1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
|
config ARCH
string
option env="ARCH"
config KERNELVERSION
string
option env="KERNELVERSION"
config DEFCONFIG_LIST
string
depends on !UML
option defconfig_list
default "/lib/modules/$UNAME_RELEASE/.config"
default "/etc/kernel-config"
default "/boot/config-$UNAME_RELEASE"
default "$ARCH_DEFCONFIG"
default "arch/$ARCH/defconfig"
config CONSTRUCTORS
bool
depends on !UML
config IRQ_WORK
bool
config BUILDTIME_EXTABLE_SORT
bool
menu "General setup"
config BROKEN
bool
config BROKEN_ON_SMP
bool
depends on BROKEN || !SMP
default y
config INIT_ENV_ARG_LIMIT
int
default 32 if !UML
default 128 if UML
help
Maximum of each of the number of arguments and environment
variables passed to init from the kernel command line.
config CROSS_COMPILE
string "Cross-compiler tool prefix"
help
Same as running 'make CROSS_COMPILE=prefix-' but stored for
default make runs in this kernel build directory. You don't
need to set this unless you want the configured kernel build
directory to select the cross-compiler automatically.
config COMPILE_TEST
bool "Compile also drivers which will not load"
default n
help
Some drivers can be compiled on a different platform than they are
intended to be run on. Despite they cannot be loaded there (or even
when they load they cannot be used due to missing HW support),
developers still, opposing to distributors, might want to build such
drivers to compile-test them.
If you are a developer and want to build everything available, say Y
here. If you are a user/distributor, say N here to exclude useless
drivers to be distributed.
config LOCALVERSION
string "Local version - append to kernel release"
help
Append an extra string to the end of your kernel version.
This will show up when you type uname, for example.
The string you set here will be appended after the contents of
any files with a filename matching localversion* in your
object and source tree, in that order. Your total string can
be a maximum of 64 characters.
config LOCALVERSION_AUTO
bool "Automatically append version information to the version string"
default y
help
This will try to automatically determine if the current tree is a
release tree by looking for git tags that belong to the current
top of tree revision.
A string of the format -gxxxxxxxx will be added to the localversion
if a git-based tree is found. The string generated by this will be
appended after any matching localversion* files, and after the value
set in CONFIG_LOCALVERSION.
(The actual string used here is the first eight characters produced
by running the command:
$ git rev-parse --verify HEAD
which is done within the script "scripts/setlocalversion".)
config HAVE_KERNEL_GZIP
bool
config HAVE_KERNEL_BZIP2
bool
config HAVE_KERNEL_LZMA
bool
config HAVE_KERNEL_XZ
bool
config HAVE_KERNEL_LZO
bool
config HAVE_KERNEL_LZ4
bool
choice
prompt "Kernel compression mode"
default KERNEL_GZIP
depends on HAVE_KERNEL_GZIP || HAVE_KERNEL_BZIP2 || HAVE_KERNEL_LZMA || HAVE_KERNEL_XZ || HAVE_KERNEL_LZO || HAVE_KERNEL_LZ4
help
The linux kernel is a kind of self-extracting executable.
Several compression algorithms are available, which differ
in efficiency, compression and decompression speed.
Compression speed is only relevant when building a kernel.
Decompression speed is relevant at each boot.
If you have any problems with bzip2 or lzma compressed
kernels, mail me (Alain Knaff) <alain@knaff.lu>. (An older
version of this functionality (bzip2 only), for 2.4, was
supplied by Christian Ludwig)
High compression options are mostly useful for users, who
are low on disk space (embedded systems), but for whom ram
size matters less.
If in doubt, select 'gzip'
config KERNEL_GZIP
bool "Gzip"
depends on HAVE_KERNEL_GZIP
help
The old and tried gzip compression. It provides a good balance
between compression ratio and decompression speed.
config KERNEL_BZIP2
bool "Bzip2"
depends on HAVE_KERNEL_BZIP2
help
Its compression ratio and speed is intermediate.
Decompression speed is slowest among the choices. The kernel
size is about 10% smaller with bzip2, in comparison to gzip.
Bzip2 uses a large amount of memory. For modern kernels you
will need at least 8MB RAM or more for booting.
config KERNEL_LZMA
bool "LZMA"
depends on HAVE_KERNEL_LZMA
help
This compression algorithm's ratio is best. Decompression speed
is between gzip and bzip2. Compression is slowest.
The kernel size is about 33% smaller with LZMA in comparison to gzip.
config KERNEL_XZ
bool "XZ"
depends on HAVE_KERNEL_XZ
help
XZ uses the LZMA2 algorithm and instruction set specific
BCJ filters which can improve compression ratio of executable
code. The size of the kernel is about 30% smaller with XZ in
comparison to gzip. On architectures for which there is a BCJ
filter (i386, x86_64, ARM, IA-64, PowerPC, and SPARC), XZ
will create a few percent smaller kernel than plain LZMA.
The speed is about the same as with LZMA: The decompression
speed of XZ is better than that of bzip2 but worse than gzip
and LZO. Compression is slow.
config KERNEL_LZO
bool "LZO"
depends on HAVE_KERNEL_LZO
help
Its compression ratio is the poorest among the choices. The kernel
size is about 10% bigger than gzip; however its speed
(both compression and decompression) is the fastest.
config KERNEL_LZ4
bool "LZ4"
depends on HAVE_KERNEL_LZ4
help
LZ4 is an LZ77-type compressor with a fixed, byte-oriented encoding.
A preliminary version of LZ4 de/compression tool is available at
<https://code.google.com/p/lz4/>.
Its compression ratio is worse than LZO. The size of the kernel
is about 8% bigger than LZO. But the decompression speed is
faster than LZO.
endchoice
config DEFAULT_HOSTNAME
string "Default hostname"
default "(none)"
help
This option determines the default system hostname before userspace
calls sethostname(2). The kernel traditionally uses "(none)" here,
but you may wish to use a different default here to make a minimal
system more usable with less configuration.
config SWAP
bool "Support for paging of anonymous memory (swap)"
depends on MMU && BLOCK
default y
help
This option allows you to choose whether you want to have support
for so called swap devices or swap files in your kernel that are
used to provide more virtual memory than the actual RAM present
in your computer. If unsure say Y.
config SYSVIPC
bool "System V IPC"
---help---
Inter Process Communication is a suite of library functions and
system calls which let processes (running programs) synchronize and
exchange information. It is generally considered to be a good thing,
and some programs won't run unless you say Y here. In particular, if
you want to run the DOS emulator dosemu under Linux (read the
DOSEMU-HOWTO, available from <http://www.tldp.org/docs.html#howto>),
you'll need to say Y here.
You can find documentation about IPC with "info ipc" and also in
section 6.4 of the Linux Programmer's Guide, available from
<http://www.tldp.org/guides.html>.
config SYSVIPC_SYSCTL
bool
depends on SYSVIPC
depends on SYSCTL
default y
config POSIX_MQUEUE
bool "POSIX Message Queues"
depends on NET
---help---
POSIX variant of message queues is a part of IPC. In POSIX message
queues every message has a priority which decides about succession
of receiving it by a process. If you want to compile and run
programs written e.g. for Solaris with use of its POSIX message
queues (functions mq_*) say Y here.
POSIX message queues are visible as a filesystem called 'mqueue'
and can be mounted somewhere if you want to do filesystem
operations on message queues.
If unsure, say Y.
config POSIX_MQUEUE_SYSCTL
bool
depends on POSIX_MQUEUE
depends on SYSCTL
default y
config CROSS_MEMORY_ATTACH
bool "Enable process_vm_readv/writev syscalls"
depends on MMU
default y
help
Enabling this option adds the system calls process_vm_readv and
process_vm_writev which allow a process with the correct privileges
to directly read from or write to another process' address space.
