1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H
#if __LINUX_ARM_ARCH__ < 6
#error SMP not supported on pre-ARMv6 CPUs
#endif
/*
* ARMv6 Spin-locking.
*
* We (exclusively) read the old value, and decrement it. If it
* hits zero, we may have won the lock, so we try (exclusively)
* storing it.
*
* Unlocked value: 0
* Locked value: 1
*/
typedef struct {
volatile unsigned int lock;
#ifdef CONFIG_PREEMPT
unsigned int break_lock;
#endif
} spinlock_t;
#define SPIN_LOCK_UNLOCKED (spinlock_t) { 0 }
#define spin_lock_init(x) do { *(x) = SPIN_LOCK_UNLOCKED; } while (0)
#define spin_is_locked(x) ((x)->lock != 0)
#define spin_unlock_wait(x) do { barrier(); } while (spin_is_locked(x))
#define _raw_spin_lock_flags(lock, flags) _raw_spin_lock(lock)
static inline void _raw_spin_lock(spinlock_t *lock)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]\n"
" teqeq %0, #0\n"
" bne 1b"
: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc", "memory");
}
static inline int _raw_spin_trylock(spinlock_t *lock)
{
unsigned long tmp;
__asm__ __volatile__(
" ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc", "memory");
return tmp == 0;
}
static inline void _raw_spin_unlock(spinlock_t *lock)
{
__asm__ __volatile__(
" str %1, [%0]"
:
: "r" (&lock->lock), "r" (0)
: "cc", "memory");
}
/*
* RWLOCKS
*/
typedef struct {
volatile unsigned int lock;
#ifdef CONFIG_PREEMPT
unsigned int break_lock;
#endif
} rwlock_t;
#define RW_LOCK_UNLOCKED (rwlock_t) { 0 }
#define rwlock_init(x) do { *(x) = RW_LOCK_UNLOCKED; } while (0)
#define rwlock_is_locked(x) (*((volatile unsigned int *)(x)) != 0)
/*
* Write locks are easy - we just set bit 31. When unlocking, we can
* just write zero since the lock is exclusively held.
*/
static inline void _raw_write_lock(rwlock_t *rw)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]\n"
" teq %0, #0\n"
" bne 1b"
: "=&r" (tmp)
: "r" (&rw->lock), "r" (0x80000000)
: "cc", "memory");
}
static inline int _raw_write_trylock(rwlock_t *rw)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&rw->lock), "r" (0x80000000)
: "cc", "memory");
return tmp == 0;
}
static inline void _raw_write_unlock(rwlock_t *rw)
{
__asm__ __volatile__(
"str %1, [%0]"
:
: "r" (&rw->lock), "r" (0)
: "cc", "memory");
}
/*
* Read locks are a bit more hairy:
* - Exclusively load the lock value.
* - Increment it.
* - Store new lock value if positive, and we still own this location.
* If the value is negative, we've already failed.
* - If we failed to store the value, we want a negative result.
* - If we failed, try again.
* Unlocking is similarly hairy. We may have multiple read locks
* currently active. However, we know we won't have any write
* locks.
*/
static inline void _raw_read_lock(rwlock_t *rw)
{
unsigned long tmp, tmp2;
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" adds %0, %0, #1\n"
" strexpl %1, %0, [%2]\n"
" rsbpls %0, %1, #0\n"
" bmi 1b"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc", "memory");
}
static inline void _raw_read_unlock(rwlock_t *rw)
{
unsigned long tmp, tmp2;
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" sub %0, %0, #1\n"
" strex %1, %0, [%2]\n"
" teq %1, #0\n"
" bne 1b"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc", "memory");
}
#define _raw_read_trylock(lock) generic_raw_read_trylock(lock)
#endif /* __ASM_SPINLOCK_H */
|