summaryrefslogtreecommitdiff
path: root/sound/soc/sprd/sprd-mcdt.c
blob: 28f5e649733df9e6b095c8b2b0d2139db41eedb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2019 Spreadtrum Communications Inc.

#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>

#include "sprd-mcdt.h"

/* MCDT registers definition */
#define MCDT_CH0_TXD		0x0
#define MCDT_CH0_RXD		0x28
#define MCDT_DAC0_WTMK		0x60
#define MCDT_ADC0_WTMK		0x88
#define MCDT_DMA_EN		0xb0

#define MCDT_INT_EN0		0xb4
#define MCDT_INT_EN1		0xb8
#define MCDT_INT_EN2		0xbc

#define MCDT_INT_CLR0		0xc0
#define MCDT_INT_CLR1		0xc4
#define MCDT_INT_CLR2		0xc8

#define MCDT_INT_RAW1		0xcc
#define MCDT_INT_RAW2		0xd0
#define MCDT_INT_RAW3		0xd4

#define MCDT_INT_MSK1		0xd8
#define MCDT_INT_MSK2		0xdc
#define MCDT_INT_MSK3		0xe0

#define MCDT_DAC0_FIFO_ADDR_ST	0xe4
#define MCDT_ADC0_FIFO_ADDR_ST	0xe8

#define MCDT_CH_FIFO_ST0	0x134
#define MCDT_CH_FIFO_ST1	0x138
#define MCDT_CH_FIFO_ST2	0x13c

#define MCDT_INT_MSK_CFG0	0x140
#define MCDT_INT_MSK_CFG1	0x144

#define MCDT_DMA_CFG0		0x148
#define MCDT_FIFO_CLR		0x14c
#define MCDT_DMA_CFG1		0x150
#define MCDT_DMA_CFG2		0x154
#define MCDT_DMA_CFG3		0x158
#define MCDT_DMA_CFG4		0x15c
#define MCDT_DMA_CFG5		0x160

/* Channel water mark definition */
#define MCDT_CH_FIFO_AE_SHIFT	16
#define MCDT_CH_FIFO_AE_MASK	GENMASK(24, 16)
#define MCDT_CH_FIFO_AF_MASK	GENMASK(8, 0)

/* DMA channel select definition */
#define MCDT_DMA_CH0_SEL_MASK	GENMASK(3, 0)
#define MCDT_DMA_CH0_SEL_SHIFT	0
#define MCDT_DMA_CH1_SEL_MASK	GENMASK(7, 4)
#define MCDT_DMA_CH1_SEL_SHIFT	4
#define MCDT_DMA_CH2_SEL_MASK	GENMASK(11, 8)
#define MCDT_DMA_CH2_SEL_SHIFT	8
#define MCDT_DMA_CH3_SEL_MASK	GENMASK(15, 12)
#define MCDT_DMA_CH3_SEL_SHIFT	12
#define MCDT_DMA_CH4_SEL_MASK	GENMASK(19, 16)
#define MCDT_DMA_CH4_SEL_SHIFT	16
#define MCDT_DAC_DMA_SHIFT	16

/* DMA channel ACK select definition */
#define MCDT_DMA_ACK_SEL_MASK	GENMASK(3, 0)

/* Channel FIFO definition */
#define MCDT_CH_FIFO_ADDR_SHIFT	16
#define MCDT_CH_FIFO_ADDR_MASK	GENMASK(9, 0)
#define MCDT_ADC_FIFO_SHIFT	16
#define MCDT_FIFO_LENGTH	512

