summaryrefslogtreecommitdiff
path: root/include/linux/damon.h
blob: e0ad3d9aaeedbe44f684c1d8c2ac7120e5a740f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * DAMON api
 *
 * Author: SeongJae Park <sjpark@amazon.de>
 */

#ifndef _DAMON_H_
#define _DAMON_H_

#include <linux/mutex.h>
#include <linux/time64.h>
#include <linux/types.h>
#include <linux/random.h>

/* Minimal region size.  Every damon_region is aligned by this. */
#define DAMON_MIN_REGION	PAGE_SIZE
/* Max priority score for DAMON-based operation schemes */
#define DAMOS_MAX_SCORE		(99)

/* Get a random number in [l, r) */
static inline unsigned long damon_rand(unsigned long l, unsigned long r)
{
	return l + prandom_u32_max(r - l);
}

/**
 * struct damon_addr_range - Represents an address region of [@start, @end).
 * @start:	Start address of the region (inclusive).
 * @end:	End address of the region (exclusive).
 */
struct damon_addr_range {
	unsigned long start;
	unsigned long end;
};

/**
 * struct damon_region - Represents a monitoring target region.
 * @ar:			The address range of the region.
 * @sampling_addr:	Address of the sample for the next access check.
 * @nr_accesses:	Access frequency of this region.
 * @list:		List head for siblings.
 * @age:		Age of this region.
 *
 * @age is initially zero, increased for each aggregation interval, and reset
 * to zero again if the access frequency is significantly changed.  If two
 * regions are merged into a new region, both @nr_accesses and @age of the new
 * region are set as region size-weighted average of those of the two regions.
 */
struct damon_region {
	struct damon_addr_range ar;
	unsigned long sampling_addr;
	unsigned int nr_accesses;
	struct list_head list;

	unsigned int age;
/* private: Internal value for age calculation. */
	unsigned int last_nr_accesses;
};

/**
 * struct damon_target - Represents a monitoring target.
 * @id:			Unique identifier for this target.
 * @nr_regions:		Number of monitoring target regions of this target.
 * @regions_list:	Head of the monitoring target regions of this target.
 * @list:		List head for siblings.
 *
 * Each monitoring context could have multiple targets.  For example, a context
 * for virtual memory address spaces could have multiple target processes.  The
 * @id of each target should be unique among the targets of the context.  For
 * example, in the virtual address monitoring context, it could be a pidfd or
 * an address of an mm_struct.
 */
struct damon_target {
	unsigned long id;
	unsigned int nr_regions;
	struct list_head regions_list;
	struct list_head list;
};

/**
 * enum damos_action - Represents an action of a Data Access Monitoring-based
 * Operation Scheme.
 *
 * @DAMOS_WILLNEED:	Call ``madvise()`` for the region with MADV_WILLNEED.
 * @DAMOS_COLD:		Call ``madvise()`` for the region with MADV_COLD.
 * @DAMOS_PAGEOUT:	Call ``madvise()`` for the region with MADV_PAGEOUT.
 * @DAMOS_HUGEPAGE:	Call ``madvise()`` for the region with MADV_HUGEPAGE.
 * @DAMOS_NOHUGEPAGE:	Call ``madvise()`` for the region with MADV_NOHUGEPAGE.
 * @DAMOS_STAT:		Do nothing but count the stat.
 */
enum damos_action {
	DAMOS_WILLNEED,
	DAMOS_COLD,
	DAMOS_PAGEOUT,
	DAMOS_HUGEPAGE,
	DAMOS_NOHUGEPAGE,
	DAMOS_STAT,		/* Do nothing but only record the stat */
};

