summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/bpf/test_verifier.c
blob: 6cb307201958a95fd9eb22539c16ec0264818a39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Testsuite for eBPF verifier
 *
 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
 * Copyright (c) 2017 Facebook
 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
 */

#include <endian.h>
#include <asm/types.h>
#include <linux/types.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stddef.h>
#include <stdbool.h>
#include <sched.h>
#include <limits.h>
#include <assert.h>

#include <sys/capability.h>

#include <linux/unistd.h>
#include <linux/filter.h>
#include <linux/bpf_perf_event.h>
#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <linux/btf.h>

#include <bpf/bpf.h>
#include <bpf/libbpf.h>

#ifdef HAVE_GENHDR
# include "autoconf.h"
#else
# if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
#  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
# endif
#endif
#include "bpf_rlimit.h"
#include "bpf_rand.h"
#include "bpf_util.h"
#include "test_btf.h"
#include "../../../include/linux/filter.h"

#define MAX_INSNS	BPF_MAXINSNS
#define MAX_TEST_INSNS	1000000
#define MAX_FIXUPS	8
#define MAX_NR_MAPS	18
#define MAX_TEST_RUNS	8
#define POINTER_VALUE	0xcafe4all
#define TEST_DATA_LEN	64

#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
#define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)

#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
static bool unpriv_disabled = false;
static int skips;

struct bpf_test {
	const char *descr;
	struct bpf_insn	insns[MAX_INSNS];
	struct bpf_insn	*fill_insns;
	int fixup_map_hash_8b[MAX_FIXUPS];
	int fixup_map_hash_48b[MAX_FIXUPS];
	int fixup_map_hash_16b[MAX_FIXUPS];
	int fixup_map_array_48b[MAX_FIXUPS];
	int fixup_map_sockmap[MAX_FIXUPS];
	int fixup_map_sockhash[MAX_FIXUPS];
	int fixup_map_xskmap[MAX_FIXUPS];
	int fixup_map_stacktrace[MAX_FIXUPS];
	int fixup_prog1[MAX_FIXUPS];
	int fixup_prog2[MAX_FIXUPS];
	int fixup_map_in_map[MAX_FIXUPS];
	int fixup_cgroup_storage[MAX_FIXUPS];
	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
	int fixup_map_spin_lock[MAX_FIXUPS];
	int fixup_map_array_ro[MAX_FIXUPS];
	int fixup_map_array_wo[MAX_FIXUPS];
	int fixup_map_array_small[MAX_FIXUPS];
	int fixup_sk_storage_map[MAX_FIXUPS];
	const char *errstr;
	const char *errstr_unpriv;
	uint32_t retval, retval_unpriv, insn_processed;
	int prog_len;
	enum {
		UNDEF,
		ACCEPT,
		REJECT
	} result, result_unpriv;
	enum bpf_prog_type prog_type;
	uint8_t flags;
	__u8 data[TEST_DATA_LEN];
	void (*fill_helper)(struct bpf_test *self);
	uint8_t runs;
	struct {
		uint32_t retval, retval_unpriv;
		union {
			__u8 data[TEST_DATA_LEN];
			__u64 data64[TEST_DATA_LEN / 8];
		};
	} retvals[MAX_TEST_RUNS];
};

/* Note we want this to be 64 bit aligned so that the end of our array is
 * actually the end of the structure.
 */
#define MAX_ENTRIES 11

struct test_val {
	unsigned int index;
	int foo[MAX_ENTRIES];
};

struct other_val {
	long long foo;
	long long bar;
};

static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
{
	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
#define PUSH_CNT 51
	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
	struct bpf_insn *insn = self->fill_insns;
	int i = 0, j, k = 0;

	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
loop:
	for (j = 0; j < PUSH_CNT; j++) {
		insn[i++] = BPF_LD_ABS(BPF_B, 0);
		/* jump to error label */
		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
		i++;
		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
					 BPF_FUNC_skb_vlan_push),
		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
		i++;
	}

	for (j = 0; j < PUSH_CNT; j++) {
		insn[i++] = BPF_LD_ABS(BPF_B, 0);
		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
		i++;
		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
					 BPF_FUNC_skb_vlan_pop),
		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
		i++;
	}
	if (++k < 5)
		goto loop;

	for (; i < len - 3; i++)
		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
	insn[len - 3] = BPF_JMP_A(1);
	/* error label */
	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
	insn[len - 1] = BPF_EXIT_INSN();
	self->prog_len = len;
}

static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
	 * to extend the error value of the inlined ld_abs sequence which then
	 * contains 7 insns. so, set the dividend to 7 so the testcase could
	 * work on all arches.
	 */
	unsigned int len = (1 << 15) / 7;
	int i = 0;

