domain prefix to ',' */ i += domain_prefix_len; i_val_s = i; while (szLine[i] != ',') { if (szLine[i] == '\0') return PARSE_RET_FAIL; i++; } i_val_e = i; /* check if all hex */ for (j = i_val_s; j < i_val_e; j++) if (!IsHexDigit(szLine[j])) return PARSE_RET_FAIL; /* get value from hex string */ if (sscanf(szLine + i_val_s, "%hhx", &domain) != 1) return PARSE_RET_FAIL; parse_reg = 1; } else if (strncmp(szLine + i, COUNTRY_PREFIX, country_prefix_len) == 0) { /* get string after country prefix to ',' */ i += country_prefix_len; i_val_s = i; while (szLine[i] != ',') { if (szLine[i] == '\0') return PARSE_RET_FAIL; i++; } i_val_e = i; if (i_val_e - i_val_s != 2) return PARSE_RET_FAIL; /* check if all alpha */ for (j = i_val_s; j < i_val_e; j++) if (!is_alpha(szLine[j])) return PARSE_RET_FAIL; country = szLine + i_val_s; parse_reg = 1; } else return PARSE_RET_FAIL; if (parse_reg) { /* move to 'R' */ while (szLine[i] != 'R') { if (szLine[i] == '\0') return PARSE_RET_FAIL; i++; } /* check if matching regulation prefix */ if (strncmp(szLine + i, REG_PREFIX, reg_prefix_len) != 0) return PARSE_RET_FAIL; /* get string after regulation prefix ending with space */ i += reg_prefix_len; i_val_s = i; while (szLine[i] != ' ' && szLine[i] != '\t' && szLine[i] != '\0') i++; if (i == i_val_s) return PARSE_RET_FAIL; rtw_regd_exc_add_with_nlen(adapter_to_rfctl(adapter), country, domain, szLine + i_val_s, i - i_val_s); } return PARSE_RET_SUCCESS; } static int phy_ParsePowerLimitTableFile( struct adapter * Adapter, char *buffer ) { #define LD_STAGE_EXC_MAPPING 0 #define LD_STAGE_TAB_DEFINE 1 #define LD_STAGE_TAB_START 2 #define LD_STAGE_COLUMN_DEFINE 3 #define LD_STAGE_CH_ROW 4 int rtStatus = _FAIL; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); struct PHY_DM_STRUCT *pDM_Odm = &(pHalData->odmpriv); u8 loadingStage = LD_STAGE_EXC_MAPPING; u32 i = 0, forCnt = 0; u8 limitValue = 0, fraction = 0, negative = 0; char *szLine, *ptmp; char band[10], bandwidth[10], rateSection[10], ntx[10], colNumBuf[10]; char **regulation = NULL; u8 colNum = 0; RTW_INFO("%s enter\n", __func__); if (Adapter->registrypriv.RegDecryptCustomFile == 1) phy_DecryptBBPgParaFile(Adapter, buffer); ptmp = buffer; for (szLine = GetLineFromBuffer(ptmp); szLine; szLine = GetLineFromBuffer(ptmp)) { if (isAllSpaceOrTab(szLine, sizeof(*szLine))) continue; if (IsCommentString(szLine)) continue; if (loadingStage == LD_STAGE_EXC_MAPPING) { if (szLine[0] == '#' || szLine[1] == '#') { loadingStage = LD_STAGE_TAB_DEFINE; } else { if (parse_reg_exc_config(Adapter, szLine) == PARSE_RET_FAIL) { RTW_ERR("Fail to parse regulation exception ruls!\n"); goto exit; } continue; } } if (loadingStage == LD_STAGE_TAB_DEFINE) { /* read "## 2.4G, 20M, 1T, CCK" */ if (szLine[0] != '#' || szLine[1] != '#') continue; /* skip the space */ i = 2; while (szLine[i] == ' ' || szLine[i] == '\t') ++i; szLine[--i] = ' '; /* return the space in front of the regulation info */ /* Parse the label of the table */ memset((void *) band, 0, 10); memset((void *) bandwidth, 0, 10); memset((void *) ntx, 0, 10); memset((void *) rateSection, 0, 10); if (!ParseQualifiedString(szLine, &i, band, ' ', ',')) { RTW_ERR("Fail to parse band!\n"); goto exit; } if (!ParseQualifiedString(szLine, &i, bandwidth, ' ', ',')) { RTW_ERR("Fail to parse bandwidth!\n"); goto exit; } if (!ParseQualifiedString(szLine, &i, ntx, ' ', ',')) { RTW_ERR("Fail to parse ntx!\n"); goto exit; } if (!ParseQualifiedString(szLine, &i, rateSection, ' ', ',')) { RTW_ERR("Fail to parse rate!