See the man page for more details.
config FHANDLE
bool "open by fhandle syscalls"
select EXPORTFS
help
If you say Y here, a user level program will be able to map
file names to handle and then later use the handle for
different file system operations. This is useful in implementing
userspace file servers, which now track files using handles instead
of names. The handle would remain the same even if file names
get renamed. Enables open_by_handle_at(2) and name_to_handle_at(2)
syscalls.
config USELIB
bool "uselib syscall"
default y
help
This option enables the uselib syscall, a system call used in the
dynamic linker from libc5 and earlier. glibc does not use this
system call. If you intend to run programs built on libc5 or
earlier, you may need to enable this syscall. Current systems
running glibc can safely disable this.
config AUDIT
bool "Auditing support"
depends on NET
help
Enable auditing infrastructure that can be used with another
kernel subsystem, such as SELinux (which requires this for
logging of avc messages output). Does not do system-call
auditing without CONFIG_AUDITSYSCALL.
config HAVE_ARCH_AUDITSYSCALL
bool
config AUDITSYSCALL
bool "Enable system-call auditing support"
depends on AUDIT && HAVE_ARCH_AUDITSYSCALL
default y if SECURITY_SELINUX
help
Enable low-overhead system-call auditing infrastructure that
can be used independently or with another kernel subsystem,
such as SELinux.
config AUDIT_WATCH
def_bool y
depends on AUDITSYSCALL
select FSNOTIFY
config AUDIT_TREE
def_bool y
depends on AUDITSYSCALL
select FSNOTIFY
source "kernel/irq/Kconfig"
source "kernel/time/Kconfig"
menu "CPU/Task time and stats accounting"
config VIRT_CPU_ACCOUNTING
bool
choice
prompt "Cputime accounting"
default TICK_CPU_ACCOUNTING if !PPC64
default VIRT_CPU_ACCOUNTING_NATIVE if PPC64
# Kind of a stub config for the pure tick based cputime accounting
config TICK_CPU_ACCOUNTING
bool "Simple tick based cputime accounting"
depends on !S390 && !NO_HZ_FULL
help
This is the basic tick based cputime accounting that maintains
statistics about user, system and idle time spent on per jiffies
granularity.
If unsure, say Y.
config VIRT_CPU_ACCOUNTING_NATIVE
bool "Deterministic task and CPU time accounting"
depends on HAVE_VIRT_CPU_ACCOUNTING && !NO_HZ_FULL
select VIRT_CPU_ACCOUNTING
help
Select this option to enable more accurate task and CPU time
accounting. This is done by reading a CPU counter on each
kernel entry and exit and on transitions within the kernel
between system, softirq and hardirq state, so there is a
small performance impact. In the case of s390 or IBM POWER > 5,
this also enables accounting of stolen time on logically-partitioned
systems.
config VIRT_CPU_ACCOUNTING_GEN
bool "Full dynticks CPU time accounting"
depends on HAVE_CONTEXT_TRACKING
depends on HAVE_VIRT_CPU_ACCOUNTING_GEN
select VIRT_CPU_ACCOUNTING
select CONTEXT_TRACKING
help
Select this option to enable task and CPU time accounting on full
dynticks systems. This accounting is implemented by watching every
kernel-user boundaries using the context tracking subsystem.
The accounting is thus performed at the expense of some significant
overhead.
For now this is only useful if you are working on the full
dynticks subsystem development.
If unsure, say N.
config IRQ_TIME_ACCOUNTING
bool "Fine granularity task level IRQ time accounting"
depends on HAVE_IRQ_TIME_ACCOUNTING && !NO_HZ_FULL
help
Select this option to enable fine granularity task irq time
accounting. This is done by reading a timestamp on each
transitions between softirq and hardirq state, so there can be a
small performance impact.
If in doubt, say N here.
endchoice
config BSD_PROCESS_ACCT
bool "BSD Process Accounting"
depends on MULTIUSER
help
If you say Y here, a user level program will be able to instruct the
kernel (via a special system call) to write process accounting
information to a file: whenever a process exits, information about
that process will be appended to the file by the kernel. The
information includes things such as creation time, owning user,
command name, memory usage, controlling terminal etc. (the complete
list is in the struct acct in <file:include/linux/acct.h>). It is
up to the user level program to do useful things with this
information. This is generally a good idea, so say Y.
config BSD_PROCESS_ACCT_V3
bool "BSD Process Accounting version 3 file format"
depends on BSD_PROCESS_ACCT
default n
help
If you say Y here, the process accounting information is written
in a new file format that also logs the process IDs of each
process and it's parent. Note that this file format is incompatible
with previous v0/v1/v2 file formats, so you will need updated tools
for processing it. A preliminary version of these tools is available
at <http://www.gnu.org/software/acct/>.
config TASKSTATS
bool "Export task/process statistics through netlink"
depends on NET
depends on MULTIUSER
default n
help
Export selected statistics for tasks/processes through the
generic netlink interface. Unlike BSD process accounting, the
statistics are available during the lifetime of tasks/processes as
responses to commands. Like BSD accounting, they are sent to user
space on task exit.
Say N if unsure.
config TASK_DELAY_ACCT
bool "Enable per-task delay accounting"
depends on TASKSTATS
select SCHED_INFO
help
Collect information on time spent by a task waiting for system
resources like cpu, synchronous block I/O completion and swapping
in pages. Such statistics can help in setting a task's priorities
relative to other tasks for cpu, io, rss limits etc.
Say N if unsure.
config TASK_XACCT
bool "Enable extended accounting over taskstats"
depends on TASKSTATS
help
Collect extended task accounting data and send the data
to userland for processing over the taskstats interface.
Say N if unsure.
config TASK_IO_ACCOUNTING
bool "Enable per-task storage I/O accounting"
depends on TASK_XACCT
help
Collect information on the number of bytes of storage I/O which this
task has caused.
Say N if unsure.
endmenu # "CPU/Task time and stats accounting"
menu "RCU Subsystem"
config TREE_RCU
bool
default y if !PREEMPT && SMP
help
This option selects the RCU implementation that is
designed for very large SMP system with hundreds or
thousands of CPUs. It also scales down nicely to
smaller systems.
config PREEMPT_RCU
bool
default y if PREEMPT
help
This option selects the RCU implementation that is
designed for very large SMP systems with hundreds or
thousands of CPUs, but for which real-time response
is also required. It also scales down nicely to
smaller systems.
Select this option if you are unsure.
config TINY_RCU
bool
default y if !PREEMPT && !SMP
help
This option selects the RCU implementation that is
designed for UP systems from which real-time response
is not required. This option greatly reduces the
memory footprint of RCU.
config RCU_EXPERT
bool "Make expert-level adjustments to RCU configuration"
default n
help
This option needs to be enabled if you wish to make
expert-level adjustments to RCU configuration. By default,
no such adjustments can be made, which has the often-beneficial
side-effect of preventing "make oldconfig" from asking you all
sorts of detailed questions about how you would like numerous
obscure RCU options to be set up.
Say Y if you need to make expert-level adjustments to RCU.
