1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
// SPDX-License-Identifier: GPL-2.0-or-later
/* bit search implementation
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* Copyright (C) 2008 IBM Corporation
* 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
* (Inspired by David Howell's find_next_bit implementation)
*
* Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
* size and improve performance, 2015.
*/
#include <linux/bitops.h>
#include <linux/bitmap.h>
#include <linux/export.h>
#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/swab.h>
/*
* Common helper for find_bit() function family
* @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
* @MUNGE: The expression that post-processes a word containing found bit (may be empty)
* @size: The bitmap size in bits
*/
#define FIND_FIRST_BIT(FETCH, MUNGE, size) \
({ \
unsigned long idx, val, sz = (size); \
\
for (idx = 0; idx * BITS_PER_LONG < sz; idx++) { \
val = (FETCH); \
if (val) { \
sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(val)), sz); \
break; \
} \
} \
\
sz; \
})
/*
* Common helper for find_next_bit() function family
* @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
* @MUNGE: The expression that post-processes a word containing found bit (may be empty)
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
*/
#define FIND_NEXT_BIT(FETCH, MUNGE, size, start) \
({ \
unsigned long mask, idx, tmp, sz = (size), __start = (start); \
\
if (unlikely(__start >= sz)) \
goto out; \
\
mask = MUNGE(BITMAP_FIRST_WORD_MASK(__start)); \
idx = __start / BITS_PER_LONG; \
\
for (tmp = (FETCH) & mask; !tmp; tmp = (FETCH)) { \
if ((idx + 1) * BITS_PER_LONG >= sz) \
goto out; \
idx++; \
} \
\
sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(tmp)), sz); \
out: \
sz; \
})
#ifndef find_first_bit
/*
* Find the first set bit in a memory region.
*/
unsigned long _find_first_bit(const unsigned long *addr, unsigned long size)
{
return FIND_FIRST_BIT(addr[idx], /* nop */, size);
}
EXPORT_SYMBOL(_find_first_bit);
#endif
#ifndef find_first_and_bit
/*
* Find the first set bit in two memory regions.
*/
unsigned long _find_first_and_bit(const unsigned long *addr1,
const unsigned long *addr2,
unsigned long size)
{
return FIND_FIRST_BIT(addr1[idx] & addr2[idx], /* nop */, size);
}
EXPORT_SYMBOL(_find_first_and_bit);
#endif
#ifndef find_first_zero_bit
/*
* Find the first cleared bit in a memory region.
*/
unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size)
{
return FIND_FIRST_BIT(~addr[idx], /* nop */, size);
}
EXPORT_SYMBOL(_find_first_zero_bit);
#endif
#ifndef find_next_bit
unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start)
{
return FIND_NEXT_BIT(addr[idx], /* nop */, nbits, start);
}
EXPORT_SYMBOL(_find_next_bit);
#endif
#ifndef find_next_and_bit
unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2,
unsigned long nbits, unsigned long start)
{
return FIND_NEXT_BIT(addr1[idx] & addr2[idx], /* nop */, nbits, start);
}
EXPORT_SYMBOL(_find_next_and_bit);
#endif
#ifndef find_next_zero_bit
unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits,
unsigned long start)
{
return FIND_NEXT_BIT(~addr[idx], /* nop */, nbits, start);
}
EXPORT_SYMBOL(_find_next_zero_bit);
#endif
#ifndef find_last_bit
unsigned long _find_last_bit(const unsigned long *addr, unsigned long size)
{
if (size) {
unsigned long val = BITMAP_LAST_WORD_MASK(size);
unsigned long idx = (size-1) / BITS_PER_LONG;
do {
val &= addr[idx];
if (val)
return idx * BITS_PER_LONG + __fls(val);
val = ~0ul;
} while (idx--);
}
return size;
}
EXPORT_SYMBOL(_find_last_bit);
#endif
unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr,
unsigned long size, unsigned long offset)
{
offset = find_next_bit(addr, size, offset);
if (offset == size)
return size;
offset = round_down(offset, 8);
*clump = bitmap_get_value8(addr, offset);
return offset;
}
EXPORT_SYMBOL(find_next_clump8);
#ifdef __BIG_ENDIAN
#ifndef find_first_zero_bit_le
/*
* Find the first cleared bit in an LE memory region.
*/
unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size)
{
return FIND_FIRST_BIT(~addr[idx], swab, size);
}
EXPORT_SYMBOL(_find_first_zero_bit_le);
#endif
#ifndef find_next_zero_bit_le
unsigned long _find_next_zero_bit_le(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
return FIND_NEXT_BIT(~addr[idx], swab, size, offset);
}
EXPORT_SYMBOL(_find_next_zero_bit_le);
#endif
#ifndef find_next_bit_le
unsigned long _find_next_bit_le(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
return FIND_NEXT_BIT(addr[idx], swab, size, offset);
}
EXPORT_SYMBOL(_find_next_bit_le);
#endif
#endif /* __BIG_ENDIAN */
|