/**
 * struct damos_quota - Controls the aggressiveness of the given scheme.
 * @ms:			Maximum milliseconds that the scheme can use.
 * @sz:			Maximum bytes of memory that the action can be applied.
 * @reset_interval:	Charge reset interval in milliseconds.
 *
 * @weight_sz:		Weight of the region's size for prioritization.
 * @weight_nr_accesses:	Weight of the region's nr_accesses for prioritization.
 * @weight_age:		Weight of the region's age for prioritization.
 *
 * To avoid consuming too much CPU time or IO resources for applying the
 * &struct damos->action to large memory, DAMON allows users to set time and/or
 * size quotas.  The quotas can be set by writing non-zero values to &ms and
 * &sz, respectively.  If the time quota is set, DAMON tries to use only up to
 * &ms milliseconds within &reset_interval for applying the action.  If the
 * size quota is set, DAMON tries to apply the action only up to &sz bytes
 * within &reset_interval.
 *
 * Internally, the time quota is transformed to a size quota using estimated
 * throughput of the scheme's action.  DAMON then compares it against &sz and
 * uses smaller one as the effective quota.
 *
 * For selecting regions within the quota, DAMON prioritizes current scheme's
 * target memory regions using the &struct damon_primitive->get_scheme_score.
 * You could customize the prioritization logic by setting &weight_sz,
 * &weight_nr_accesses, and &weight_age, because monitoring primitives are
 * encouraged to respect those.
 */
struct damos_quota {
	unsigned long ms;
	unsigned long sz;
	unsigned long reset_interval;

	unsigned int weight_sz;
	unsigned int weight_nr_accesses;
	unsigned int weight_age;

/* private: */
	/* For throughput estimation */
	unsigned long total_charged_sz;
	unsigned long total_charged_ns;

	unsigned long esz;	/* Effective size quota in bytes */

	/* For charging the quota */
	unsigned long charged_sz;
	unsigned long charged_from;
	struct damon_target *charge_target_from;
	unsigned long charge_addr_from;

	/* For prioritization */
	unsigned long histogram[DAMOS_MAX_SCORE + 1];
	unsigned int min_score;
};

/**
 * enum damos_wmark_metric - Represents the watermark metric.
 *
 * @DAMOS_WMARK_NONE:		Ignore the watermarks of the given scheme.
 * @DAMOS_WMARK_FREE_MEM_RATE:	Free memory rate of the system in [0,1000].
 */
enum damos_wmark_metric {
	DAMOS_WMARK_NONE,
	DAMOS_WMARK_FREE_MEM_RATE,
};

/**
 * struct damos_watermarks - Controls when a given scheme should be activated.
 * @metric:	Metric for the watermarks.
 * @interval:	Watermarks check time interval in microseconds.
 * @high:	High watermark.
 * @mid:	Middle watermark.
 * @low:	Low watermark.
 *
 * If &metric is &DAMOS_WMARK_NONE, the scheme is always active.  Being active
 * means DAMON does monitoring and applying the action of the scheme to
 * appropriate memory regions.  Else, DAMON checks &metric of the system for at
 * least every &interval microseconds and works as below.
 *
 * If &metric is higher than &high, the scheme is inactivated.  If &metric is
 * between &mid and &low, the scheme is activated.  If &metric is lower than
 * &low, the scheme is inactivated.
 */
struct damos_watermarks {
	enum damos_wmark_metric metric;
	unsigned long interval;
	unsigned long high;
	unsigned long mid;
	unsigned long low;

/* private: */
	bool activated;
};

/**
 * struct damos_stat - Statistics on a given scheme.
 * @nr_tried:	Total number of regions that the scheme is tried to be applied.
 * @sz_tried:	Total size of regions that the scheme is tried to be applied.
 * @nr_applied:	Total number of regions that the scheme is applied.
 * @sz_applied:	Total size of regions that the scheme is applied.
 */
struct damos_stat {
	unsigned long nr_tried;
	unsigned long sz_tried;
	unsigned long nr_applied;
	unsigned long sz_applied;
};