Say N if you are unsure.
config SRCU
bool
help
This option selects the sleepable version of RCU. This version
permits arbitrary sleeping or blocking within RCU read-side critical
sections.
config TASKS_RCU
bool
default n
select SRCU
help
This option enables a task-based RCU implementation that uses
only voluntary context switch (not preemption!), idle, and
user-mode execution as quiescent states.
config RCU_STALL_COMMON
def_bool ( TREE_RCU || PREEMPT_RCU || RCU_TRACE )
help
This option enables RCU CPU stall code that is common between
the TINY and TREE variants of RCU. The purpose is to allow
the tiny variants to disable RCU CPU stall warnings, while
making these warnings mandatory for the tree variants.
config CONTEXT_TRACKING
bool
config RCU_USER_QS
bool
help
This option sets hooks on kernel / userspace boundaries and
puts RCU in extended quiescent state when the CPU runs in
userspace. It means that when a CPU runs in userspace, it is
excluded from the global RCU state machine and thus doesn't
try to keep the timer tick on for RCU.
config CONTEXT_TRACKING_FORCE
bool "Force context tracking"
depends on CONTEXT_TRACKING
default y if !NO_HZ_FULL
help
The major pre-requirement for full dynticks to work is to
support the context tracking subsystem. But there are also
other dependencies to provide in order to make the full
dynticks working.
This option stands for testing when an arch implements the
context tracking backend but doesn't yet fullfill all the
requirements to make the full dynticks feature working.
Without the full dynticks, there is no way to test the support
for context tracking and the subsystems that rely on it: RCU
userspace extended quiescent state and tickless cputime
accounting. This option copes with the absence of the full
dynticks subsystem by forcing the context tracking on all
CPUs in the system.
Say Y only if you're working on the development of an
architecture backend for the context tracking.
Say N otherwise, this option brings an overhead that you
don't want in production.
config RCU_FANOUT
int "Tree-based hierarchical RCU fanout value"
range 2 64 if 64BIT
range 2 32 if !64BIT
depends on (TREE_RCU || PREEMPT_RCU) && RCU_EXPERT
default 64 if 64BIT
default 32 if !64BIT
help
This option controls the fanout of hierarchical implementations
of RCU, allowing RCU to work efficiently on machines with
large numbers of CPUs. This value must be at least the fourth
root of NR_CPUS, which allows NR_CPUS to be insanely large.
The default value of RCU_FANOUT should be used for production
systems, but if you are stress-testing the RCU implementation
itself, small RCU_FANOUT values allow you to test large-system
code paths on small(er) systems.
Select a specific number if testing RCU itself.
Take the default if unsure.
config RCU_FANOUT_LEAF
int "Tree-based hierarchical RCU leaf-level fanout value"
range 2 64 if 64BIT
range 2 32 if !64BIT
depends on (TREE_RCU || PREEMPT_RCU) && RCU_EXPERT
default 16
help
This option controls the leaf-level fanout of hierarchical
implementations of RCU, and allows trading off cache misses
against lock contention. Systems that synchronize their
scheduling-clock interrupts for energy-efficiency reasons will
want the default because the smaller leaf-level fanout keeps
lock contention levels acceptably low. Very large systems
(hundreds or thousands of CPUs) will instead want to set this
value to the maximum value possible in order to reduce the
number of cache misses incurred during RCU's grace-period
initialization. These systems tend to run CPU-bound, and thus
are not helped by synchronized interrupts, and thus tend to
skew them, which reduces lock contention enough that large
leaf-level fanouts work well.
Select a specific number if testing RCU itself.
Select the maximum permissible value for large systems.
Take the default if unsure.
config RCU_FAST_NO_HZ
bool "Accelerate last non-dyntick-idle CPU's grace periods"
depends on NO_HZ_COMMON && SMP && RCU_EXPERT
default n
help
This option permits CPUs to enter dynticks-idle state even if
they have RCU callbacks queued, and prevents RCU from waking
these CPUs up more than roughly once every four jiffies (by
default, you can adjust this using the rcutree.rcu_idle_gp_delay
parameter), thus improving energy efficiency. On the other
hand, this option increases the duration of RCU grace periods,
for example, slowing down synchronize_rcu().
Say Y if energy efficiency is critically important, and you
don't care about increased grace-period durations.
Say N if you are unsure.
config TREE_RCU_TRACE
def_bool RCU_TRACE && ( TREE_RCU || PREEMPT_RCU )
select DEBUG_FS
help
This option provides tracing for the TREE_RCU and
PREEMPT_RCU implementations, permitting Makefile to
trivially select kernel/rcutree_trace.c.
config RCU_BOOST
bool "Enable RCU priority boosting"
depends on RT_MUTEXES && PREEMPT_RCU && RCU_EXPERT
default n
help
This option boosts the priority of preempted RCU readers that
block the current preemptible RCU grace period for too long.
This option also prevents heavy loads from blocking RCU
callback invocation for all flavors of RCU.
Say Y here if you are working with real-time apps or heavy loads
Say N here if you are unsure.
config RCU_KTHREAD_PRIO
int "Real-time priority to use for RCU worker threads"
range 1 99 if RCU_BOOST
range 0 99 if !RCU_BOOST
default 1 if RCU_BOOST
default 0 if !RCU_BOOST
depends on RCU_EXPERT
help
This option specifies the SCHED_FIFO priority value that will be
assigned to the rcuc/n and rcub/n threads and is also the value
used for RCU_BOOST (if enabled). If you are working with a
real-time application that has one or more CPU-bound threads
running at a real-time priority level, you should set
RCU_KTHREAD_PRIO to a priority higher than the highest-priority
real-time CPU-bound application thread. The default RCU_KTHREAD_PRIO
value of 1 is appropriate in the common case, which is real-time
applications that do not have any CPU-bound threads.
Some real-time applications might not have a single real-time
thread that saturates a given CPU, but instead might have
multiple real-time threads that, taken together, fully utilize
that CPU. In this case, you should set RCU_KTHREAD_PRIO to
a priority higher than the lowest-priority thread that is
conspiring to prevent the CPU from running any non-real-time
tasks. For example, if one thread at priority 10 and another
thread at priority 5 are between themselves fully consuming
the CPU time on a given CPU, then RCU_KTHREAD_PRIO should be
set to priority 6 or higher.
Specify the real-time priority, or take the default if unsure.
config RCU_BOOST_DELAY
int "Milliseconds to delay boosting after RCU grace-period start"
range 0 3000
depends on RCU_BOOST
default 500
help
This option specifies the time to wait after the beginning of
a given grace period before priority-boosting preempted RCU
readers blocking that grace period. Note that any RCU reader
blocking an expedited RCU grace period is boosted immediately.
Accept the default if unsure.
config RCU_NOCB_CPU
bool "Offload RCU callback processing from boot-selected CPUs"
depends on TREE_RCU || PREEMPT_RCU
default n
help
Use this option to reduce OS jitter for aggressive HPC or
real-time workloads. It can also be used to offload RCU
callback invocation to energy-efficient CPUs in battery-powered
asymmetric multiprocessors.
This option offloads callback invocation from the set of
CPUs specified at boot time by the rcu_nocbs parameter.
For each such CPU, a kthread ("rcuox/N") will be created to
invoke callbacks, where the "N" is the CPU being offloaded,
and where the "x" is "b" for RCU-bh, "p" for RCU-preempt, and
"s" for RCU-sched. Nothing prevents this kthread from running
on the specified CPUs, but (1) the kthreads may be preempted
between each callback, and (2) affinity or cgroups can be used
to force the kthreads to run on whatever set of CPUs is desired.
Say Y here if you want to help to debug reduced OS jitter.
Say N here if you are unsure.
choice
prompt "Build-forced no-CBs CPUs"
default RCU_NOCB_CPU_NONE
depends on RCU_NOCB_CPU
help
This option allows no-CBs CPUs (whose RCU callbacks are invoked
from kthreads rather than from softirq context) to be specified
at build time. Additional no-CBs CPUs may be specified by
the rcu_nocbs= boot parameter.
config RCU_NOCB_CPU_NONE
bool "No build_forced no-CBs CPUs"
help
This option does not force any of the CPUs to be no-CBs CPUs.