#define MCDT_ADC_CHANNEL_NUM	10
#define MCDT_DAC_CHANNEL_NUM	10
#define MCDT_CHANNEL_NUM	(MCDT_ADC_CHANNEL_NUM + MCDT_DAC_CHANNEL_NUM)

enum sprd_mcdt_fifo_int {
	MCDT_ADC_FIFO_AE_INT,
	MCDT_ADC_FIFO_AF_INT,
	MCDT_DAC_FIFO_AE_INT,
	MCDT_DAC_FIFO_AF_INT,
	MCDT_ADC_FIFO_OV_INT,
	MCDT_DAC_FIFO_OV_INT
};

enum sprd_mcdt_fifo_sts {
	MCDT_ADC_FIFO_REAL_FULL,
	MCDT_ADC_FIFO_REAL_EMPTY,
	MCDT_ADC_FIFO_AF,
	MCDT_ADC_FIFO_AE,
	MCDT_DAC_FIFO_REAL_FULL,
	MCDT_DAC_FIFO_REAL_EMPTY,
	MCDT_DAC_FIFO_AF,
	MCDT_DAC_FIFO_AE
};

struct sprd_mcdt_dev {
	struct device *dev;
	void __iomem *base;
	spinlock_t lock;
	struct sprd_mcdt_chan chan[MCDT_CHANNEL_NUM];
};

static LIST_HEAD(sprd_mcdt_chan_list);
static DEFINE_MUTEX(sprd_mcdt_list_mutex);

static void sprd_mcdt_update(struct sprd_mcdt_dev *mcdt, u32 reg, u32 val,
			     u32 mask)
{
	u32 orig = readl_relaxed(mcdt->base + reg);
	u32 tmp;

	tmp = (orig & ~mask) | val;
	writel_relaxed(tmp, mcdt->base + reg);
}

static void sprd_mcdt_dac_set_watermark(struct sprd_mcdt_dev *mcdt, u8 channel,
					u32 full, u32 empty)
{
	u32 reg = MCDT_DAC0_WTMK + channel * 4;
	u32 water_mark =
		(empty << MCDT_CH_FIFO_AE_SHIFT) & MCDT_CH_FIFO_AE_MASK;

	water_mark |= full & MCDT_CH_FIFO_AF_MASK;
	sprd_mcdt_update(mcdt, reg, water_mark,
			 MCDT_CH_FIFO_AE_MASK | MCDT_CH_FIFO_AF_MASK);
}

static void sprd_mcdt_adc_set_watermark(struct sprd_mcdt_dev *mcdt, u8 channel,
					u32 full, u32 empty)
{
	u32 reg = MCDT_ADC0_WTMK + channel * 4;
	u32 water_mark =
		(empty << MCDT_CH_FIFO_AE_SHIFT) & MCDT_CH_FIFO_AE_MASK;

	water_mark |= full & MCDT_CH_FIFO_AF_MASK;
	sprd_mcdt_update(mcdt, reg, water_mark,
			 MCDT_CH_FIFO_AE_MASK | MCDT_CH_FIFO_AF_MASK);
}

static void sprd_mcdt_dac_dma_enable(struct sprd_mcdt_dev *mcdt, u8 channel,
				     bool enable)
{
	u32 shift = MCDT_DAC_DMA_SHIFT + channel;

	if (enable)
		sprd_mcdt_update(mcdt, MCDT_DMA_EN, BIT(shift), BIT(shift));
	else
		sprd_mcdt_update(mcdt, MCDT_DMA_EN, 0, BIT(shift));
}

static void sprd_mcdt_adc_dma_enable(struct sprd_mcdt_dev *mcdt, u8 channel,
				     bool enable)
{
	if (enable)
		sprd_mcdt_update(mcdt, MCDT_DMA_EN, BIT(channel), BIT(channel));
	else
		sprd_mcdt_update(mcdt, MCDT_DMA_EN, 0, BIT(channel));
}

static void sprd_mcdt_ap_int_enable(struct sprd_mcdt_dev *mcdt, u8 channel,
				    bool enable)
{
	if (enable)
		sprd_mcdt_update(mcdt, MCDT_INT_MSK_CFG0, BIT(channel),
				 BIT(channel));
	else
		sprd_mcdt_update(mcdt, MCDT_INT_MSK_CFG0, 0, BIT(channel));
}

static void sprd_mcdt_dac_write_fifo(struct sprd_mcdt_dev *mcdt, u8 channel,
				     u32 val)
{
	u32 reg = MCDT_CH0_TXD + channel * 4;

	writel_relaxed(val, mcdt->base + reg);
}

static void sprd_mcdt_adc_read_fifo(struct sprd_mcdt_dev *mcdt, u8 channel,
				    u32 *val)
{
	u32 reg = MCDT_CH0_RXD + channel * 4;