/**
 * struct damos - Represents a Data Access Monitoring-based Operation Scheme.
 * @min_sz_region:	Minimum size of target regions.
 * @max_sz_region:	Maximum size of target regions.
 * @min_nr_accesses:	Minimum ``->nr_accesses`` of target regions.
 * @max_nr_accesses:	Maximum ``->nr_accesses`` of target regions.
 * @min_age_region:	Minimum age of target regions.
 * @max_age_region:	Maximum age of target regions.
 * @action:		&damo_action to be applied to the target regions.
 * @quota:		Control the aggressiveness of this scheme.
 * @wmarks:		Watermarks for automated (in)activation of this scheme.
 * @stat:		Statistics of this scheme.
 * @list:		List head for siblings.
 *
 * For each aggregation interval, DAMON finds regions which fit in the
 * condition (&min_sz_region, &max_sz_region, &min_nr_accesses,
 * &max_nr_accesses, &min_age_region, &max_age_region) and applies &action to
 * those.  To avoid consuming too much CPU time or IO resources for the
 * &action, &quota is used.
 *
 * To do the work only when needed, schemes can be activated for specific
 * system situations using &wmarks.  If all schemes that registered to the
 * monitoring context are inactive, DAMON stops monitoring either, and just
 * repeatedly checks the watermarks.
 *
 * If all schemes that registered to a &struct damon_ctx are inactive, DAMON
 * stops monitoring and just repeatedly checks the watermarks.
 *
 * After applying the &action to each region, &stat_count and &stat_sz is
 * updated to reflect the number of regions and total size of regions that the
 * &action is applied.
 */
struct damos {
	unsigned long min_sz_region;
	unsigned long max_sz_region;
	unsigned int min_nr_accesses;
	unsigned int max_nr_accesses;
	unsigned int min_age_region;
	unsigned int max_age_region;
	enum damos_action action;
	struct damos_quota quota;
	struct damos_watermarks wmarks;
	struct damos_stat stat;
	struct list_head list;
};

struct damon_ctx;

/**
 * struct damon_primitive - Monitoring primitives for given use cases.
 *
 * @init:			Initialize primitive-internal data structures.
 * @update:			Update primitive-internal data structures.
 * @prepare_access_checks:	Prepare next access check of target regions.
 * @check_accesses:		Check the accesses to target regions.
 * @reset_aggregated:		Reset aggregated accesses monitoring results.
 * @get_scheme_score:		Get the score of a region for a scheme.
 * @apply_scheme:		Apply a DAMON-based operation scheme.
 * @target_valid:		Determine if the target is valid.
 * @cleanup:			Clean up the context.
 *
 * DAMON can be extended for various address spaces and usages.  For this,
 * users should register the low level primitives for their target address
 * space and usecase via the &damon_ctx.primitive.  Then, the monitoring thread
 * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
 * the monitoring, @update after each &damon_ctx.primitive_update_interval, and
 * @check_accesses, @target_valid and @prepare_access_checks after each
 * &damon_ctx.sample_interval.  Finally, @reset_aggregated is called after each
 * &damon_ctx.aggr_interval.
 *
 * @init should initialize primitive-internal data structures.  For example,
 * this could be used to construct proper monitoring target regions and link
 * those to @damon_ctx.adaptive_targets.
 * @update should update the primitive-internal data structures.  For example,
 * this could be used to update monitoring target regions for current status.
 * @prepare_access_checks should manipulate the monitoring regions to be
 * prepared for the next access check.
 * @check_accesses should check the accesses to each region that made after the
 * last preparation and update the number of observed accesses of each region.
 * It should also return max number of observed accesses that made as a result
 * of its update.  The value will be used for regions adjustment threshold.
 * @reset_aggregated should reset the access monitoring results that aggregated
 * by @check_accesses.
 * @get_scheme_score should return the priority score of a region for a scheme
 * as an integer in [0, &DAMOS_MAX_SCORE].
 * @apply_scheme is called from @kdamond when a region for user provided
 * DAMON-based operation scheme is found.  It should apply the scheme's action
 * to the region and return bytes of the region that the action is successfully
 * applied.
 * @target_valid should check whether the target is still valid for the
 * monitoring.
 * @cleanup is called from @kdamond just before its termination.
 */
struct damon_primitive {
	void (*init)(struct damon_ctx *context);
	void (*update)(struct damon_ctx *context);
	void (*prepare_access_checks)(struct damon_ctx *context);
	unsigned int (*check_accesses)(struct damon_ctx *context);
	void (*reset_aggregated)(struct damon_ctx *context);
	int (*get_scheme_score)(struct damon_ctx *context,
			struct damon_target *t, struct damon_region *r,
			struct damos *scheme);
	unsigned long (*apply_scheme)(struct damon_ctx *context,
			struct damon_target *t, struct damon_region *r,
			struct damos *scheme);
	bool (*target_valid)(void *target);
	void (*cleanup)(struct damon_ctx *context);
};