Only CPUs designated by the rcu_nocbs= boot parameter will be
no-CBs CPUs, whose RCU callbacks will be invoked by per-CPU
kthreads whose names begin with "rcuo". All other CPUs will
invoke their own RCU callbacks in softirq context.
Select this option if you want to choose no-CBs CPUs at
boot time, for example, to allow testing of different no-CBs
configurations without having to rebuild the kernel each time.
config RCU_NOCB_CPU_ZERO
bool "CPU 0 is a build_forced no-CBs CPU"
help
This option forces CPU 0 to be a no-CBs CPU, so that its RCU
callbacks are invoked by a per-CPU kthread whose name begins
with "rcuo". Additional CPUs may be designated as no-CBs
CPUs using the rcu_nocbs= boot parameter will be no-CBs CPUs.
All other CPUs will invoke their own RCU callbacks in softirq
context.
Select this if CPU 0 needs to be a no-CBs CPU for real-time
or energy-efficiency reasons, but the real reason it exists
is to ensure that randconfig testing covers mixed systems.
config RCU_NOCB_CPU_ALL
bool "All CPUs are build_forced no-CBs CPUs"
help
This option forces all CPUs to be no-CBs CPUs. The rcu_nocbs=
boot parameter will be ignored. All CPUs' RCU callbacks will
be executed in the context of per-CPU rcuo kthreads created for
this purpose. Assuming that the kthreads whose names start with
"rcuo" are bound to "housekeeping" CPUs, this reduces OS jitter
on the remaining CPUs, but might decrease memory locality during
RCU-callback invocation, thus potentially degrading throughput.
Select this if all CPUs need to be no-CBs CPUs for real-time
or energy-efficiency reasons.
endchoice
config RCU_EXPEDITE_BOOT
bool
default n
help
This option enables expedited grace periods at boot time,
as if rcu_expedite_gp() had been invoked early in boot.
The corresponding rcu_unexpedite_gp() is invoked from
rcu_end_inkernel_boot(), which is intended to be invoked
at the end of the kernel-only boot sequence, just before
init is exec'ed.
Accept the default if unsure.
endmenu # "RCU Subsystem"
config BUILD_BIN2C
bool
default n
config IKCONFIG
tristate "Kernel .config support"
select BUILD_BIN2C
---help---
This option enables the complete Linux kernel ".config" file
contents to be saved in the kernel. It provides documentation
of which kernel options are used in a running kernel or in an
on-disk kernel. This information can be extracted from the kernel
image file with the script scripts/extract-ikconfig and used as
input to rebuild the current kernel or to build another kernel.
It can also be extracted from a running kernel by reading
/proc/config.gz if enabled (below).
config IKCONFIG_PROC
bool "Enable access to .config through /proc/config.gz"
depends on IKCONFIG && PROC_FS
---help---
This option enables access to the kernel configuration file
through /proc/config.gz.
config LOG_BUF_SHIFT
int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
range 12 25
default 17
depends on PRINTK
help
Select the minimal kernel log buffer size as a power of 2.
The final size is affected by LOG_CPU_MAX_BUF_SHIFT config
parameter, see below. Any higher size also might be forced
by "log_buf_len" boot parameter.
Examples:
17 => 128 KB
16 => 64 KB
15 => 32 KB
14 => 16 KB
13 => 8 KB
12 => 4 KB
config LOG_CPU_MAX_BUF_SHIFT
int "CPU kernel log buffer size contribution (13 => 8 KB, 17 => 128KB)"
depends on SMP
range 0 21
default 12 if !BASE_SMALL
default 0 if BASE_SMALL
depends on PRINTK
help
This option allows to increase the default ring buffer size
according to the number of CPUs. The value defines the contribution
of each CPU as a power of 2. The used space is typically only few
lines however it might be much more when problems are reported,
e.g. backtraces.
The increased size means that a new buffer has to be allocated and
the original static one is unused. It makes sense only on systems
with more CPUs. Therefore this value is used only when the sum of
contributions is greater than the half of the default kernel ring
buffer as defined by LOG_BUF_SHIFT. The default values are set
so that more than 64 CPUs are needed to trigger the allocation.
Also this option is ignored when "log_buf_len" kernel parameter is
used as it forces an exact (power of two) size of the ring buffer.
The number of possible CPUs is used for this computation ignoring
hotplugging making the compuation optimal for the the worst case
scenerio while allowing a simple algorithm to be used from bootup.
Examples shift values and their meaning:
17 => 128 KB for each CPU
16 => 64 KB for each CPU
15 => 32 KB for each CPU
14 => 16 KB for each CPU
13 => 8 KB for each CPU
12 => 4 KB for each CPU
#
# Architectures with an unreliable sched_clock() should select this:
#
config HAVE_UNSTABLE_SCHED_CLOCK
bool
config GENERIC_SCHED_CLOCK
bool
#
# For architectures that want to enable the support for NUMA-affine scheduler
# balancing logic:
#
config ARCH_SUPPORTS_NUMA_BALANCING
bool
#
# For architectures that know their GCC __int128 support is sound
#
config ARCH_SUPPORTS_INT128
bool
# For architectures that (ab)use NUMA to represent different memory regions
# all cpu-local but of different latencies, such as SuperH.
#
config ARCH_WANT_NUMA_VARIABLE_LOCALITY
bool
config NUMA_BALANCING
bool "Memory placement aware NUMA scheduler"
depends on ARCH_SUPPORTS_NUMA_BALANCING
depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
depends on SMP && NUMA && MIGRATION
help
This option adds support for automatic NUMA aware memory/task placement.
The mechanism is quite primitive and is based on migrating memory when
it has references to the node the task is running on.
This system will be inactive on UMA systems.
config NUMA_BALANCING_DEFAULT_ENABLED
bool "Automatically enable NUMA aware memory/task placement"
default y
depends on NUMA_BALANCING
help
If set, automatic NUMA balancing will be enabled if running on a NUMA
machine.
menuconfig CGROUPS
bool "Control Group support"
select KERNFS
select PERCPU_RWSEM
help
This option adds support for grouping sets of processes together, for
use with process control subsystems such as Cpusets, CFS, memory
controls or device isolation.
See
- Documentation/scheduler/sched-design-CFS.txt (CFS)
- Documentation/cgroups/ (features for grouping, isolation
and resource control)
Say N if unsure.
if CGROUPS
config CGROUP_DEBUG
bool "Example debug cgroup subsystem"
default n
help
This option enables a simple cgroup subsystem that
exports useful debugging information about the cgroups
framework.
Say N if unsure.
config CGROUP_FREEZER
bool "Freezer cgroup subsystem"
help
Provides a way to freeze and unfreeze all tasks in a
cgroup.
config CGROUP_DEVICE
bool "Device controller for cgroups"
help
Provides a cgroup implementing whitelists for devices which
a process in the cgroup can mknod or open.
config CPUSETS
bool "Cpuset support"
help
This option will let you create and manage CPUSETs which
allow dynamically partitioning a system into sets of CPUs and
Memory Nodes and assigning tasks to run only within those sets.
This is primarily useful on large SMP or NUMA systems.
