summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/s390x/resets.c
blob: e41e2cb8ffa9797c470fb061a34fb106b687a47d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Test for s390x CPU resets
 *
 * Copyright (C) 2020, IBM
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>

#include "test_util.h"
#include "kvm_util.h"
#include "kselftest.h"

#define LOCAL_IRQS 32

#define ARBITRARY_NON_ZERO_VCPU_ID 3

struct kvm_s390_irq buf[ARBITRARY_NON_ZERO_VCPU_ID + LOCAL_IRQS];

static uint8_t regs_null[512];

static void guest_code_initial(void)
{
	/* set several CRs to "safe" value */
	unsigned long cr2_59 = 0x10;	/* enable guarded storage */
	unsigned long cr8_63 = 0x1;	/* monitor mask = 1 */
	unsigned long cr10 = 1;		/* PER START */
	unsigned long cr11 = -1;	/* PER END */


	/* Dirty registers */
	asm volatile (
		"	lghi	2,0x11\n"	/* Round toward 0 */
		"	sfpc	2\n"		/* set fpc to !=0 */
		"	lctlg	2,2,%0\n"
		"	lctlg	8,8,%1\n"
		"	lctlg	10,10,%2\n"
		"	lctlg	11,11,%3\n"
		/* now clobber some general purpose regs */
		"	llihh	0,0xffff\n"
		"	llihl	1,0x5555\n"
		"	llilh	2,0xaaaa\n"
		"	llill	3,0x0000\n"
		/* now clobber a floating point reg */
		"	lghi	4,0x1\n"
		"	cdgbr	0,4\n"
		/* now clobber an access reg */
		"	sar	9,4\n"
		/* We embed diag 501 here to control register content */
		"	diag 0,0,0x501\n"
		:
		: "m" (cr2_59), "m" (cr8_63), "m" (cr10), "m" (cr11)
		/* no clobber list as this should not return */
		);
}

static void test_one_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t value)
{
	uint64_t eval_reg;

	vcpu_get_reg(vcpu, id, &eval_reg);
	TEST_ASSERT(eval_reg == value, "value == 0x%lx", value);
}

static void assert_noirq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_irq_state irq_state;
	int irqs;

	irq_state.len = sizeof(buf);
	irq_state.buf = (unsigned long)buf;
	irqs = __vcpu_ioctl(vcpu, KVM_S390_GET_IRQ_STATE, &irq_state);
	/*
	 * irqs contains the number of retrieved interrupts. Any interrupt
	 * (notably, the emergency call interrupt we have injected) should
	 * be cleared by the resets, so this should be 0.
	 */
	TEST_ASSERT(irqs >= 0, "Could not fetch IRQs: errno %d\n", errno);
	TEST_ASSERT(!irqs, "IRQ pending");
}

static void assert_clear(struct kvm_vcpu *vcpu)
{
	struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
	struct kvm_sregs sregs;
	struct kvm_regs regs;
	struct kvm_fpu fpu;

	vcpu_regs_get(vcpu, &regs);
	TEST_ASSERT(!memcmp(&regs.gprs, regs_null, sizeof(regs.gprs)), "grs == 0");

	vcpu_sregs_get(vcpu, &sregs);
	TEST_ASSERT(!memcmp(&sregs.acrs, regs_null, sizeof(sregs.acrs)), "acrs == 0");

	vcpu_fpu_get(vcpu, &fpu);
	TEST_ASSERT(!memcmp(&fpu.fprs, regs_null, sizeof(fpu.fprs)), "fprs == 0");

	/* sync regs */
	TEST_ASSERT(!memcmp(sync_regs->gprs, regs_null, sizeof(sync_regs->gprs)),
		    "gprs0-15 == 0 (sync_regs)");

	TEST_ASSERT(!memcmp(sync_regs->acrs, regs_null, sizeof(sync_regs->acrs)),
		    "acrs0-15 == 0 (sync_regs)");

	TEST_ASSERT(!memcmp(sync_regs->vrs, regs_null, sizeof(sync_regs->vrs)),
		    "vrs0-15 == 0 (sync_regs)");
}

static void assert_initial_noclear(struct kvm_vcpu *vcpu)
{
	struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;