	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	insn[i++] = BPF_LD_ABS(BPF_B, 0);
	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
	i++;
	while (i < len - 1)
		insn[i++] = BPF_LD_ABS(BPF_B, 1);
	insn[i] = BPF_EXIT_INSN();
	self->prog_len = i + 1;
}

static void bpf_fill_rand_ld_dw(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	uint64_t res = 0;
	int i = 0;

	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
	while (i < self->retval) {
		uint64_t val = bpf_semi_rand_get();
		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };

		res ^= val;
		insn[i++] = tmp[0];
		insn[i++] = tmp[1];
		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
	}
	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
	insn[i] = BPF_EXIT_INSN();
	self->prog_len = i + 1;
	res ^= (res >> 32);
	self->retval = (uint32_t)res;
}

#define MAX_JMP_SEQ 8192

/* test the sequence of 8k jumps */
static void bpf_fill_scale1(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	int i = 0, k = 0;

	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	/* test to check that the long sequence of jumps is acceptable */
	while (k++ < MAX_JMP_SEQ) {
		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
					 BPF_FUNC_get_prandom_u32);
		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
					-8 * (k % 64 + 1));
	}
	/* every jump adds 1 step to insn_processed, so to stay exactly
	 * within 1m limit add MAX_TEST_INSNS - MAX_JMP_SEQ - 1 MOVs and 1 EXIT
	 */
	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ - 1)
		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
	insn[i] = BPF_EXIT_INSN();
	self->prog_len = i + 1;
	self->retval = 42;
}

/* test the sequence of 8k jumps in inner most function (function depth 8)*/
static void bpf_fill_scale2(struct bpf_test *self)
{
	struct bpf_insn *insn = self->fill_insns;
	int i = 0, k = 0;

#define FUNC_NEST 7
	for (k = 0; k < FUNC_NEST; k++) {
		insn[i++] = BPF_CALL_REL(1);
		insn[i++] = BPF_EXIT_INSN();
	}
	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	/* test to check that the long sequence of jumps is acceptable */
	k = 0;
	while (k++ < MAX_JMP_SEQ) {
		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
					 BPF_FUNC_get_prandom_u32);
		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
	}
	/* every jump adds 1 step to insn_processed, so to stay exactly
	 * within 1m limit add MAX_TEST_INSNS - MAX_JMP_SEQ - 1 MOVs and 1 EXIT
	 */
	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ - 1)
		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
	insn[i] = BPF_EXIT_INSN();
	self->prog_len = i + 1;
	self->retval = 42;
}

static void bpf_fill_scale(struct bpf_test *self)
{
	switch (self->retval) {
	case 1:
		return bpf_fill_scale1(self);
	case 2:
		return bpf_fill_scale2(self);
	default:
		self->prog_len = 0;
		break;
	}
}

/* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
#define BPF_SK_LOOKUP(func)						\
	/* struct bpf_sock_tuple tuple = {} */				\
	BPF_MOV64_IMM(BPF_REG_2, 0),					\
	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
	BPF_MOV64_IMM(BPF_REG_4, 0),					\
	BPF_MOV64_IMM(BPF_REG_5, 0),					\
	BPF_EMIT_CALL(BPF_FUNC_ ## func)

/* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
 * value into 0 and does necessary preparation for direct packet access
 * through r2. The allowed access range is 8 bytes.
 */
#define BPF_DIRECT_PKT_R2						\
	BPF_MOV64_IMM(BPF_REG_0, 0),					\
	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
		    offsetof(struct __sk_buff, data)),			\
	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
		    offsetof(struct __sk_buff, data_end)),		\
	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
	BPF_EXIT_INSN()

/* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
 * positive u32, and zero-extend it into 64-bit.
 */
#define BPF_RAND_UEXT_R7						\
	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
		     BPF_FUNC_get_prandom_u32),				\
	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)

/* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
 * negative u32, and sign-extend it into 64-bit.
 */
#define BPF_RAND_SEXT_R7						\
	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
		     BPF_FUNC_get_prandom_u32),				\
	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)

static struct bpf_test tests[] = {
#define FILL_ARRAY
#include <verifier/tests.h>
#undef FILL_ARRAY
};

static int probe_filter_length(const struct bpf_insn *fp)
{
	int len;

	for (len = MAX_INSNS - 1; len > 0; --len)
		if (fp[len].code != 0 || fp[len].imm != 0)
			break;
	return len + 1;
}

static bool skip_unsupported_map(enum bpf_map_type map_type)
{
	if (!bpf_probe_map_type(map_type, 0)) {
		printf("SKIP (unsupported map type %d)\n", map_type);
		skips++;
		return true;
	}
	return false;
}

static int __create_map(uint32_t type, uint32_t size_key,
			uint32_t size_value, uint32_t max_elem,
			uint32_t extra_flags)
{
	int fd;

	fd = bpf_create_map(type, size_key, size_value, max_elem,
			    (type == BPF_MAP_TYPE_HASH ?
			     BPF_F_NO_PREALLOC : 0) | extra_flags);
	if (fd < 0) {
		if (skip_unsupported_map(type))
			return -1;
		printf("Failed to create hash map '%s'!\n", strerror(errno));
	}

	return fd;
}

static int create_map(uint32_t type, uint32_t size_key,
		      uint32_t size_value, uint32_t max_elem)
{
	return __create_map(type, size_key, size_value, max_elem, 0);
}

static void update_map(int fd, int index)
{
	struct test_val value = {
		.index = (6 + 1) * sizeof(int),
		.foo[6] = 0xabcdef12,
	};

	assert(!bpf_map_update_elem(fd, &index, &value, 0));
}

static int create_prog_dummy1(enum bpf_prog_type prog_type)
{
	struct bpf_insn prog[] = {
		BPF_MOV64_IMM(BPF_REG_0, 42),
		BPF_EXIT_INSN(),
	};

	return bpf_load_program(prog_type, prog,
				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
}

static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx)
{
	struct bpf_insn prog[] = {
		BPF_MOV64_IMM(BPF_REG_3, idx),
		BPF_LD_MAP_FD(BPF_REG_2, mfd),
		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			     BPF_FUNC_tail_call),
		BPF_MOV64_IMM(BPF_REG_0, 41),
		BPF_EXIT_INSN(),
	};

	return bpf_load_program(prog_type, prog,
				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
}

static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
			     int p1key)
{
	int p2key = 1;
	int mfd, p1fd, p2fd;

	mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
			     sizeof(int), max_elem, 0);
	if (mfd < 0) {
		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
			return -1;
		printf("Failed to create prog array '%s'!\n", strerror(errno));
		return -1;
	}

	p1fd = create_prog_dummy1(prog_type);
	p2fd = create_prog_dummy2(prog_type, mfd, p2key);
	if (p1fd < 0 || p2fd < 0)
		goto out;
	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
		goto out;
	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
		goto out;
	close(p2fd);
	close(p1fd);

	return mfd;
out:
	close(p2fd);
	close(p1fd);
	close(mfd);
	return -1;
}

static int create_map_in_map(void)
{
	int inner_map_fd, outer_map_fd;

	inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
				      sizeof(int), 1, 0);
	if (inner_map_fd < 0) {
		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
			return -1;
		printf("Failed to create array '%s'!\n", strerror(errno));
		return inner_map_fd;
	}

	outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
					     sizeof(int), inner_map_fd, 1, 0);
	if (outer_map_fd < 0) {
		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
			return -1;
		printf("Failed to create array of maps '%s'!\n",
		       strerror(errno));
	}

	close(inner_map_fd);

	return outer_map_fd;
}

static int create_cgroup_storage(bool percpu)
{
	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
		BPF_MAP_TYPE_CGROUP_STORAGE;
	int fd;

	fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
			    TEST_DATA_LEN, 0, 0);
	if (fd < 0) {
		if (skip_unsupported_map(type))
			return -1;
		printf("Failed to create cgroup storage '%s'!\n",
		       strerror(errno));
	}