	*val = readl_relaxed(mcdt->base + reg);
}

static void sprd_mcdt_dac_dma_chn_select(struct sprd_mcdt_dev *mcdt, u8 channel,
					 enum sprd_mcdt_dma_chan dma_chan)
{
	switch (dma_chan) {
	case SPRD_MCDT_DMA_CH0:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH0_SEL_SHIFT,
				 MCDT_DMA_CH0_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH1:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH1_SEL_SHIFT,
				 MCDT_DMA_CH1_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH2:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH2_SEL_SHIFT,
				 MCDT_DMA_CH2_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH3:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH3_SEL_SHIFT,
				 MCDT_DMA_CH3_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH4:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH4_SEL_SHIFT,
				 MCDT_DMA_CH4_SEL_MASK);
		break;
	}
}

static void sprd_mcdt_adc_dma_chn_select(struct sprd_mcdt_dev *mcdt, u8 channel,
					 enum sprd_mcdt_dma_chan dma_chan)
{
	switch (dma_chan) {
	case SPRD_MCDT_DMA_CH0:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH0_SEL_SHIFT,
				 MCDT_DMA_CH0_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH1:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH1_SEL_SHIFT,
				 MCDT_DMA_CH1_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH2:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH2_SEL_SHIFT,
				 MCDT_DMA_CH2_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH3:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH3_SEL_SHIFT,
				 MCDT_DMA_CH3_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH4:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH4_SEL_SHIFT,
				 MCDT_DMA_CH4_SEL_MASK);
		break;
	}
}

static u32 sprd_mcdt_dma_ack_shift(u8 channel)
{
	switch (channel) {
	default:
	case 0:
	case 8:
		return 0;
	case 1:
	case 9:
		return 4;
	case 2:
		return 8;
	case 3:
		return 12;
	case 4:
		return 16;
	case 5:
		return 20;
	case 6:
		return 24;
	case 7:
		return 28;
	}
}

static void sprd_mcdt_dac_dma_ack_select(struct sprd_mcdt_dev *mcdt, u8 channel,
					 enum sprd_mcdt_dma_chan dma_chan)
{
	u32 reg, shift = sprd_mcdt_dma_ack_shift(channel), ack = dma_chan;

	switch (channel) {
	case 0 ... 7:
		reg = MCDT_DMA_CFG2;
		break;

	case 8 ... 9:
		reg = MCDT_DMA_CFG3;
		break;

	default:
		return;
	}

	sprd_mcdt_update(mcdt, reg, ack << shift,
			 MCDT_DMA_ACK_SEL_MASK << shift);
}

static void sprd_mcdt_adc_dma_ack_select(struct sprd_mcdt_dev *mcdt, u8 channel,
					 enum sprd_mcdt_dma_chan dma_chan)
{
	u32 reg, shift = sprd_mcdt_dma_ack_shift(channel), ack = dma_chan;

	switch (channel) {
	case 0 ... 7:
		reg = MCDT_DMA_CFG4;
		break;

	case 8 ... 9:
		reg = MCDT_DMA_CFG5;
		break;

	default:
		return;
	}

	sprd_mcdt_update(mcdt, reg, ack << shift,
			 MCDT_DMA_ACK_SEL_MASK << shift);
}

static bool sprd_mcdt_chan_fifo_sts(struct sprd_mcdt_dev *mcdt, u8 channel,
				    enum sprd_mcdt_fifo_sts fifo_sts)
{
	u32 reg, shift;

	switch (channel) {
	case 0 ... 3:
		reg = MCDT_CH_FIFO_ST0;
		break;
	case 4 ... 7:
		reg = MCDT_CH_FIFO_ST1;
		break;
	case 8 ... 9:
		reg = MCDT_CH_FIFO_ST2;
		break;
	default:
		return false;
	}

	switch (channel) {
	case 0:
	case 4:
	case 8:
		shift = fifo_sts;
		break;

	case 1:
	case 5:
	case 9:
		shift = 8 + fifo_sts;
		break;

