summaryrefslogtreecommitdiff
path: root/virt/kvm/pfncache.c
blob: ce878f4be4daab2dc5e1677b2a3c3edd760959e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables kernel and guest-mode vCPU access to guest physical
 * memory with suitable invalidation mechanisms.
 *
 * Copyright © 2021 Amazon.com, Inc. or its affiliates.
 *
 * Authors:
 *   David Woodhouse <dwmw2@infradead.org>
 */

#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/errno.h>

#include "kvm_mm.h"

/*
 * MMU notifier 'invalidate_range_start' hook.
 */
void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm, unsigned long start,
				       unsigned long end, bool may_block)
{
	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
	struct gfn_to_pfn_cache *gpc;
	bool wake_vcpus = false;

	spin_lock(&kvm->gpc_lock);
	list_for_each_entry(gpc, &kvm->gpc_list, list) {
		write_lock_irq(&gpc->lock);

		/* Only a single page so no need to care about length */
		if (gpc->valid && !is_error_noslot_pfn(gpc->pfn) &&
		    gpc->uhva >= start && gpc->uhva < end) {
			gpc->valid = false;

			/*
			 * If a guest vCPU could be using the physical address,
			 * it needs to be woken.
			 */
			if (gpc->guest_uses_pa) {
				if (!wake_vcpus) {
					wake_vcpus = true;
					bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
				}
				__set_bit(gpc->vcpu->vcpu_idx, vcpu_bitmap);
			}

			/*
			 * We cannot call mark_page_dirty() from here because
			 * this physical CPU might not have an active vCPU
			 * with which to do the KVM dirty tracking.
			 *
			 * Neither is there any point in telling the kernel MM
			 * that the underlying page is dirty. A vCPU in guest
			 * mode might still be writing to it up to the point
			 * where we wake them a few lines further down anyway.
			 *
			 * So all the dirty marking happens on the unmap.
			 */
		}
		write_unlock_irq(&gpc->lock);
	}
	spin_unlock(&kvm->gpc_lock);

	if (wake_vcpus) {
		unsigned int req = KVM_REQ_GPC_INVALIDATE;
		bool called;

		/*
		 * If the OOM reaper is active, then all vCPUs should have
		 * been stopped already, so perform the request without
		 * KVM_REQUEST_WAIT and be sad if any needed to be woken.
		 */
		if (!may_block)
			req &= ~KVM_REQUEST_WAIT;

		called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap);

		WARN_ON_ONCE(called && !may_block);
	}
}

bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
				gpa_t gpa, unsigned long len)
{
	struct kvm_memslots *slots = kvm_memslots(kvm);

	if ((gpa & ~PAGE_MASK) + len > PAGE_SIZE)
		return false;

	if (gpc->gpa != gpa || gpc->generation != slots->generation ||
	    kvm_is_error_hva(gpc->uhva))
		return false;

	if (!gpc->valid)
		return false;

	return true;
}
EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_check);

static void __release_gpc(struct kvm *kvm, kvm_pfn_t pfn, void *khva,
			  gpa_t gpa, bool dirty)
{
	/* Unmap the old page if it was mapped before, and release it */
	if (!is_error_noslot_pfn(pfn)) {
		if (khva) {
			if (pfn_valid(pfn))
				kunmap(pfn_to_page(pfn));
#ifdef CONFIG_HAS_IOMEM
			else
				memunmap(khva);
#endif
		}

		kvm_release_pfn(pfn, dirty);
		if (dirty)
			mark_page_dirty(kvm, gpa);
	}
}

static kvm_pfn_t hva_to_pfn_retry(struct kvm *kvm, unsigned long uhva)
{
	unsigned long mmu_seq;
	kvm_pfn_t new_pfn;
	int retry;

	do {
		mmu_seq = kvm->mmu_notifier_seq;
		smp_rmb();

		/* We always request a writeable mapping */
		new_pfn = hva_to_pfn(uhva, false, NULL, true, NULL);
		if (is_error_noslot_pfn(new_pfn))
			break;

		KVM_MMU_READ_LOCK(kvm);
		retry = mmu_notifier_retry_hva(kvm, mmu_seq, uhva);
		KVM_MMU_READ_UNLOCK(kvm);
		if (!retry)
			break;

		cond_resched();
	} while (1);

	return new_pfn;
}

int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
				 gpa_t gpa, unsigned long len, bool dirty)
{
	struct kvm_memslots *slots = kvm_memslots(kvm);
	unsigned long page_offset = gpa & ~PAGE_MASK;
	kvm_pfn_t old_pfn, new_pfn;
	unsigned long old_uhva;
	gpa_t old_gpa;
	void *old_khva;
	bool old_valid, old_dirty;
	int ret = 0;

	/*
	 * If must fit within a single page. The 'len' argument is
	 * only to enforce that.
	 */
	if (page_offset + len > PAGE_SIZE)
		return -EINVAL;

	write_lock_irq(&gpc->lock);

	old_gpa = gpc->gpa;
	old_pfn = gpc->pfn;
	old_khva = gpc->khva - offset_in_page(gpc->khva);
	old_uhva = gpc->uhva;
	old_valid = gpc->valid;
	old_dirty = gpc->dirty;