\n"); goto exit; } loadingStage = LD_STAGE_TAB_START; } else if (loadingStage == LD_STAGE_TAB_START) { /* read "## START" */ if (szLine[0] != '#' || szLine[1] != '#') continue; /* skip the space */ i = 2; while (szLine[i] == ' ' || szLine[i] == '\t') ++i; if (!eqNByte((u8 *)(szLine + i), (u8 *)("START"), 5)) { RTW_ERR("Missing \"## START\" label\n"); goto exit; } loadingStage = LD_STAGE_COLUMN_DEFINE; } else if (loadingStage == LD_STAGE_COLUMN_DEFINE) { /* read "## #5# FCC ETSI MKK IC KCC" */ if (szLine[0] != '#' || szLine[1] != '#') continue; /* skip the space */ i = 2; while (szLine[i] == ' ' || szLine[i] == '\t') ++i; memset((void *) colNumBuf, 0, 10); if (!ParseQualifiedString(szLine, &i, colNumBuf, '#', '#')) { RTW_ERR("Fail to parse column number!\n"); goto exit; } if (!GetU1ByteIntegerFromStringInDecimal(colNumBuf, &colNum)) { RTW_ERR("Column number \"%s\" is not unsigned decimal\n", colNumBuf); goto exit; } if (colNum == 0) { RTW_ERR("Column number is 0\n"); goto exit; } regulation = (char **)rtw_zmalloc(sizeof(char *) * colNum); if (!regulation) { RTW_ERR("Regulation alloc fail\n"); goto exit; } for (forCnt = 0; forCnt < colNum; ++forCnt) { u32 i_ns; /* skip the space */ while (szLine[i] == ' ' || szLine[i] == '\t') i++; i_ns = i; while (szLine[i] != ' ' && szLine[i] != '\t' && szLine[i] != '\0') i++; regulation[forCnt] = (char *)rtw_malloc(i - i_ns + 1); if (!regulation[forCnt]) { RTW_ERR("Regulation alloc fail\n"); goto exit; } memcpy(regulation[forCnt], szLine + i_ns, i - i_ns); regulation[forCnt][i - i_ns] = '\0'; } loadingStage = LD_STAGE_CH_ROW; } else if (loadingStage == LD_STAGE_CH_ROW) { char channel[10] = {0}, powerLimit[10] = {0}; u8 cnt = 0; /* the table ends */ if (szLine[0] == '#' && szLine[1] == '#') { i = 2; while (szLine[i] == ' ' || szLine[i] == '\t') ++i; if (eqNByte((u8 *)(szLine + i), (u8 *)("END"), 3)) { loadingStage = LD_STAGE_TAB_DEFINE; if (regulation) { for (forCnt = 0; forCnt < colNum; ++forCnt) { if (regulation[forCnt]) { rtw_mfree(regulation[forCnt], strlen(regulation[forCnt]) + 1); regulation[forCnt] = NULL; } } rtw_mfree((u8 *)regulation, sizeof(char *) * colNum); regulation = NULL; } colNum = 0; continue; } else { RTW_ERR("Missing \"## END\" label\n"); goto exit; } } if ((szLine[0] != 'c' && szLine[0] != 'C') || (szLine[1] != 'h' && szLine[1] != 'H') ) { RTW_WARN("Wrong channel prefix: '%c','%c'(%d,%d)\n", szLine[0], szLine[1], szLine[0], szLine[1]); continue; } i = 2;/* move to the location behind 'h' */ /* load the channel number */ cnt = 0; while (szLine[i] >= '0' && szLine[i] <= '9') { channel[cnt] = szLine[i]; ++cnt; ++i; } /* RTW_INFO("chnl %s!\n", channel); */ for (forCnt = 0; forCnt < colNum; ++forCnt) { /* skip the space between channel number and the power limit value */ while (szLine[i] == ' ' || szLine[i] == '\t') ++i; /* load the power limit value */ cnt = 0; fraction = 0; negative = 0; memset((void *) powerLimit, 0, 10); while ((szLine[i] >= '0' && szLine[i] <= '9') || szLine[i] == '.' || szLine[i] == '+' || szLine[i] == '-' ) { /* try to get valid decimal number */ if (szLine[i] == '+' || szLine[i] == '-') { if (cnt != 0) { RTW_ERR("Wrong position for sign '%c'\n", szLine[i]); goto exit; } if (szLine[i] == '-') { negative = 1; ++i; continue; } } else if (szLine[i] == '.') { if ((szLine[i + 1] >= '0' && szLine[i + 1] <= '9')) { fraction = szLine[i + 1]; i += 2; } else { RTW_ERR("Wrong fraction '%c'(%d)\n", szLine[i + 1], szLine[i + 1]); goto exit; } break; } powerLimit[cnt] = szLine[i]; ++cnt; ++i; } if (powerLimit[0] == '\0') { if (szLine[i] == 'W' && szLine[i + 1] == 'W') { /* * case "WW" assign special value -63 * means to get minimal limit in other regulations at same channel */ powerLimit[0] = '-'; powerLimit[1] = '6'; powerLimit[2] = '3'; i += 2; } else if (szLine[i] == 'N' && szLine[i + 1] == 'A') { /* * case "NA" assign special value 63 * means no limitation */ powerLimit[0] = '6'; powerLimit[1] = '3'; i += 2; } else { RTW_ERR("Wrong limit expression \"%c%c\"(%d, %d)\n" , szLine[i], szLine[i + 1], szLine[i], szLine[i + 1]); goto exit; } } else { /* transform dicimal