	case 2:
	case 6:
		shift = 16 + fifo_sts;
		break;

	case 3:
	case 7:
		shift = 24 + fifo_sts;
		break;

	default:
		return false;
	}

	return !!(readl_relaxed(mcdt->base + reg) & BIT(shift));
}

static void sprd_mcdt_dac_fifo_clear(struct sprd_mcdt_dev *mcdt, u8 channel)
{
	sprd_mcdt_update(mcdt, MCDT_FIFO_CLR, BIT(channel), BIT(channel));
}

static void sprd_mcdt_adc_fifo_clear(struct sprd_mcdt_dev *mcdt, u8 channel)
{
	u32 shift = MCDT_ADC_FIFO_SHIFT + channel;

	sprd_mcdt_update(mcdt, MCDT_FIFO_CLR, BIT(shift), BIT(shift));
}

static u32 sprd_mcdt_dac_fifo_avail(struct sprd_mcdt_dev *mcdt, u8 channel)
{
	u32 reg = MCDT_DAC0_FIFO_ADDR_ST + channel * 8;
	u32 r_addr = (readl_relaxed(mcdt->base + reg) >>
		      MCDT_CH_FIFO_ADDR_SHIFT) & MCDT_CH_FIFO_ADDR_MASK;
	u32 w_addr = readl_relaxed(mcdt->base + reg) & MCDT_CH_FIFO_ADDR_MASK;

	if (w_addr >= r_addr)
		return 4 * (MCDT_FIFO_LENGTH - w_addr + r_addr);
	else
		return 4 * (r_addr - w_addr);
}

static u32 sprd_mcdt_adc_fifo_avail(struct sprd_mcdt_dev *mcdt, u8 channel)
{
	u32 reg = MCDT_ADC0_FIFO_ADDR_ST + channel * 8;
	u32 r_addr = (readl_relaxed(mcdt->base + reg) >>
		      MCDT_CH_FIFO_ADDR_SHIFT) & MCDT_CH_FIFO_ADDR_MASK;
	u32 w_addr = readl_relaxed(mcdt->base + reg) & MCDT_CH_FIFO_ADDR_MASK;

	if (w_addr >= r_addr)
		return 4 * (w_addr - r_addr);
	else
		return 4 * (MCDT_FIFO_LENGTH - r_addr + w_addr);
}

static u32 sprd_mcdt_int_type_shift(u8 channel,
				    enum sprd_mcdt_fifo_int int_type)
{
	switch (channel) {
	case 0:
	case 4:
	case 8:
		return int_type;

	case 1:
	case 5:
	case 9:
		return  8 + int_type;

	case 2:
	case 6:
		return 16 + int_type;

	case 3:
	case 7:
		return 24 + int_type;

	default:
		return 0;
	}
}

static void sprd_mcdt_chan_int_en(struct sprd_mcdt_dev *mcdt, u8 channel,
				  enum sprd_mcdt_fifo_int int_type, bool enable)
{
	u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type);

	switch (channel) {
	case 0 ... 3:
		reg = MCDT_INT_EN0;
		break;
	case 4 ... 7:
		reg = MCDT_INT_EN1;
		break;
	case 8 ... 9:
		reg = MCDT_INT_EN2;
		break;
	default:
		return;
	}

	if (enable)
		sprd_mcdt_update(mcdt, reg, BIT(shift), BIT(shift));
	else
		sprd_mcdt_update(mcdt, reg, 0, BIT(shift));
}

static void sprd_mcdt_chan_int_clear(struct sprd_mcdt_dev *mcdt, u8 channel,
				     enum sprd_mcdt_fifo_int int_type)
{
	u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type);

	switch (channel) {
	case 0 ... 3:
		reg = MCDT_INT_CLR0;
		break;
	case 4 ... 7:
		reg = MCDT_INT_CLR1;
		break;
	case 8 ... 9:
		reg = MCDT_INT_CLR2;
		break;
	default:
		return;
	}

	sprd_mcdt_update(mcdt, reg, BIT(shift), BIT(shift));
}

static bool sprd_mcdt_chan_int_sts(struct sprd_mcdt_dev *mcdt, u8 channel,
				   enum sprd_mcdt_fifo_int int_type)
{
	u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type);