/**
 * struct damon_callback - Monitoring events notification callbacks.
 *
 * @before_start:	Called before starting the monitoring.
 * @after_sampling:	Called after each sampling.
 * @after_aggregation:	Called after each aggregation.
 * @before_terminate:	Called before terminating the monitoring.
 * @private:		User private data.
 *
 * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
 * @before_terminate just before starting and finishing the monitoring,
 * respectively.  Therefore, those are good places for installing and cleaning
 * @private.
 *
 * The monitoring thread calls @after_sampling and @after_aggregation for each
 * of the sampling intervals and aggregation intervals, respectively.
 * Therefore, users can safely access the monitoring results without additional
 * protection.  For the reason, users are recommended to use these callback for
 * the accesses to the results.
 *
 * If any callback returns non-zero, monitoring stops.
 */
struct damon_callback {
	void *private;

	int (*before_start)(struct damon_ctx *context);
	int (*after_sampling)(struct damon_ctx *context);
	int (*after_aggregation)(struct damon_ctx *context);
	void (*before_terminate)(struct damon_ctx *context);
};

/**
 * struct damon_ctx - Represents a context for each monitoring.  This is the
 * main interface that allows users to set the attributes and get the results
 * of the monitoring.
 *
 * @sample_interval:		The time between access samplings.
 * @aggr_interval:		The time between monitor results aggregations.
 * @primitive_update_interval:	The time between monitoring primitive updates.
 *
 * For each @sample_interval, DAMON checks whether each region is accessed or
 * not.  It aggregates and keeps the access information (number of accesses to
 * each region) for @aggr_interval time.  DAMON also checks whether the target
 * memory regions need update (e.g., by ``mmap()`` calls from the application,
 * in case of virtual memory monitoring) and applies the changes for each
 * @primitive_update_interval.  All time intervals are in micro-seconds.
 * Please refer to &struct damon_primitive and &struct damon_callback for more
 * detail.
 *
 * @kdamond:		Kernel thread who does the monitoring.
 * @kdamond_stop:	Notifies whether kdamond should stop.
 * @kdamond_lock:	Mutex for the synchronizations with @kdamond.
 *
 * For each monitoring context, one kernel thread for the monitoring is
 * created.  The pointer to the thread is stored in @kdamond.
 *
 * Once started, the monitoring thread runs until explicitly required to be
 * terminated or every monitoring target is invalid.  The validity of the
 * targets is checked via the &damon_primitive.target_valid of @primitive.  The
 * termination can also be explicitly requested by writing non-zero to
 * @kdamond_stop.  The thread sets @kdamond to NULL when it terminates.
 * Therefore, users can know whether the monitoring is ongoing or terminated by
 * reading @kdamond.  Reads and writes to @kdamond and @kdamond_stop from
 * outside of the monitoring thread must be protected by @kdamond_lock.
 *
 * Note that the monitoring thread protects only @kdamond and @kdamond_stop via
 * @kdamond_lock.  Accesses to other fields must be protected by themselves.
 *
 * @primitive:	Set of monitoring primitives for given use cases.
 * @callback:	Set of callbacks for monitoring events notifications.
 *
 * @min_nr_regions:	The minimum number of adaptive monitoring regions.
 * @max_nr_regions:	The maximum number of adaptive monitoring regions.
 * @adaptive_targets:	Head of monitoring targets (&damon_target) list.
 * @schemes:		Head of schemes (&damos) list.
 */
struct damon_ctx {
	unsigned long sample_interval;
	unsigned long aggr_interval;
	unsigned long primitive_update_interval;