value to power index */ if (!GetU1ByteIntegerFromStringInDecimal(powerLimit, &limitValue)) { RTW_ERR("Limit \"%s\" is not valid decimal\n", powerLimit); goto exit; } limitValue *= 2; cnt = 0; if (negative) powerLimit[cnt++] = '-'; if (fraction == '5') ++limitValue; /* the value is greater or equal to 100 */ if (limitValue >= 100) { powerLimit[cnt++] = limitValue / 100 + '0'; limitValue %= 100; if (limitValue >= 10) { powerLimit[cnt++] = limitValue / 10 + '0'; limitValue %= 10; } else powerLimit[cnt++] = '0'; powerLimit[cnt++] = limitValue + '0'; } /* the value is greater or equal to 10 */ else if (limitValue >= 10) { powerLimit[cnt++] = limitValue / 10 + '0'; limitValue %= 10; powerLimit[cnt++] = limitValue + '0'; } /* the value is less than 10 */ else powerLimit[cnt++] = limitValue + '0'; powerLimit[cnt] = '\0'; } /* RTW_INFO("ch%s => %s\n", channel, powerLimit); */ /* store the power limit value */ phy_set_tx_power_limit(pDM_Odm, (u8 *)regulation[forCnt], (u8 *)band, (u8 *)bandwidth, (u8 *)rateSection, (u8 *)ntx, (u8 *)channel, (u8 *)powerLimit); } } } rtStatus = _SUCCESS; exit: if (regulation) { for (forCnt = 0; forCnt < colNum; ++forCnt) { if (regulation[forCnt]) { rtw_mfree(regulation[forCnt], strlen(regulation[forCnt]) + 1); regulation[forCnt] = NULL; } } rtw_mfree((u8 *)regulation, sizeof(char *) * colNum); regulation = NULL; } RTW_INFO("%s return %d\n", __func__, rtStatus); return rtStatus; } int PHY_ConfigRFWithPowerLimitTableParaFile( struct adapter * Adapter, const char *pFileName ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_LMT_PARA_FILE)) return rtStatus; memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if (!pHalData->rf_tx_pwr_lmt) { rtw_get_phy_file_path(Adapter, pFileName); if (rtw_is_file_readable(rtw_phy_para_file_path)) { rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->rf_tx_pwr_lmt = vzalloc(rlen); if (pHalData->rf_tx_pwr_lmt) { memcpy(pHalData->rf_tx_pwr_lmt, pHalData->para_file_buf, rlen); pHalData->rf_tx_pwr_lmt_len = rlen; } else RTW_INFO("%s rf_tx_pwr_lmt alloc fail !\n", __func__); } } } else { if ((pHalData->rf_tx_pwr_lmt_len != 0) && (pHalData->rf_tx_pwr_lmt)) { memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len); rtStatus = _SUCCESS; } else RTW_INFO("%s(): Critical Error !!!\n", __func__); } if (rtStatus == _SUCCESS) rtStatus = phy_ParsePowerLimitTableFile(Adapter, pHalData->para_file_buf); else RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __func__, pFileName); return rtStatus; } #endif /* CONFIG_TXPWR_LIMIT */ void phy_free_filebuf_mask(struct adapter *adapt, u8 mask) { struct hal_com_data *pHalData = GET_HAL_DATA(adapt); if (pHalData->mac_reg && (mask & LOAD_MAC_PARA_FILE)) { vfree(pHalData->mac_reg); pHalData->mac_reg = NULL; } if (mask & LOAD_BB_PARA_FILE) { if (pHalData->bb_phy_reg) { vfree(pHalData->bb_phy_reg); pHalData->bb_phy_reg = NULL; } if (pHalData->bb_agc_tab) { vfree(pHalData->bb_agc_tab); pHalData->bb_agc_tab = NULL; } } if (pHalData->bb_phy_reg_pg && (mask & LOAD_BB_PG_PARA_FILE)) { vfree(pHalData->bb_phy_reg_pg); pHalData->bb_phy_reg_pg = NULL; } if (pHalData->bb_phy_reg_mp && (mask & LOAD_BB_MP_PARA_FILE)) { vfree(pHalData->bb_phy_reg_mp); pHalData->bb_phy_reg_mp = NULL; } if (mask & LOAD_RF_PARA_FILE) { if (pHalData->rf_radio_a) { vfree(pHalData->rf_radio_a); pHalData->rf_radio_a = NULL; } if (pHalData->rf_radio_b) { vfree(pHalData->rf_radio_b); pHalData->rf_radio_b = NULL; } } if (pHalData->rf_tx_pwr_track && (mask & LOAD_RF_TXPWR_TRACK_PARA_FILE)) { vfree(pHalData->rf_tx_pwr_track); pHalData->rf_tx_pwr_track = NULL; } if (pHalData->rf_tx_pwr_lmt && (mask & LOAD_RF_TXPWR_LMT_PARA_FILE)) { vfree(pHalData->rf_tx_pwr_lmt); pHalData->rf_tx_pwr_lmt = NULL; } } inline void phy_free_filebuf(struct adapter *adapt) { phy_free_filebuf_mask(adapt, 0xFF); } #endif