	return fd;
}

/* struct bpf_spin_lock {
 *   int val;
 * };
 * struct val {
 *   int cnt;
 *   struct bpf_spin_lock l;
 * };
 */
static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
static __u32 btf_raw_types[] = {
	/* int */
	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
	/* struct bpf_spin_lock */                      /* [2] */
	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
	/* struct val */                                /* [3] */
	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
};

static int load_btf(void)
{
	struct btf_header hdr = {
		.magic = BTF_MAGIC,
		.version = BTF_VERSION,
		.hdr_len = sizeof(struct btf_header),
		.type_len = sizeof(btf_raw_types),
		.str_off = sizeof(btf_raw_types),
		.str_len = sizeof(btf_str_sec),
	};
	void *ptr, *raw_btf;
	int btf_fd;

	ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
			       sizeof(btf_str_sec));

	memcpy(ptr, &hdr, sizeof(hdr));
	ptr += sizeof(hdr);
	memcpy(ptr, btf_raw_types, hdr.type_len);
	ptr += hdr.type_len;
	memcpy(ptr, btf_str_sec, hdr.str_len);
	ptr += hdr.str_len;

	btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
	free(raw_btf);
	if (btf_fd < 0)
		return -1;
	return btf_fd;
}

static int create_map_spin_lock(void)
{
	struct bpf_create_map_attr attr = {
		.name = "test_map",
		.map_type = BPF_MAP_TYPE_ARRAY,
		.key_size = 4,
		.value_size = 8,
		.max_entries = 1,
		.btf_key_type_id = 1,
		.btf_value_type_id = 3,
	};
	int fd, btf_fd;

	btf_fd = load_btf();
	if (btf_fd < 0)
		return -1;
	attr.btf_fd = btf_fd;
	fd = bpf_create_map_xattr(&attr);
	if (fd < 0)
		printf("Failed to create map with spin_lock\n");
	return fd;
}

static int create_sk_storage_map(void)
{
	struct bpf_create_map_attr attr = {
		.name = "test_map",
		.map_type = BPF_MAP_TYPE_SK_STORAGE,
		.key_size = 4,
		.value_size = 8,
		.max_entries = 0,
		.map_flags = BPF_F_NO_PREALLOC,
		.btf_key_type_id = 1,
		.btf_value_type_id = 3,
	};
	int fd, btf_fd;

	btf_fd = load_btf();
	if (btf_fd < 0)
		return -1;
	attr.btf_fd = btf_fd;
	fd = bpf_create_map_xattr(&attr);
	close(attr.btf_fd);
	if (fd < 0)
		printf("Failed to create sk_storage_map\n");
	return fd;
}

static char bpf_vlog[UINT_MAX >> 8];

static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
			  struct bpf_insn *prog, int *map_fds)
{
	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
	int *fixup_map_array_48b = test->fixup_map_array_48b;
	int *fixup_map_sockmap = test->fixup_map_sockmap;
	int *fixup_map_sockhash = test->fixup_map_sockhash;
	int *fixup_map_xskmap = test->fixup_map_xskmap;
	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
	int *fixup_prog1 = test->fixup_prog1;
	int *fixup_prog2 = test->fixup_prog2;
	int *fixup_map_in_map = test->fixup_map_in_map;
	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
	int *fixup_map_array_ro = test->fixup_map_array_ro;
	int *fixup_map_array_wo = test->fixup_map_array_wo;
	int *fixup_map_array_small = test->fixup_map_array_small;
	int *fixup_sk_storage_map = test->fixup_sk_storage_map;

	if (test->fill_helper) {
		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
		test->fill_helper(test);
	}

	/* Allocating HTs with 1 elem is fine here, since we only test
	 * for verifier and not do a runtime lookup, so the only thing
	 * that really matters is value size in this case.
	 */
	if (*fixup_map_hash_8b) {
		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
					sizeof(long long), 1);
		do {
			prog[*fixup_map_hash_8b].imm = map_fds[0];
			fixup_map_hash_8b++;
		} while (*fixup_map_hash_8b);
	}

	if (*fixup_map_hash_48b) {
		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
					sizeof(struct test_val), 1);
		do {
			prog[*fixup_map_hash_48b].imm = map_fds[1];
			fixup_map_hash_48b++;
		} while (*fixup_map_hash_48b);
	}