	switch (channel) {
	case 0 ... 3:
		reg = MCDT_INT_MSK1;
		break;
	case 4 ... 7:
		reg = MCDT_INT_MSK2;
		break;
	case 8 ... 9:
		reg = MCDT_INT_MSK3;
		break;
	default:
		return false;
	}

	return !!(readl_relaxed(mcdt->base + reg) & BIT(shift));
}

static irqreturn_t sprd_mcdt_irq_handler(int irq, void *dev_id)
{
	struct sprd_mcdt_dev *mcdt = (struct sprd_mcdt_dev *)dev_id;
	int i;

	spin_lock(&mcdt->lock);

	for (i = 0; i < MCDT_ADC_CHANNEL_NUM; i++) {
		if (sprd_mcdt_chan_int_sts(mcdt, i, MCDT_ADC_FIFO_AF_INT)) {
			struct sprd_mcdt_chan *chan = &mcdt->chan[i];

			sprd_mcdt_chan_int_clear(mcdt, i, MCDT_ADC_FIFO_AF_INT);
			if (chan->cb)
				chan->cb->notify(chan->cb->data);
		}
	}

	for (i = 0; i < MCDT_DAC_CHANNEL_NUM; i++) {
		if (sprd_mcdt_chan_int_sts(mcdt, i, MCDT_DAC_FIFO_AE_INT)) {
			struct sprd_mcdt_chan *chan =
				&mcdt->chan[i + MCDT_ADC_CHANNEL_NUM];

			sprd_mcdt_chan_int_clear(mcdt, i, MCDT_DAC_FIFO_AE_INT);
			if (chan->cb)
				chan->cb->notify(chan->cb->data);
		}
	}

	spin_unlock(&mcdt->lock);

	return IRQ_HANDLED;
}

/**
 * sprd_mcdt_chan_write - write data to the MCDT channel's fifo
 * @chan: the MCDT channel
 * @tx_buf: send buffer
 * @size: data size
 *
 * Note: We can not write data to the channel fifo when enabling the DMA mode,
 * otherwise the channel fifo data will be invalid.
 *
 * If there are not enough space of the channel fifo, it will return errors
 * to users.
 *
 * Returns 0 on success, or an appropriate error code on failure.
 */
int sprd_mcdt_chan_write(struct sprd_mcdt_chan *chan, char *tx_buf, u32 size)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;
	int avail, i = 0, words = size / 4;
	u32 *buf = (u32 *)tx_buf;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (chan->dma_enable) {
		dev_err(mcdt->dev,
			"Can not write data when DMA mode enabled\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EINVAL;
	}

	if (sprd_mcdt_chan_fifo_sts(mcdt, chan->id, MCDT_DAC_FIFO_REAL_FULL)) {
		dev_err(mcdt->dev, "Channel fifo is full now\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EBUSY;
	}

	avail = sprd_mcdt_dac_fifo_avail(mcdt, chan->id);
	if (size > avail) {
		dev_err(mcdt->dev,
			"Data size is larger than the available fifo size\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EBUSY;
	}

	while (i++ < words)
		sprd_mcdt_dac_write_fifo(mcdt, chan->id, *buf++);

	spin_unlock_irqrestore(&mcdt->lock, flags);
	return 0;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_write);

/**
 * sprd_mcdt_chan_read - read data from the MCDT channel's fifo
 * @chan: the MCDT channel
 * @rx_buf: receive buffer
 * @size: data size
 *
 * Note: We can not read data from the channel fifo when enabling the DMA mode,
 * otherwise the reading data will be invalid.
 *
 * Usually user need start to read data once receiving the fifo full interrupt.
 *
 * Returns data size of reading successfully, or an error code on failure.
 */
int sprd_mcdt_chan_read(struct sprd_mcdt_chan *chan, char *rx_buf, u32 size)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;
	int i = 0, avail, words = size / 4;
	u32 *buf = (u32 *)rx_buf;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (chan->dma_enable) {
		dev_err(mcdt->dev, "Can not read data when DMA mode enabled\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EINVAL;
	}