	/* If the userspace HVA is invalid, refresh that first */
	if (gpc->gpa != gpa || gpc->generation != slots->generation ||
	    kvm_is_error_hva(gpc->uhva)) {
		gfn_t gfn = gpa_to_gfn(gpa);

		gpc->dirty = false;
		gpc->gpa = gpa;
		gpc->generation = slots->generation;
		gpc->memslot = __gfn_to_memslot(slots, gfn);
		gpc->uhva = gfn_to_hva_memslot(gpc->memslot, gfn);

		if (kvm_is_error_hva(gpc->uhva)) {
			ret = -EFAULT;
			goto out;
		}

		gpc->uhva += page_offset;
	}

	/*
	 * If the userspace HVA changed or the PFN was already invalid,
	 * drop the lock and do the HVA to PFN lookup again.
	 */
	if (!old_valid || old_uhva != gpc->uhva) {
		unsigned long uhva = gpc->uhva;
		void *new_khva = NULL;

		/* Placeholders for "hva is valid but not yet mapped" */
		gpc->pfn = KVM_PFN_ERR_FAULT;
		gpc->khva = NULL;
		gpc->valid = true;

		write_unlock_irq(&gpc->lock);

		new_pfn = hva_to_pfn_retry(kvm, uhva);
		if (is_error_noslot_pfn(new_pfn)) {
			ret = -EFAULT;
			goto map_done;
		}

		if (gpc->kernel_map) {
			if (new_pfn == old_pfn) {
				new_khva = old_khva;
				old_pfn = KVM_PFN_ERR_FAULT;
				old_khva = NULL;
			} else if (pfn_valid(new_pfn)) {
				new_khva = kmap(pfn_to_page(new_pfn));
#ifdef CONFIG_HAS_IOMEM
			} else {
				new_khva = memremap(pfn_to_hpa(new_pfn), PAGE_SIZE, MEMREMAP_WB);
#endif
			}
			if (new_khva)
				new_khva += page_offset;
			else
				ret = -EFAULT;
		}

	map_done:
		write_lock_irq(&gpc->lock);
		if (ret) {
			gpc->valid = false;
			gpc->pfn = KVM_PFN_ERR_FAULT;
			gpc->khva = NULL;
		} else {
			/* At this point, gpc->valid may already have been cleared */
			gpc->pfn = new_pfn;
			gpc->khva = new_khva;
		}
	} else {
		/* If the HVA→PFN mapping was already valid, don't unmap it. */
		old_pfn = KVM_PFN_ERR_FAULT;
		old_khva = NULL;
	}

 out:
	if (ret)
		gpc->dirty = false;
	else
		gpc->dirty = dirty;

	write_unlock_irq(&gpc->lock);

	__release_gpc(kvm, old_pfn, old_khva, old_gpa, old_dirty);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_refresh);

void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc)
{
	void *old_khva;
	kvm_pfn_t old_pfn;
	bool old_dirty;
	gpa_t old_gpa;

	write_lock_irq(&gpc->lock);

	gpc->valid = false;

	old_khva = gpc->khva - offset_in_page(gpc->khva);
	old_dirty = gpc->dirty;
	old_gpa = gpc->gpa;
	old_pfn = gpc->pfn;

	/*
	 * We can leave the GPA → uHVA map cache intact but the PFN
	 * lookup will need to be redone even for the same page.
	 */
	gpc->khva = NULL;
	gpc->pfn = KVM_PFN_ERR_FAULT;

	write_unlock_irq(&gpc->lock);

	__release_gpc(kvm, old_pfn, old_khva, old_gpa, old_dirty);
}
EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_unmap);


int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
			      struct kvm_vcpu *vcpu, bool guest_uses_pa,
			      bool kernel_map, gpa_t gpa, unsigned long len,
			      bool dirty)
{
	if (!gpc->active) {
		rwlock_init(&gpc->lock);

		gpc->khva = NULL;
		gpc->pfn = KVM_PFN_ERR_FAULT;
		gpc->uhva = KVM_HVA_ERR_BAD;
		gpc->vcpu = vcpu;
		gpc->kernel_map = kernel_map;
		gpc->guest_uses_pa = guest_uses_pa;
		gpc->valid = false;
		gpc->active = true;

		spin_lock(&kvm->gpc_lock);
		list_add(&gpc->list, &kvm->gpc_list);
		spin_unlock(&kvm->gpc_lock);
	}
	return kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpa, len, dirty);
}
EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_init);

void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc)
{
	if (gpc->active) {
		spin_lock(&kvm->gpc_lock);
		list_del(&gpc->list);
		spin_unlock(&kvm->gpc_lock);

		kvm_gfn_to_pfn_cache_unmap(kvm, gpc);
		gpc->active = false;
	}
}
EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_destroy);