	if (*fixup_map_hash_16b) {
		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
					sizeof(struct other_val), 1);
		do {
			prog[*fixup_map_hash_16b].imm = map_fds[2];
			fixup_map_hash_16b++;
		} while (*fixup_map_hash_16b);
	}

	if (*fixup_map_array_48b) {
		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
					sizeof(struct test_val), 1);
		update_map(map_fds[3], 0);
		do {
			prog[*fixup_map_array_48b].imm = map_fds[3];
			fixup_map_array_48b++;
		} while (*fixup_map_array_48b);
	}

	if (*fixup_prog1) {
		map_fds[4] = create_prog_array(prog_type, 4, 0);
		do {
			prog[*fixup_prog1].imm = map_fds[4];
			fixup_prog1++;
		} while (*fixup_prog1);
	}

	if (*fixup_prog2) {
		map_fds[5] = create_prog_array(prog_type, 8, 7);
		do {
			prog[*fixup_prog2].imm = map_fds[5];
			fixup_prog2++;
		} while (*fixup_prog2);
	}

	if (*fixup_map_in_map) {
		map_fds[6] = create_map_in_map();
		do {
			prog[*fixup_map_in_map].imm = map_fds[6];
			fixup_map_in_map++;
		} while (*fixup_map_in_map);
	}

	if (*fixup_cgroup_storage) {
		map_fds[7] = create_cgroup_storage(false);
		do {
			prog[*fixup_cgroup_storage].imm = map_fds[7];
			fixup_cgroup_storage++;
		} while (*fixup_cgroup_storage);
	}

	if (*fixup_percpu_cgroup_storage) {
		map_fds[8] = create_cgroup_storage(true);
		do {
			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
			fixup_percpu_cgroup_storage++;
		} while (*fixup_percpu_cgroup_storage);
	}
	if (*fixup_map_sockmap) {
		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
					sizeof(int), 1);
		do {
			prog[*fixup_map_sockmap].imm = map_fds[9];
			fixup_map_sockmap++;
		} while (*fixup_map_sockmap);
	}
	if (*fixup_map_sockhash) {
		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
					sizeof(int), 1);
		do {
			prog[*fixup_map_sockhash].imm = map_fds[10];
			fixup_map_sockhash++;
		} while (*fixup_map_sockhash);
	}
	if (*fixup_map_xskmap) {
		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
					sizeof(int), 1);
		do {
			prog[*fixup_map_xskmap].imm = map_fds[11];
			fixup_map_xskmap++;
		} while (*fixup_map_xskmap);
	}
	if (*fixup_map_stacktrace) {
		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
					 sizeof(u64), 1);
		do {
			prog[*fixup_map_stacktrace].imm = map_fds[12];
			fixup_map_stacktrace++;
		} while (*fixup_map_stacktrace);
	}
	if (*fixup_map_spin_lock) {
		map_fds[13] = create_map_spin_lock();
		do {
			prog[*fixup_map_spin_lock].imm = map_fds[13];
			fixup_map_spin_lock++;
		} while (*fixup_map_spin_lock);
	}
	if (*fixup_map_array_ro) {
		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
					   sizeof(struct test_val), 1,
					   BPF_F_RDONLY_PROG);
		update_map(map_fds[14], 0);
		do {
			prog[*fixup_map_array_ro].imm = map_fds[14];
			fixup_map_array_ro++;
		} while (*fixup_map_array_ro);
	}
	if (*fixup_map_array_wo) {
		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
					   sizeof(struct test_val), 1,
					   BPF_F_WRONLY_PROG);
		update_map(map_fds[15], 0);
		do {
			prog[*fixup_map_array_wo].imm = map_fds[15];
			fixup_map_array_wo++;
		} while (*fixup_map_array_wo);
	}
	if (*fixup_map_array_small) {
		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
					   1, 1, 0);
		update_map(map_fds[16], 0);
		do {
			prog[*fixup_map_array_small].imm = map_fds[16];
			fixup_map_array_small++;
		} while (*fixup_map_array_small);
	}
	if (*fixup_sk_storage_map) {
		map_fds[17] = create_sk_storage_map();
		do {
			prog[*fixup_sk_storage_map].imm = map_fds[17];
			fixup_sk_storage_map++;
		} while (*fixup_sk_storage_map);
	}
}