Say N if unsure.
config PROC_PID_CPUSET
bool "Include legacy /proc/<pid>/cpuset file"
depends on CPUSETS
default y
config CGROUP_CPUACCT
bool "Simple CPU accounting cgroup subsystem"
help
Provides a simple Resource Controller for monitoring the
total CPU consumed by the tasks in a cgroup.
config PAGE_COUNTER
bool
config MEMCG
bool "Memory Resource Controller for Control Groups"
select PAGE_COUNTER
select EVENTFD
help
Provides a memory resource controller that manages both anonymous
memory and page cache. (See Documentation/cgroups/memory.txt)
config MEMCG_SWAP
bool "Memory Resource Controller Swap Extension"
depends on MEMCG && SWAP
help
Add swap management feature to memory resource controller. When you
enable this, you can limit mem+swap usage per cgroup. In other words,
when you disable this, memory resource controller has no cares to
usage of swap...a process can exhaust all of the swap. This extension
is useful when you want to avoid exhaustion swap but this itself
adds more overheads and consumes memory for remembering information.
Especially if you use 32bit system or small memory system, please
be careful about enabling this. When memory resource controller
is disabled by boot option, this will be automatically disabled and
there will be no overhead from this. Even when you set this config=y,
if boot option "swapaccount=0" is set, swap will not be accounted.
Now, memory usage of swap_cgroup is 2 bytes per entry. If swap page
size is 4096bytes, 512k per 1Gbytes of swap.
config MEMCG_SWAP_ENABLED
bool "Memory Resource Controller Swap Extension enabled by default"
depends on MEMCG_SWAP
default y
help
Memory Resource Controller Swap Extension comes with its price in
a bigger memory consumption. General purpose distribution kernels
which want to enable the feature but keep it disabled by default
and let the user enable it by swapaccount=1 boot command line
parameter should have this option unselected.
For those who want to have the feature enabled by default should
select this option (if, for some reason, they need to disable it
then swapaccount=0 does the trick).
config MEMCG_KMEM
bool "Memory Resource Controller Kernel Memory accounting"
depends on MEMCG
depends on SLUB || SLAB
help
The Kernel Memory extension for Memory Resource Controller can limit
the amount of memory used by kernel objects in the system. Those are
fundamentally different from the entities handled by the standard
Memory Controller, which are page-based, and can be swapped. Users of
the kmem extension can use it to guarantee that no group of processes
will ever exhaust kernel resources alone.
config CGROUP_HUGETLB
bool "HugeTLB Resource Controller for Control Groups"
depends on HUGETLB_PAGE
select PAGE_COUNTER
default n
help
Provides a cgroup Resource Controller for HugeTLB pages.
When you enable this, you can put a per cgroup limit on HugeTLB usage.
The limit is enforced during page fault. Since HugeTLB doesn't
support page reclaim, enforcing the limit at page fault time implies
that, the application will get SIGBUS signal if it tries to access
HugeTLB pages beyond its limit. This requires the application to know
beforehand how much HugeTLB pages it would require for its use. The
control group is tracked in the third page lru pointer. This means
that we cannot use the controller with huge page less than 3 pages.
config CGROUP_PERF
bool "Enable perf_event per-cpu per-container group (cgroup) monitoring"
depends on PERF_EVENTS && CGROUPS
help
This option extends the per-cpu mode to restrict monitoring to
threads which belong to the cgroup specified and run on the
designated cpu.
Say N if unsure.
menuconfig CGROUP_SCHED
bool "Group CPU scheduler"
default n
help
This feature lets CPU scheduler recognize task groups and control CPU
bandwidth allocation to such task groups. It uses cgroups to group
tasks.
if CGROUP_SCHED
config FAIR_GROUP_SCHED
bool "Group scheduling for SCHED_OTHER"
depends on CGROUP_SCHED
default CGROUP_SCHED
config CFS_BANDWIDTH
bool "CPU bandwidth provisioning for FAIR_GROUP_SCHED"
depends on FAIR_GROUP_SCHED
default n
help
This option allows users to define CPU bandwidth rates (limits) for
tasks running within the fair group scheduler. Groups with no limit
set are considered to be unconstrained and will run with no
restriction.
See tip/Documentation/scheduler/sched-bwc.txt for more information.
config RT_GROUP_SCHED
bool "Group scheduling for SCHED_RR/FIFO"
depends on CGROUP_SCHED
default n
help
This feature lets you explicitly allocate real CPU bandwidth
to task groups. If enabled, it will also make it impossible to
schedule realtime tasks for non-root users until you allocate
realtime bandwidth for them.
See Documentation/scheduler/sched-rt-group.txt for more information.
endif #CGROUP_SCHED
config BLK_CGROUP
bool "Block IO controller"
depends on BLOCK
default n
---help---
Generic block IO controller cgroup interface. This is the common
cgroup interface which should be used by various IO controlling
policies.
Currently, CFQ IO scheduler uses it to recognize task groups and
control disk bandwidth allocation (proportional time slice allocation)
to such task groups. It is also used by bio throttling logic in
block layer to implement upper limit in IO rates on a device.
This option only enables generic Block IO controller infrastructure.
One needs to also enable actual IO controlling logic/policy. For
enabling proportional weight division of disk bandwidth in CFQ, set
CONFIG_CFQ_GROUP_IOSCHED=y; for enabling throttling policy, set
CONFIG_BLK_DEV_THROTTLING=y.
See Documentation/cgroups/blkio-controller.txt for more information.
config DEBUG_BLK_CGROUP
bool "Enable Block IO controller debugging"
depends on BLK_CGROUP
default n
---help---
Enable some debugging help. Currently it exports additional stat
files in a cgroup which can be useful for debugging.
config CGROUP_WRITEBACK
bool
depends on MEMCG && BLK_CGROUP
default y
endif # CGROUPS
config CHECKPOINT_RESTORE
bool "Checkpoint/restore support" if EXPERT
select PROC_CHILDREN
default n
help
Enables additional kernel features in a sake of checkpoint/restore.
In particular it adds auxiliary prctl codes to setup process text,
data and heap segment sizes, and a few additional /proc filesystem
entries.
If unsure, say N here.
menuconfig NAMESPACES
bool "Namespaces support" if EXPERT
depends on MULTIUSER
default !EXPERT
help
Provides the way to make tasks work with different objects using
the same id. For example same IPC id may refer to different objects
or same user id or pid may refer to different tasks when used in
different namespaces.
if NAMESPACES
config UTS_NS
bool "UTS namespace"
default y
help
In this namespace tasks see different info provided with the
uname() system call
config IPC_NS
bool "IPC namespace"
depends on (SYSVIPC || POSIX_MQUEUE)
default y
help
In this namespace tasks work with IPC ids which correspond to
different IPC objects in different namespaces.
config USER_NS
bool "User namespace"
default n
help
This allows containers, i.e. vservers, to use user namespaces
to provide different user info for different servers.
When user namespaces are enabled in the kernel it is
recommended that the MEMCG and MEMCG_KMEM options also be
enabled and that user-space use the memory control groups to
limit the amount of memory a memory unprivileged users can
use.
If unsure, say N.
config PID_NS
bool "PID Namespaces"
default y
help
Support process id namespaces. This allows having multiple
processes with the same pid as long as they are in different
pid namespaces. This is a building block of containers.
config NET_NS
bool "Network namespace"
depends on NET
default y
help
Allow user space to create what appear to be multiple instances
of the network stack.
endif # NAMESPACES
config SCHED_AUTOGROUP
bool "Automatic process group scheduling"
select CGROUPS
select CGROUP_SCHED
select FAIR_GROUP_SCHED
help
This option optimizes the scheduler for common desktop workloads by
automatically creating and populating task groups. This separation
of workloads isolates aggressive CPU burners (like build jobs) from
desktop applications. Task group autogeneration is currently based
upon task session.
config SYSFS_DEPRECATED
bool "Enable deprecated sysfs features to support old userspace tools"
depends on SYSFS
default n
help
This option adds code that switches the layout of the "block" class
devices, to not show up in /sys/class/block/, but only in
/sys/block/.