	if (sprd_mcdt_chan_fifo_sts(mcdt, chan->id, MCDT_ADC_FIFO_REAL_EMPTY)) {
		dev_err(mcdt->dev, "Channel fifo is empty\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EBUSY;
	}

	avail = sprd_mcdt_adc_fifo_avail(mcdt, chan->id);
	if (size > avail)
		words = avail / 4;

	while (i++ < words)
		sprd_mcdt_adc_read_fifo(mcdt, chan->id, buf++);

	spin_unlock_irqrestore(&mcdt->lock, flags);
	return words * 4;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_read);

/**
 * sprd_mcdt_chan_int_enable - enable the interrupt mode for the MCDT channel
 * @chan: the MCDT channel
 * @water_mark: water mark to trigger a interrupt
 * @cb: callback when a interrupt happened
 *
 * Now it only can enable fifo almost full interrupt for ADC channel and fifo
 * almost empty interrupt for DAC channel. Morevoer for interrupt mode, user
 * should use sprd_mcdt_chan_read() or sprd_mcdt_chan_write() to read or write
 * data manually.
 *
 * For ADC channel, user can start to read data once receiving one fifo full
 * interrupt. For DAC channel, user can start to write data once receiving one
 * fifo empty interrupt or just call sprd_mcdt_chan_write() to write data
 * directly.
 *
 * Returns 0 on success, or an error code on failure.
 */
int sprd_mcdt_chan_int_enable(struct sprd_mcdt_chan *chan, u32 water_mark,
			      struct sprd_mcdt_chan_callback *cb)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (chan->dma_enable || chan->int_enable) {
		dev_err(mcdt->dev, "Failed to set interrupt mode.\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EINVAL;
	}

	switch (chan->type) {
	case SPRD_MCDT_ADC_CHAN:
		sprd_mcdt_adc_fifo_clear(mcdt, chan->id);
		sprd_mcdt_adc_set_watermark(mcdt, chan->id, water_mark,
					    MCDT_FIFO_LENGTH - 1);
		sprd_mcdt_chan_int_en(mcdt, chan->id,
				      MCDT_ADC_FIFO_AF_INT, true);
		sprd_mcdt_ap_int_enable(mcdt, chan->id, true);
		break;

	case SPRD_MCDT_DAC_CHAN:
		sprd_mcdt_dac_fifo_clear(mcdt, chan->id);
		sprd_mcdt_dac_set_watermark(mcdt, chan->id,
					    MCDT_FIFO_LENGTH - 1, water_mark);
		sprd_mcdt_chan_int_en(mcdt, chan->id,
				      MCDT_DAC_FIFO_AE_INT, true);
		sprd_mcdt_ap_int_enable(mcdt, chan->id, true);
		break;

	default:
		dev_err(mcdt->dev, "Unsupported channel type\n");
		ret = -EINVAL;
	}

	if (!ret) {
		chan->cb = cb;
		chan->int_enable = true;
	}

	spin_unlock_irqrestore(&mcdt->lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_int_enable);

/**
 * sprd_mcdt_chan_int_disable - disable the interrupt mode for the MCDT channel
 * @chan: the MCDT channel
 */
void sprd_mcdt_chan_int_disable(struct sprd_mcdt_chan *chan)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (!chan->int_enable) {
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return;
	}

	switch (chan->type) {
	case SPRD_MCDT_ADC_CHAN:
		sprd_mcdt_chan_int_en(mcdt, chan->id,
				      MCDT_ADC_FIFO_AF_INT, false);
		sprd_mcdt_chan_int_clear(mcdt, chan->id, MCDT_ADC_FIFO_AF_INT);
		sprd_mcdt_ap_int_enable(mcdt, chan->id, false);
		break;

	case SPRD_MCDT_DAC_CHAN:
		sprd_mcdt_chan_int_en(mcdt, chan->id,
				      MCDT_DAC_FIFO_AE_INT, false);
		sprd_mcdt_chan_int_clear(mcdt, chan->id, MCDT_DAC_FIFO_AE_INT);
		sprd_mcdt_ap_int_enable(mcdt, chan->id, false);
		break;

	default:
		break;
	}

	chan->int_enable = false;
	spin_unlock_irqrestore(&mcdt->lock, flags);
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_int_disable);