static int set_admin(bool admin)
{
	cap_t caps;
	const cap_value_t cap_val = CAP_SYS_ADMIN;
	int ret = -1;

	caps = cap_get_proc();
	if (!caps) {
		perror("cap_get_proc");
		return -1;
	}
	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val,
				admin ? CAP_SET : CAP_CLEAR)) {
		perror("cap_set_flag");
		goto out;
	}
	if (cap_set_proc(caps)) {
		perror("cap_set_proc");
		goto out;
	}
	ret = 0;
out:
	if (cap_free(caps))
		perror("cap_free");
	return ret;
}

static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
			    void *data, size_t size_data)
{
	__u8 tmp[TEST_DATA_LEN << 2];
	__u32 size_tmp = sizeof(tmp);
	uint32_t retval;
	int err;

	if (unpriv)
		set_admin(true);
	err = bpf_prog_test_run(fd_prog, 1, data, size_data,
				tmp, &size_tmp, &retval, NULL);
	if (unpriv)
		set_admin(false);
	if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) {
		printf("Unexpected bpf_prog_test_run error ");
		return err;
	}
	if (!err && retval != expected_val &&
	    expected_val != POINTER_VALUE) {
		printf("FAIL retval %d != %d ", retval, expected_val);
		return 1;
	}

	return 0;
}

static void do_test_single(struct bpf_test *test, bool unpriv,
			   int *passes, int *errors)
{
	int fd_prog, expected_ret, alignment_prevented_execution;
	int prog_len, prog_type = test->prog_type;
	struct bpf_insn *prog = test->insns;
	int run_errs, run_successes;
	int map_fds[MAX_NR_MAPS];
	const char *expected_err;
	int fixup_skips;
	__u32 pflags;
	int i, err;

	for (i = 0; i < MAX_NR_MAPS; i++)
		map_fds[i] = -1;

	if (!prog_type)
		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
	fixup_skips = skips;
	do_test_fixup(test, prog_type, prog, map_fds);
	if (test->fill_insns) {
		prog = test->fill_insns;
		prog_len = test->prog_len;
	} else {
		prog_len = probe_filter_length(prog);
	}
	/* If there were some map skips during fixup due to missing bpf
	 * features, skip this test.
	 */
	if (fixup_skips != skips)
		return;

	pflags = BPF_F_TEST_RND_HI32;
	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
		pflags |= BPF_F_STRICT_ALIGNMENT;
	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
		pflags |= BPF_F_ANY_ALIGNMENT;
	fd_prog = bpf_verify_program(prog_type, prog, prog_len, pflags,
				     "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 4);
	if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) {
		printf("SKIP (unsupported program type %d)\n", prog_type);
		skips++;
		goto close_fds;
	}

	expected_ret = unpriv && test->result_unpriv != UNDEF ?
		       test->result_unpriv : test->result;
	expected_err = unpriv && test->errstr_unpriv ?
		       test->errstr_unpriv : test->errstr;

	alignment_prevented_execution = 0;

	if (expected_ret == ACCEPT) {
		if (fd_prog < 0) {
			printf("FAIL\nFailed to load prog '%s'!\n",
			       strerror(errno));
			goto fail_log;
		}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
		if (fd_prog >= 0 &&
		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
			alignment_prevented_execution = 1;
#endif
	} else {
		if (fd_prog >= 0) {
			printf("FAIL\nUnexpected success to load!\n");
			goto fail_log;
		}
		if (!strstr(bpf_vlog, expected_err)) {
			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
			      expected_err, bpf_vlog);
			goto fail_log;
		}
	}

	if (test->insn_processed) {
		uint32_t insn_processed;
		char *proc;

		proc = strstr(bpf_vlog, "processed ");
		insn_processed = atoi(proc + 10);
		if (test->insn_processed != insn_processed) {
			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
			       insn_processed, test->insn_processed);
			goto fail_log;
		}
	}

	run_errs = 0;
	run_successes = 0;
	if (!alignment_prevented_execution && fd_prog >= 0) {
		uint32_t expected_val;
		int i;

		if (!test->runs) {
			expected_val = unpriv && test->retval_unpriv ?
				test->retval_unpriv : test->retval;