This switch is only active when the sysfs.deprecated=1 boot option is
passed or the SYSFS_DEPRECATED_V2 option is set.
This option allows new kernels to run on old distributions and tools,
which might get confused by /sys/class/block/. Since 2007/2008 all
major distributions and tools handle this just fine.
Recent distributions and userspace tools after 2009/2010 depend on
the existence of /sys/class/block/, and will not work with this
option enabled.
Only if you are using a new kernel on an old distribution, you might
need to say Y here.
config SYSFS_DEPRECATED_V2
bool "Enable deprecated sysfs features by default"
default n
depends on SYSFS
depends on SYSFS_DEPRECATED
help
Enable deprecated sysfs by default.
See the CONFIG_SYSFS_DEPRECATED option for more details about this
option.
Only if you are using a new kernel on an old distribution, you might
need to say Y here. Even then, odds are you would not need it
enabled, you can always pass the boot option if absolutely necessary.
config RELAY
bool "Kernel->user space relay support (formerly relayfs)"
help
This option enables support for relay interface support in
certain file systems (such as debugfs).
It is designed to provide an efficient mechanism for tools and
facilities to relay large amounts of data from kernel space to
user space.
If unsure, say N.
config BLK_DEV_INITRD
bool "Initial RAM filesystem and RAM disk (initramfs/initrd) support"
depends on BROKEN || !FRV
help
The initial RAM filesystem is a ramfs which is loaded by the
boot loader (loadlin or lilo) and that is mounted as root
before the normal boot procedure. It is typically used to
load modules needed to mount the "real" root file system,
etc. See <file:Documentation/initrd.txt> for details.
If RAM disk support (BLK_DEV_RAM) is also included, this
also enables initial RAM disk (initrd) support and adds
15 Kbytes (more on some other architectures) to the kernel size.
If unsure say Y.
if BLK_DEV_INITRD
source "usr/Kconfig"
endif
config CC_OPTIMIZE_FOR_SIZE
bool "Optimize for size"
help
Enabling this option will pass "-Os" instead of "-O2" to
your compiler resulting in a smaller kernel.
If unsure, say N.
config SYSCTL
bool
config ANON_INODES
bool
config HAVE_UID16
bool
config SYSCTL_EXCEPTION_TRACE
bool
help
Enable support for /proc/sys/debug/exception-trace.
config SYSCTL_ARCH_UNALIGN_NO_WARN
bool
help
Enable support for /proc/sys/kernel/ignore-unaligned-usertrap
Allows arch to define/use @no_unaligned_warning to possibly warn
about unaligned access emulation going on under the hood.
config SYSCTL_ARCH_UNALIGN_ALLOW
bool
help
Enable support for /proc/sys/kernel/unaligned-trap
Allows arches to define/use @unaligned_enabled to runtime toggle
the unaligned access emulation.
see arch/parisc/kernel/unaligned.c for reference
config HAVE_PCSPKR_PLATFORM
bool
# interpreter that classic socket filters depend on
config BPF
bool
menuconfig EXPERT
bool "Configure standard kernel features (expert users)"
# Unhide debug options, to make the on-by-default options visible
select DEBUG_KERNEL
help
This option allows certain base kernel options and settings
to be disabled or tweaked. This is for specialized
environments which can tolerate a "non-standard" kernel.
Only use this if you really know what you are doing.
config UID16
bool "Enable 16-bit UID system calls" if EXPERT
depends on HAVE_UID16 && MULTIUSER
default y
help
This enables the legacy 16-bit UID syscall wrappers.
config MULTIUSER
bool "Multiple users, groups and capabilities support" if EXPERT
default y
help
This option enables support for non-root users, groups and
capabilities.
If you say N here, all processes will run with UID 0, GID 0, and all
possible capabilities. Saying N here also compiles out support for
system calls related to UIDs, GIDs, and capabilities, such as setuid,
setgid, and capset.
If unsure, say Y here.
config SGETMASK_SYSCALL
bool "sgetmask/ssetmask syscalls support" if EXPERT
def_bool PARISC || MN10300 || BLACKFIN || M68K || PPC || MIPS || X86 || SPARC || CRIS || MICROBLAZE || SUPERH
---help---
sys_sgetmask and sys_ssetmask are obsolete system calls
no longer supported in libc but still enabled by default in some
architectures.
If unsure, leave the default option here.
config SYSFS_SYSCALL
bool "Sysfs syscall support" if EXPERT
default y
---help---
sys_sysfs is an obsolete system call no longer supported in libc.
Note that disabling this option is more secure but might break
compatibility with some systems.
If unsure say Y here.
config SYSCTL_SYSCALL
bool "Sysctl syscall support" if EXPERT
depends on PROC_SYSCTL
default n
select SYSCTL
---help---
sys_sysctl uses binary paths that have been found challenging
to properly maintain and use. The interface in /proc/sys
using paths with ascii names is now the primary path to this
information.
Almost nothing using the binary sysctl interface so if you are
trying to save some space it is probably safe to disable this,
making your kernel marginally smaller.
If unsure say N here.
config KALLSYMS
bool "Load all symbols for debugging/ksymoops" if EXPERT
default y
help
Say Y here to let the kernel print out symbolic crash information and
symbolic stack backtraces. This increases the size of the kernel
somewhat, as all symbols have to be loaded into the kernel image.
config KALLSYMS_ALL
bool "Include all symbols in kallsyms"
depends on DEBUG_KERNEL && KALLSYMS
help
Normally kallsyms only contains the symbols of functions for nicer
OOPS messages and backtraces (i.e., symbols from the text and inittext
sections). This is sufficient for most cases. And only in very rare
cases (e.g., when a debugger is used) all symbols are required (e.g.,
names of variables from the data sections, etc).
This option makes sure that all symbols are loaded into the kernel
image (i.e., symbols from all sections) in cost of increased kernel
size (depending on the kernel configuration, it may be 300KiB or
something like this).
Say N unless you really need all symbols.
config PRINTK
default y
bool "Enable support for printk" if EXPERT
select IRQ_WORK
help
This option enables normal printk support. Removing it
eliminates most of the message strings from the kernel image
and makes the kernel more or less silent. As this makes it
very difficult to diagnose system problems, saying N here is
strongly discouraged.
config BUG
bool "BUG() support" if EXPERT
default y
help
Disabling this option eliminates support for BUG and WARN, reducing
the size of your kernel image and potentially quietly ignoring
numerous fatal conditions. You should only consider disabling this
option for embedded systems with no facilities for reporting errors.
Just say Y.
config ELF_CORE
depends on COREDUMP
default y
bool "Enable ELF core dumps" if EXPERT
help
Enable support for generating core dumps. Disabling saves about 4k.
config PCSPKR_PLATFORM
bool "Enable PC-Speaker support" if EXPERT
depends on HAVE_PCSPKR_PLATFORM
select I8253_LOCK
default y
help
This option allows to disable the internal PC-Speaker
support, saving some memory.
config BASE_FULL
default y
bool "Enable full-sized data structures for core" if EXPERT
help
Disabling this option reduces the size of miscellaneous core
kernel data structures. This saves memory on small machines,
but may reduce performance.
config FUTEX
bool "Enable futex support" if EXPERT
default y
select RT_MUTEXES
help
Disabling this option will cause the kernel to be built without
support for "fast userspace mutexes". The resulting kernel may not
run glibc-based applications correctly.
config HAVE_FUTEX_CMPXCHG
bool
depends on FUTEX
help
Architectures should select this if futex_atomic_cmpxchg_inatomic()
is implemented and always working. This removes a couple of runtime
checks.
config EPOLL
bool "Enable eventpoll support" if EXPERT
default y
select ANON_INODES
help
Disabling this option will cause the kernel to be built without
support for epoll family of system calls.
config SIGNALFD
bool "Enable signalfd() system call" if EXPERT
select ANON_INODES
default y
help
Enable the signalfd() system call that allows to receive signals
on a file descriptor.