	TEST_ASSERT(sync_regs->gprs[0] == 0xffff000000000000UL,
		    "gpr0 == 0xffff000000000000 (sync_regs)");
	TEST_ASSERT(sync_regs->gprs[1] == 0x0000555500000000UL,
		    "gpr1 == 0x0000555500000000 (sync_regs)");
	TEST_ASSERT(sync_regs->gprs[2] == 0x00000000aaaa0000UL,
		    "gpr2 == 0x00000000aaaa0000 (sync_regs)");
	TEST_ASSERT(sync_regs->gprs[3] == 0x0000000000000000UL,
		    "gpr3 == 0x0000000000000000 (sync_regs)");
	TEST_ASSERT(sync_regs->fprs[0] == 0x3ff0000000000000UL,
		    "fpr0 == 0f1 (sync_regs)");
	TEST_ASSERT(sync_regs->acrs[9] == 1, "ar9 == 1 (sync_regs)");
}

static void assert_initial(struct kvm_vcpu *vcpu)
{
	struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;
	struct kvm_sregs sregs;
	struct kvm_fpu fpu;

	/* KVM_GET_SREGS */
	vcpu_sregs_get(vcpu, &sregs);
	TEST_ASSERT(sregs.crs[0] == 0xE0UL, "cr0 == 0xE0 (KVM_GET_SREGS)");
	TEST_ASSERT(sregs.crs[14] == 0xC2000000UL,
		    "cr14 == 0xC2000000 (KVM_GET_SREGS)");
	TEST_ASSERT(!memcmp(&sregs.crs[1], regs_null, sizeof(sregs.crs[1]) * 12),
		    "cr1-13 == 0 (KVM_GET_SREGS)");
	TEST_ASSERT(sregs.crs[15] == 0, "cr15 == 0 (KVM_GET_SREGS)");

	/* sync regs */
	TEST_ASSERT(sync_regs->crs[0] == 0xE0UL, "cr0 == 0xE0 (sync_regs)");
	TEST_ASSERT(sync_regs->crs[14] == 0xC2000000UL,
		    "cr14 == 0xC2000000 (sync_regs)");
	TEST_ASSERT(!memcmp(&sync_regs->crs[1], regs_null, 8 * 12),
		    "cr1-13 == 0 (sync_regs)");
	TEST_ASSERT(sync_regs->crs[15] == 0, "cr15 == 0 (sync_regs)");
	TEST_ASSERT(sync_regs->fpc == 0, "fpc == 0 (sync_regs)");
	TEST_ASSERT(sync_regs->todpr == 0, "todpr == 0 (sync_regs)");
	TEST_ASSERT(sync_regs->cputm == 0, "cputm == 0 (sync_regs)");
	TEST_ASSERT(sync_regs->ckc == 0, "ckc == 0 (sync_regs)");
	TEST_ASSERT(sync_regs->pp == 0, "pp == 0 (sync_regs)");
	TEST_ASSERT(sync_regs->gbea == 1, "gbea == 1 (sync_regs)");

	/* kvm_run */
	TEST_ASSERT(vcpu->run->psw_addr == 0, "psw_addr == 0 (kvm_run)");
	TEST_ASSERT(vcpu->run->psw_mask == 0, "psw_mask == 0 (kvm_run)");

	vcpu_fpu_get(vcpu, &fpu);
	TEST_ASSERT(!fpu.fpc, "fpc == 0");

	test_one_reg(vcpu, KVM_REG_S390_GBEA, 1);
	test_one_reg(vcpu, KVM_REG_S390_PP, 0);
	test_one_reg(vcpu, KVM_REG_S390_TODPR, 0);
	test_one_reg(vcpu, KVM_REG_S390_CPU_TIMER, 0);
	test_one_reg(vcpu, KVM_REG_S390_CLOCK_COMP, 0);
}

static void assert_normal_noclear(struct kvm_vcpu *vcpu)
{
	struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs;