/**
 * sprd_mcdt_chan_dma_enable - enable the DMA mode for the MCDT channel
 * @chan: the MCDT channel
 * @dma_chan: specify which DMA channel will be used for this MCDT channel
 * @water_mark: water mark to trigger a DMA request
 *
 * Enable the DMA mode for the MCDT channel, that means we can use DMA to
 * transfer data to the channel fifo and do not need reading/writing data
 * manually.
 *
 * Returns 0 on success, or an error code on failure.
 */
int sprd_mcdt_chan_dma_enable(struct sprd_mcdt_chan *chan,
			      enum sprd_mcdt_dma_chan dma_chan,
			      u32 water_mark)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (chan->dma_enable || chan->int_enable ||
	    dma_chan > SPRD_MCDT_DMA_CH4) {
		dev_err(mcdt->dev, "Failed to set DMA mode\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EINVAL;
	}

	switch (chan->type) {
	case SPRD_MCDT_ADC_CHAN:
		sprd_mcdt_adc_fifo_clear(mcdt, chan->id);
		sprd_mcdt_adc_set_watermark(mcdt, chan->id,
					    water_mark, MCDT_FIFO_LENGTH - 1);
		sprd_mcdt_adc_dma_enable(mcdt, chan->id, true);
		sprd_mcdt_adc_dma_chn_select(mcdt, chan->id, dma_chan);
		sprd_mcdt_adc_dma_ack_select(mcdt, chan->id, dma_chan);
		break;

	case SPRD_MCDT_DAC_CHAN:
		sprd_mcdt_dac_fifo_clear(mcdt, chan->id);
		sprd_mcdt_dac_set_watermark(mcdt, chan->id,
					    MCDT_FIFO_LENGTH - 1, water_mark);
		sprd_mcdt_dac_dma_enable(mcdt, chan->id, true);
		sprd_mcdt_dac_dma_chn_select(mcdt, chan->id, dma_chan);
		sprd_mcdt_dac_dma_ack_select(mcdt, chan->id, dma_chan);
		break;

	default:
		dev_err(mcdt->dev, "Unsupported channel type\n");
		ret = -EINVAL;
	}

	if (!ret)
		chan->dma_enable = true;

	spin_unlock_irqrestore(&mcdt->lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_dma_enable);

/**
 * sprd_mcdt_chan_dma_disable - disable the DMA mode for the MCDT channel
 * @chan: the MCDT channel
 */
void sprd_mcdt_chan_dma_disable(struct sprd_mcdt_chan *chan)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (!chan->dma_enable) {
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return;
	}

	switch (chan->type) {
	case SPRD_MCDT_ADC_CHAN:
		sprd_mcdt_adc_dma_enable(mcdt, chan->id, false);
		sprd_mcdt_adc_fifo_clear(mcdt, chan->id);
		break;

	case SPRD_MCDT_DAC_CHAN:
		sprd_mcdt_dac_dma_enable(mcdt, chan->id, false);
		sprd_mcdt_dac_fifo_clear(mcdt, chan->id);
		break;

	default:
		break;
	}

	chan->dma_enable = false;
	spin_unlock_irqrestore(&mcdt->lock, flags);
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_dma_disable);

/**
 * sprd_mcdt_request_chan - request one MCDT channel
 * @channel: channel id
 * @type: channel type, it can be one ADC channel or DAC channel
 *
 * Rreturn NULL if no available channel.
 */
struct sprd_mcdt_chan *sprd_mcdt_request_chan(u8 channel,
					      enum sprd_mcdt_channel_type type)
{
	struct sprd_mcdt_chan *temp, *chan = NULL;

	mutex_lock(&sprd_mcdt_list_mutex);

	list_for_each_entry(temp, &sprd_mcdt_chan_list, list) {
		if (temp->type == type && temp->id == channel) {
			chan = temp;
			break;
		}
	}

	if (chan)
		list_del(&chan->list);

	mutex_unlock(&sprd_mcdt_list_mutex);

	return chan;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_request_chan);