If unsure, say Y.
config TIMERFD
bool "Enable timerfd() system call" if EXPERT
select ANON_INODES
default y
help
Enable the timerfd() system call that allows to receive timer
events on a file descriptor.
If unsure, say Y.
config EVENTFD
bool "Enable eventfd() system call" if EXPERT
select ANON_INODES
default y
help
Enable the eventfd() system call that allows to receive both
kernel notification (ie. KAIO) or userspace notifications.
If unsure, say Y.
# syscall, maps, verifier
config BPF_SYSCALL
bool "Enable bpf() system call"
select ANON_INODES
select BPF
default n
help
Enable the bpf() system call that allows to manipulate eBPF
programs and maps via file descriptors.
config SHMEM
bool "Use full shmem filesystem" if EXPERT
default y
depends on MMU
help
The shmem is an internal filesystem used to manage shared memory.
It is backed by swap and manages resource limits. It is also exported
to userspace as tmpfs if TMPFS is enabled. Disabling this
option replaces shmem and tmpfs with the much simpler ramfs code,
which may be appropriate on small systems without swap.
config AIO
bool "Enable AIO support" if EXPERT
default y
help
This option enables POSIX asynchronous I/O which may by used
by some high performance threaded applications. Disabling
this option saves about 7k.
config ADVISE_SYSCALLS
bool "Enable madvise/fadvise syscalls" if EXPERT
default y
help
This option enables the madvise and fadvise syscalls, used by
applications to advise the kernel about their future memory or file
usage, improving performance. If building an embedded system where no
applications use these syscalls, you can disable this option to save
space.
config PCI_QUIRKS
default y
bool "Enable PCI quirk workarounds" if EXPERT
depends on PCI
help
This enables workarounds for various PCI chipset
bugs/quirks. Disable this only if your target machine is
unaffected by PCI quirks.
config EMBEDDED
bool "Embedded system"
option allnoconfig_y
select EXPERT
help
This option should be enabled if compiling the kernel for
an embedded system so certain expert options are available
for configuration.
config HAVE_PERF_EVENTS
bool
help
See tools/perf/design.txt for details.
config PERF_USE_VMALLOC
bool
help
See tools/perf/design.txt for details
menu "Kernel Performance Events And Counters"
config PERF_EVENTS
bool "Kernel performance events and counters"
default y if PROFILING
depends on HAVE_PERF_EVENTS
select ANON_INODES
select IRQ_WORK
select SRCU
help
Enable kernel support for various performance events provided
by software and hardware.
Software events are supported either built-in or via the
use of generic tracepoints.
Most modern CPUs support performance events via performance
counter registers. These registers count the number of certain
types of hw events: such as instructions executed, cachemisses
suffered, or branches mis-predicted - without slowing down the
kernel or applications. These registers can also trigger interrupts
when a threshold number of events have passed - and can thus be
used to profile the code that runs on that CPU.
The Linux Performance Event subsystem provides an abstraction of
these software and hardware event capabilities, available via a
system call and used by the "perf" utility in tools/perf/. It
provides per task and per CPU counters, and it provides event
capabilities on top of those.
Say Y if unsure.
config DEBUG_PERF_USE_VMALLOC
default n
bool "Debug: use vmalloc to back perf mmap() buffers"
depends on PERF_EVENTS && DEBUG_KERNEL && !PPC
select PERF_USE_VMALLOC
help
Use vmalloc memory to back perf mmap() buffers.
Mostly useful for debugging the vmalloc code on platforms
that don't require it.
Say N if unsure.
endmenu
config VM_EVENT_COUNTERS
default y
bool "Enable VM event counters for /proc/vmstat" if EXPERT
help
VM event counters are needed for event counts to be shown.
This option allows the disabling of the VM event counters
on EXPERT systems. /proc/vmstat will only show page counts
if VM event counters are disabled.
config SLUB_DEBUG
default y
bool "Enable SLUB debugging support" if EXPERT
depends on SLUB && SYSFS
help
SLUB has extensive debug support features. Disabling these can
result in significant savings in code size. This also disables
SLUB sysfs support. /sys/slab will not exist and there will be
no support for cache validation etc.
config COMPAT_BRK
bool "Disable heap randomization"
default y
help
Randomizing heap placement makes heap exploits harder, but it
also breaks ancient binaries (including anything libc5 based).
This option changes the bootup default to heap randomization
disabled, and can be overridden at runtime by setting
/proc/sys/kernel/randomize_va_space to 2.
On non-ancient distros (post-2000 ones) N is usually a safe choice.
choice
prompt "Choose SLAB allocator"
default SLUB
help
This option allows to select a slab allocator.
config SLAB
bool "SLAB"
help
The regular slab allocator that is established and known to work
well in all environments. It organizes cache hot objects in
per cpu and per node queues.
config SLUB
bool "SLUB (Unqueued Allocator)"
help
SLUB is a slab allocator that minimizes cache line usage
instead of managing queues of cached objects (SLAB approach).
Per cpu caching is realized using slabs of objects instead
of queues of objects. SLUB can use memory efficiently
and has enhanced diagnostics. SLUB is the default choice for
a slab allocator.
config SLOB
depends on EXPERT
bool "SLOB (Simple Allocator)"
help
SLOB replaces the stock allocator with a drastically simpler
allocator. SLOB is generally more space efficient but
does not perform as well on large systems.
endchoice
config SLUB_CPU_PARTIAL
default y
depends on SLUB && SMP
bool "SLUB per cpu partial cache"
help
Per cpu partial caches accellerate objects allocation and freeing
that is local to a processor at the price of more indeterminism
in the latency of the free. On overflow these caches will be cleared
which requires the taking of locks that may cause latency spikes.
Typically one would choose no for a realtime system.
config MMAP_ALLOW_UNINITIALIZED
bool "Allow mmapped anonymous memory to be uninitialized"
depends on EXPERT && !MMU
default n
help
Normally, and according to the Linux spec, anonymous memory obtained
from mmap() has it's contents cleared before it is passed to
userspace. Enabling this config option allows you to request that
mmap() skip that if it is given an MAP_UNINITIALIZED flag, thus
providing a huge performance boost. If this option is not enabled,
then the flag will be ignored.
This is taken advantage of by uClibc's malloc(), and also by
ELF-FDPIC binfmt's brk and stack allocator.
Because of the obvious security issues, this option should only be
enabled on embedded devices where you control what is run in
userspace. Since that isn't generally a problem on no-MMU systems,
it is normally safe to say Y here.
See Documentation/nommu-mmap.txt for more information.
config SYSTEM_TRUSTED_KEYRING
bool "Provide system-wide ring of trusted keys"
depends on KEYS
help
Provide a system keyring to which trusted keys can be added. Keys in
the keyring are considered to be trusted. Keys may be added at will
by the kernel from compiled-in data and from hardware key stores, but
userspace may only add extra keys if those keys can be verified by
keys already in the keyring.
Keys in this keyring are used by module signature checking.
config SYSTEM_DATA_VERIFICATION
def_bool n
select SYSTEM_TRUSTED_KEYRING
select KEYS
select CRYPTO
select ASYMMETRIC_KEY_TYPE
select ASYMMETRIC_PUBLIC_KEY_SUBTYPE
select PUBLIC_KEY_ALGO_RSA
select ASN1
select OID_REGISTRY
select X509_CERTIFICATE_PARSER
select PKCS7_MESSAGE_PARSER
help
Provide PKCS#7 message verification using the contents of the system
trusted keyring to provide public keys. This then can be used for
module verification, kexec image verification and firmware blob
verification.
config PROFILING
bool "Profiling support"
help
Say Y here to enable the extended profiling support mechanisms used
by profilers such as OProfile.