/* private: internal use only */
	struct timespec64 last_aggregation;
	struct timespec64 last_primitive_update;

/* public: */
	struct task_struct *kdamond;
	struct mutex kdamond_lock;

	struct damon_primitive primitive;
	struct damon_callback callback;

	unsigned long min_nr_regions;
	unsigned long max_nr_regions;
	struct list_head adaptive_targets;
	struct list_head schemes;
};

static inline struct damon_region *damon_next_region(struct damon_region *r)
{
	return container_of(r->list.next, struct damon_region, list);
}

static inline struct damon_region *damon_prev_region(struct damon_region *r)
{
	return container_of(r->list.prev, struct damon_region, list);
}

static inline struct damon_region *damon_last_region(struct damon_target *t)
{
	return list_last_entry(&t->regions_list, struct damon_region, list);
}

#define damon_for_each_region(r, t) \
	list_for_each_entry(r, &t->regions_list, list)

#define damon_for_each_region_safe(r, next, t) \
	list_for_each_entry_safe(r, next, &t->regions_list, list)

#define damon_for_each_target(t, ctx) \
	list_for_each_entry(t, &(ctx)->adaptive_targets, list)

#define damon_for_each_target_safe(t, next, ctx)	\
	list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)

#define damon_for_each_scheme(s, ctx) \
	list_for_each_entry(s, &(ctx)->schemes, list)

#define damon_for_each_scheme_safe(s, next, ctx) \
	list_for_each_entry_safe(s, next, &(ctx)->schemes, list)

#ifdef CONFIG_DAMON

struct damon_region *damon_new_region(unsigned long start, unsigned long end);
inline void damon_insert_region(struct damon_region *r,
		struct damon_region *prev, struct damon_region *next,
		struct damon_target *t);
void damon_add_region(struct damon_region *r, struct damon_target *t);
void damon_destroy_region(struct damon_region *r, struct damon_target *t);

struct damos *damon_new_scheme(
		unsigned long min_sz_region, unsigned long max_sz_region,
		unsigned int min_nr_accesses, unsigned int max_nr_accesses,
		unsigned int min_age_region, unsigned int max_age_region,
		enum damos_action action, struct damos_quota *quota,
		struct damos_watermarks *wmarks);
void damon_add_scheme(struct damon_ctx *ctx, struct damos *s);
void damon_destroy_scheme(struct damos *s);

struct damon_target *damon_new_target(unsigned long id);
void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
bool damon_targets_empty(struct damon_ctx *ctx);
void damon_free_target(struct damon_target *t);
void damon_destroy_target(struct damon_target *t);
unsigned int damon_nr_regions(struct damon_target *t);

struct damon_ctx *damon_new_ctx(void);
void damon_destroy_ctx(struct damon_ctx *ctx);
int damon_set_targets(struct damon_ctx *ctx,
		unsigned long *ids, ssize_t nr_ids);
int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
		unsigned long aggr_int, unsigned long primitive_upd_int,
		unsigned long min_nr_reg, unsigned long max_nr_reg);
int damon_set_schemes(struct damon_ctx *ctx,
			struct damos **schemes, ssize_t nr_schemes);
int damon_nr_running_ctxs(void);

int damon_start(struct damon_ctx **ctxs, int nr_ctxs);
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);

#endif	/* CONFIG_DAMON */

#ifdef CONFIG_DAMON_VADDR
bool damon_va_target_valid(void *t);
void damon_va_set_primitives(struct damon_ctx *ctx);
#endif	/* CONFIG_DAMON_VADDR */

#ifdef CONFIG_DAMON_PADDR
bool damon_pa_target_valid(void *t);
void damon_pa_set_primitives(struct damon_ctx *ctx);
#endif	/* CONFIG_DAMON_PADDR */

#endif	/* _DAMON_H */