/**
 * sprd_mcdt_free_chan - free one MCDT channel
 * @chan: the channel to be freed
 */
void sprd_mcdt_free_chan(struct sprd_mcdt_chan *chan)
{
	struct sprd_mcdt_chan *temp;

	sprd_mcdt_chan_dma_disable(chan);
	sprd_mcdt_chan_int_disable(chan);

	mutex_lock(&sprd_mcdt_list_mutex);

	list_for_each_entry(temp, &sprd_mcdt_chan_list, list) {
		if (temp == chan) {
			mutex_unlock(&sprd_mcdt_list_mutex);
			return;
		}
	}

	list_add_tail(&chan->list, &sprd_mcdt_chan_list);
	mutex_unlock(&sprd_mcdt_list_mutex);
}
EXPORT_SYMBOL_GPL(sprd_mcdt_free_chan);

static void sprd_mcdt_init_chans(struct sprd_mcdt_dev *mcdt,
				 struct resource *res)
{
	int i;

	for (i = 0; i < MCDT_CHANNEL_NUM; i++) {
		struct sprd_mcdt_chan *chan = &mcdt->chan[i];

		if (i < MCDT_ADC_CHANNEL_NUM) {
			chan->id = i;
			chan->type = SPRD_MCDT_ADC_CHAN;
			chan->fifo_phys = res->start + MCDT_CH0_RXD + i * 4;
		} else {
			chan->id = i - MCDT_ADC_CHANNEL_NUM;
			chan->type = SPRD_MCDT_DAC_CHAN;
			chan->fifo_phys = res->start + MCDT_CH0_TXD +
				(i - MCDT_ADC_CHANNEL_NUM) * 4;
		}

		chan->mcdt = mcdt;
		INIT_LIST_HEAD(&chan->list);

		mutex_lock(&sprd_mcdt_list_mutex);
		list_add_tail(&chan->list, &sprd_mcdt_chan_list);
		mutex_unlock(&sprd_mcdt_list_mutex);
	}
}

static int sprd_mcdt_probe(struct platform_device *pdev)
{
	struct sprd_mcdt_dev *mcdt;
	struct resource *res;
	int ret, irq;

	mcdt = devm_kzalloc(&pdev->dev, sizeof(*mcdt), GFP_KERNEL);
	if (!mcdt)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	mcdt->base = devm_ioremap_resource(&pdev->dev, res);
	if (!mcdt->base)
		return -ENOMEM;

	mcdt->dev = &pdev->dev;
	spin_lock_init(&mcdt->lock);
	platform_set_drvdata(pdev, mcdt);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "Failed to get MCDT interrupt\n");
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, sprd_mcdt_irq_handler,
			       0, "sprd-mcdt", mcdt);
	if (ret) {
		dev_err(&pdev->dev, "Failed to request MCDT IRQ\n");
		return ret;
	}

	sprd_mcdt_init_chans(mcdt, res);

	return 0;
}

static int sprd_mcdt_remove(struct platform_device *pdev)
{
	struct sprd_mcdt_chan *temp;

	mutex_lock(&sprd_mcdt_list_mutex);

	list_for_each_entry(temp, &sprd_mcdt_chan_list, list)
		list_del(&temp->list);

	mutex_unlock(&sprd_mcdt_list_mutex);

	return 0;
}

static const struct of_device_id sprd_mcdt_of_match[] = {
	{ .compatible = "sprd,sc9860-mcdt", },
	{ }
};
MODULE_DEVICE_TABLE(of, sprd_mcdt_of_match);

static struct platform_driver sprd_mcdt_driver = {
	.probe = sprd_mcdt_probe,
	.remove = sprd_mcdt_remove,
	.driver = {
		.name = "sprd-mcdt",
		.of_match_table = sprd_mcdt_of_match,
	},
};

module_platform_driver(sprd_mcdt_driver);

MODULE_DESCRIPTION("Spreadtrum Multi-Channel Data Transfer Driver");
MODULE_LICENSE("GPL v2");