	TEST_ASSERT(sync_regs->crs[2] == 0x10, "cr2 == 10 (sync_regs)");
	TEST_ASSERT(sync_regs->crs[8] == 1, "cr10 == 1 (sync_regs)");
	TEST_ASSERT(sync_regs->crs[10] == 1, "cr10 == 1 (sync_regs)");
	TEST_ASSERT(sync_regs->crs[11] == -1, "cr11 == -1 (sync_regs)");
}

static void assert_normal(struct kvm_vcpu *vcpu)
{
	test_one_reg(vcpu, KVM_REG_S390_PFTOKEN, KVM_S390_PFAULT_TOKEN_INVALID);
	TEST_ASSERT(vcpu->run->s.regs.pft == KVM_S390_PFAULT_TOKEN_INVALID,
			"pft == 0xff.....  (sync_regs)");
	assert_noirq(vcpu);
}

static void inject_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_irq_state irq_state;
	struct kvm_s390_irq *irq = &buf[0];
	int irqs;

	/* Inject IRQ */
	irq_state.len = sizeof(struct kvm_s390_irq);
	irq_state.buf = (unsigned long)buf;
	irq->type = KVM_S390_INT_EMERGENCY;
	irq->u.emerg.code = vcpu->id;
	irqs = __vcpu_ioctl(vcpu, KVM_S390_SET_IRQ_STATE, &irq_state);
	TEST_ASSERT(irqs >= 0, "Error injecting EMERGENCY IRQ errno %d\n", errno);
}

static struct kvm_vm *create_vm(struct kvm_vcpu **vcpu)
{
	struct kvm_vm *vm;

	vm = vm_create(1);

	*vcpu = vm_vcpu_add(vm, ARBITRARY_NON_ZERO_VCPU_ID, guest_code_initial);

	return vm;
}

static void test_normal(void)
{
	struct kvm_vcpu *vcpu;
	struct kvm_vm *vm;

	ksft_print_msg("Testing normal reset\n");
	vm = create_vm(&vcpu);

	vcpu_run(vcpu);

	inject_irq(vcpu);

	vcpu_ioctl(vcpu, KVM_S390_NORMAL_RESET, NULL);

	/* must clears */
	assert_normal(vcpu);
	/* must not clears */
	assert_normal_noclear(vcpu);
	assert_initial_noclear(vcpu);

	kvm_vm_free(vm);
}

static void test_initial(void)
{
	struct kvm_vcpu *vcpu;
	struct kvm_vm *vm;

	ksft_print_msg("Testing initial reset\n");
	vm = create_vm(&vcpu);

	vcpu_run(vcpu);

	inject_irq(vcpu);

	vcpu_ioctl(vcpu, KVM_S390_INITIAL_RESET, NULL);

	/* must clears */
	assert_normal(vcpu);
	assert_initial(vcpu);
	/* must not clears */
	assert_initial_noclear(vcpu);

	kvm_vm_free(vm);
}

static void test_clear(void)
{
	struct kvm_vcpu *vcpu;
	struct kvm_vm *vm;

	ksft_print_msg("Testing clear reset\n");
	vm = create_vm(&vcpu);

	vcpu_run(vcpu);

	inject_irq(vcpu);

	vcpu_ioctl(vcpu, KVM_S390_CLEAR_RESET, NULL);

	/* must clears */
	assert_normal(vcpu);
	assert_initial(vcpu);
	assert_clear(vcpu);

	kvm_vm_free(vm);
}

struct testdef {
	const char *name;
	void (*test)(void);
	bool needs_cap;
} testlist[] = {
	{ "initial", test_initial, false },
	{ "normal", test_normal, true },
	{ "clear", test_clear, true },
};

int main(int argc, char *argv[])
{
	bool has_s390_vcpu_resets = kvm_check_cap(KVM_CAP_S390_VCPU_RESETS);
	int idx;

	ksft_print_header();
	ksft_set_plan(ARRAY_SIZE(testlist));

	for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
		if (!testlist[idx].needs_cap || has_s390_vcpu_resets) {
			testlist[idx].test();
			ksft_test_result_pass("%s\n", testlist[idx].name);
		} else {
			ksft_test_result_skip("%s - no VCPU_RESETS capability\n",
					      testlist[idx].name);
		}
	}

	ksft_finished();	/* Print results and exit() accordingly */
}