#
# Place an empty function call at each tracepoint site. Can be
# dynamically changed for a probe function.
#
config TRACEPOINTS
bool
source "arch/Kconfig"
endmenu # General setup
config HAVE_GENERIC_DMA_COHERENT
bool
default n
config SLABINFO
bool
depends on PROC_FS
depends on SLAB || SLUB_DEBUG
default y
config RT_MUTEXES
bool
config BASE_SMALL
int
default 0 if BASE_FULL
default 1 if !BASE_FULL
menuconfig MODULES
bool "Enable loadable module support"
option modules
help
Kernel modules are small pieces of compiled code which can
be inserted in the running kernel, rather than being
permanently built into the kernel. You use the "modprobe"
tool to add (and sometimes remove) them. If you say Y here,
many parts of the kernel can be built as modules (by
answering M instead of Y where indicated): this is most
useful for infrequently used options which are not required
for booting. For more information, see the man pages for
modprobe, lsmod, modinfo, insmod and rmmod.
If you say Y here, you will need to run "make
modules_install" to put the modules under /lib/modules/
where modprobe can find them (you may need to be root to do
this).
If unsure, say Y.
if MODULES
config MODULE_FORCE_LOAD
bool "Forced module loading"
default n
help
Allow loading of modules without version information (ie. modprobe
--force). Forced module loading sets the 'F' (forced) taint flag and
is usually a really bad idea.
config MODULE_UNLOAD
bool "Module unloading"
help
Without this option you will not be able to unload any
modules (note that some modules may not be unloadable
anyway), which makes your kernel smaller, faster
and simpler. If unsure, say Y.
config MODULE_FORCE_UNLOAD
bool "Forced module unloading"
depends on MODULE_UNLOAD
help
This option allows you to force a module to unload, even if the
kernel believes it is unsafe: the kernel will remove the module
without waiting for anyone to stop using it (using the -f option to
rmmod). This is mainly for kernel developers and desperate users.
If unsure, say N.
config MODVERSIONS
bool "Module versioning support"
help
Usually, you have to use modules compiled with your kernel.
Saying Y here makes it sometimes possible to use modules
compiled for different kernels, by adding enough information
to the modules to (hopefully) spot any changes which would
make them incompatible with the kernel you are running. If
unsure, say N.
config MODULE_SRCVERSION_ALL
bool "Source checksum for all modules"
help
Modules which contain a MODULE_VERSION get an extra "srcversion"
field inserted into their modinfo section, which contains a
sum of the source files which made it. This helps maintainers
see exactly which source was used to build a module (since
others sometimes change the module source without updating
the version). With this option, such a "srcversion" field
will be created for all modules. If unsure, say N.
config MODULE_SIG
bool "Module signature verification"
depends on MODULES
select SYSTEM_DATA_VERIFICATION
help
Check modules for valid signatures upon load: the signature
is simply appended to the module. For more information see
Documentation/module-signing.txt.
!!!WARNING!!! If you enable this option, you MUST make sure that the
module DOES NOT get stripped after being signed. This includes the
debuginfo strip done by some packagers (such as rpmbuild) and
inclusion into an initramfs that wants the module size reduced.
config MODULE_SIG_FORCE
bool "Require modules to be validly signed"
depends on MODULE_SIG
help
Reject unsigned modules or signed modules for which we don't have a
key. Without this, such modules will simply taint the kernel.
config MODULE_SIG_ALL
bool "Automatically sign all modules"
default y
depends on MODULE_SIG
help
Sign all modules during make modules_install. Without this option,
modules must be signed manually, using the scripts/sign-file tool.
comment "Do not forget to sign required modules with scripts/sign-file"
depends on MODULE_SIG_FORCE && !MODULE_SIG_ALL
choice
prompt "Which hash algorithm should modules be signed with?"
depends on MODULE_SIG
help
This determines which sort of hashing algorithm will be used during
signature generation. This algorithm _must_ be built into the kernel
directly so that signature verification can take place. It is not
possible to load a signed module containing the algorithm to check
the signature on that module.
config MODULE_SIG_SHA1
bool "Sign modules with SHA-1"
select CRYPTO_SHA1
config MODULE_SIG_SHA224
bool "Sign modules with SHA-224"
select CRYPTO_SHA256
config MODULE_SIG_SHA256
bool "Sign modules with SHA-256"
select CRYPTO_SHA256
config MODULE_SIG_SHA384
bool "Sign modules with SHA-384"
select CRYPTO_SHA512
config MODULE_SIG_SHA512
bool "Sign modules with SHA-512"
select CRYPTO_SHA512
endchoice
config MODULE_SIG_HASH
string
depends on MODULE_SIG
default "sha1" if MODULE_SIG_SHA1
default "sha224" if MODULE_SIG_SHA224
default "sha256" if MODULE_SIG_SHA256
default "sha384" if MODULE_SIG_SHA384
default "sha512" if MODULE_SIG_SHA512
config MODULE_SIG_KEY
string "File name or PKCS#11 URI of module signing key"
default "signing_key.pem"
depends on MODULE_SIG
help
Provide the file name of a private key/certificate in PEM format,
or a PKCS#11 URI according to RFC7512. The file should contain, or
the URI should identify, both the certificate and its corresponding
private key.
If this option is unchanged from its default "signing_key.pem",
then the kernel will automatically generate the private key and
certificate as described in Documentation/module-signing.txt
config MODULE_COMPRESS
bool "Compress modules on installation"
depends on MODULES
help
Compresses kernel modules when 'make modules_install' is run; gzip or
xz depending on "Compression algorithm" below.
module-init-tools MAY support gzip, and kmod MAY support gzip and xz.
Out-of-tree kernel modules installed using Kbuild will also be
compressed upon installation.
Note: for modules inside an initrd or initramfs, it's more efficient
to compress the whole initrd or initramfs instead.
Note: This is fully compatible with signed modules.
If in doubt, say N.
choice
prompt "Compression algorithm"
depends on MODULE_COMPRESS
default MODULE_COMPRESS_GZIP
help
This determines which sort of compression will be used during
'make modules_install'.
GZIP (default) and XZ are supported.
config MODULE_COMPRESS_GZIP
bool "GZIP"
config MODULE_COMPRESS_XZ
bool "XZ"
endchoice
endif # MODULES
config MODULES_TREE_LOOKUP
def_bool y
depends on PERF_EVENTS || TRACING
config INIT_ALL_POSSIBLE
bool
help
Back when each arch used to define their own cpu_online_mask and
cpu_possible_mask, some of them chose to initialize cpu_possible_mask
with all 1s, and others with all 0s. When they were centralised,
it was better to provide this option than to break all the archs
and have several arch maintainers pursuing me down dark alleys.
config STOP_MACHINE
bool
default y
depends on (SMP && MODULE_UNLOAD) || HOTPLUG_CPU
help
Need stop_machine() primitive.
source "block/Kconfig"
config PREEMPT_NOTIFIERS
bool
config PADATA
depends on SMP
bool
# Can be selected by architectures with broken toolchains
# that get confused by correct const<->read_only section
# mappings
config BROKEN_RODATA
bool
config ASN1
tristate
help
Build a simple ASN.1 grammar compiler that produces a bytecode output
that can be interpreted by the ASN.1 stream decoder and used to
inform it as to what tags are to be expected in a stream and what
functions to call on what tags.
source "kernel/Kconfig.locks"
|