			err = do_prog_test_run(fd_prog, unpriv, expected_val,
					       test->data, sizeof(test->data));
			if (err)
				run_errs++;
			else
				run_successes++;
		}

		for (i = 0; i < test->runs; i++) {
			if (unpriv && test->retvals[i].retval_unpriv)
				expected_val = test->retvals[i].retval_unpriv;
			else
				expected_val = test->retvals[i].retval;

			err = do_prog_test_run(fd_prog, unpriv, expected_val,
					       test->retvals[i].data,
					       sizeof(test->retvals[i].data));
			if (err) {
				printf("(run %d/%d) ", i + 1, test->runs);
				run_errs++;
			} else {
				run_successes++;
			}
		}
	}

	if (!run_errs) {
		(*passes)++;
		if (run_successes > 1)
			printf("%d cases ", run_successes);
		printf("OK");
		if (alignment_prevented_execution)
			printf(" (NOTE: not executed due to unknown alignment)");
		printf("\n");
	} else {
		printf("\n");
		goto fail_log;
	}
close_fds:
	if (test->fill_insns)
		free(test->fill_insns);
	close(fd_prog);
	for (i = 0; i < MAX_NR_MAPS; i++)
		close(map_fds[i]);
	sched_yield();
	return;
fail_log:
	(*errors)++;
	printf("%s", bpf_vlog);
	goto close_fds;
}

static bool is_admin(void)
{
	cap_t caps;
	cap_flag_value_t sysadmin = CAP_CLEAR;
	const cap_value_t cap_val = CAP_SYS_ADMIN;

#ifdef CAP_IS_SUPPORTED
	if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
		perror("cap_get_flag");
		return false;
	}
#endif
	caps = cap_get_proc();
	if (!caps) {
		perror("cap_get_proc");
		return false;
	}
	if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin))
		perror("cap_get_flag");
	if (cap_free(caps))
		perror("cap_free");
	return (sysadmin == CAP_SET);
}

static void get_unpriv_disabled()
{
	char buf[2];
	FILE *fd;

	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
	if (!fd) {
		perror("fopen /proc/sys/"UNPRIV_SYSCTL);
		unpriv_disabled = true;
		return;
	}
	if (fgets(buf, 2, fd) == buf && atoi(buf))
		unpriv_disabled = true;
	fclose(fd);
}

static bool test_as_unpriv(struct bpf_test *test)
{
	return !test->prog_type ||
	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
}

static int do_test(bool unpriv, unsigned int from, unsigned int to)
{
	int i, passes = 0, errors = 0;

	for (i = from; i < to; i++) {
		struct bpf_test *test = &tests[i];

		/* Program types that are not supported by non-root we
		 * skip right away.
		 */
		if (test_as_unpriv(test) && unpriv_disabled) {
			printf("#%d/u %s SKIP\n", i, test->descr);
			skips++;
		} else if (test_as_unpriv(test)) {
			if (!unpriv)
				set_admin(false);
			printf("#%d/u %s ", i, test->descr);
			do_test_single(test, true, &passes, &errors);
			if (!unpriv)
				set_admin(true);
		}

		if (unpriv) {
			printf("#%d/p %s SKIP\n", i, test->descr);
			skips++;
		} else {
			printf("#%d/p %s ", i, test->descr);
			do_test_single(test, false, &passes, &errors);
		}
	}

	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
	       skips, errors);
	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
}

int main(int argc, char **argv)
{
	unsigned int from = 0, to = ARRAY_SIZE(tests);
	bool unpriv = !is_admin();

	if (argc == 3) {
		unsigned int l = atoi(argv[argc - 2]);
		unsigned int u = atoi(argv[argc - 1]);

		if (l < to && u < to) {
			from = l;
			to   = u + 1;
		}
	} else if (argc == 2) {
		unsigned int t = atoi(argv[argc - 1]);

		if (t < to) {
			from = t;
			to   = t + 1;
		}
	}

	get_unpriv_disabled();
	if (unpriv && unpriv_disabled) {
		printf("Cannot run as unprivileged user with sysctl %s.\n",
		       UNPRIV_SYSCTL);
		return EXIT_FAILURE;
	}

	bpf_semi_rand_init();
	return do_test(unpriv, from, to);
}