summaryrefslogtreecommitdiff
path: root/fs/ext4/crypto.c
blob: 2580ef3346caf6c40448271ea4e5313a17f3eed1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*
 * linux/fs/ext4/crypto.c
 *
 * Copyright (C) 2015, Google, Inc.
 *
 * This contains encryption functions for ext4
 *
 * Written by Michael Halcrow, 2014.
 *
 * Filename encryption additions
 *	Uday Savagaonkar, 2014
 * Encryption policy handling additions
 *	Ildar Muslukhov, 2014
 *
 * This has not yet undergone a rigorous security audit.
 *
 * The usage of AES-XTS should conform to recommendations in NIST
 * Special Publication 800-38E and IEEE P1619/D16.
 */

#include <crypto/skcipher.h>
#include <keys/user-type.h>
#include <keys/encrypted-type.h>
#include <linux/ecryptfs.h>
#include <linux/gfp.h>
#include <linux/kernel.h>
#include <linux/key.h>
#include <linux/list.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <linux/spinlock_types.h>

#include "ext4_extents.h"
#include "xattr.h"

/* Encryption added and removed here! (L: */

static unsigned int num_prealloc_crypto_pages = 32;
static unsigned int num_prealloc_crypto_ctxs = 128;

module_param(num_prealloc_crypto_pages, uint, 0444);
MODULE_PARM_DESC(num_prealloc_crypto_pages,
		 "Number of crypto pages to preallocate");
module_param(num_prealloc_crypto_ctxs, uint, 0444);
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
		 "Number of crypto contexts to preallocate");

static mempool_t *ext4_bounce_page_pool;

static LIST_HEAD(ext4_free_crypto_ctxs);
static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);

static struct kmem_cache *ext4_crypto_ctx_cachep;
struct kmem_cache *ext4_crypt_info_cachep;

/**
 * ext4_release_crypto_ctx() - Releases an encryption context
 * @ctx: The encryption context to release.
 *
 * If the encryption context was allocated from the pre-allocated pool, returns
 * it to that pool. Else, frees it.
 *
 * If there's a bounce page in the context, this frees that.
 */
void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
{
	unsigned long flags;

	if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
		mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
	ctx->w.bounce_page = NULL;
	ctx->w.control_page = NULL;
	if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
		kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
	} else {
		spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
		spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
	}
}

/**
 * ext4_get_crypto_ctx() - Gets an encryption context
 * @inode:       The inode for which we are doing the crypto
 *
 * Allocates and initializes an encryption context.
 *
 * Return: An allocated and initialized encryption context on success; error
 * value or NULL otherwise.
 */
struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
{
	struct ext4_crypto_ctx *ctx = NULL;
	int res = 0;
	unsigned long flags;
	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;

	if (ci == NULL)
		return ERR_PTR(-ENOKEY);

	/*
	 * We first try getting the ctx from a free list because in
	 * the common case the ctx will have an allocated and
	 * initialized crypto tfm, so it's probably a worthwhile
	 * optimization. For the bounce page, we first try getting it
	 * from the kernel allocator because that's just about as fast
	 * as getting it from a list and because a cache of free pages
	 * should generally be a "last resort" option for a filesystem
	 * to be able to do its job.
	 */
	spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
	ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
				       struct ext4_crypto_ctx, free_list);
	if (ctx)
		list_del(&ctx->free_list);
	spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
	if (!ctx) {
		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
		if (!ctx) {
			res = -ENOMEM;
			goto out;
		}
		ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
	} else {
		ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
	}
	ctx->flags &= ~EXT4_WRITE_PATH_FL;

out:
	if (res) {
		if (!IS_ERR_OR_NULL(ctx))
			ext4_release_crypto_ctx(ctx);
		ctx = ERR_PTR(res);
	}
	return ctx;
}

struct workqueue_struct *ext4_read_workqueue;
static DEFINE_MUTEX(crypto_init);

/**
 * ext4_exit_crypto() - Shutdown the ext4 encryption system
 */
void ext4_exit_crypto(void)
{
	struct ext4_crypto_ctx *pos, *n;

	list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
		kmem_cache_free(ext4_crypto_ctx_cachep, pos);
	INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
	if (ext4_bounce_page_pool)
		mempool_destroy(ext4_bounce_page_pool);
	ext4_bounce_page_pool = NULL;
	if (ext4_read_workqueue)
		destroy_workqueue(ext4_read_workqueue);
	ext4_read_workqueue = NULL;
	if (ext4_crypto_ctx_cachep)
		kmem_cache_destroy(ext4_crypto_ctx_cachep);
	ext4_crypto_ctx_cachep = NULL;
	if (ext4_crypt_info_cachep)
		kmem_cache_destroy(ext4_crypt_info_cachep);
	ext4_crypt_info_cachep = NULL;
}

/**
 * ext4_init_crypto() - Set up for ext4 encryption.
 *
 * We only call this when we start accessing encrypted files, since it
 * results in memory getting allocated that wouldn't otherwise be used.
 *
 * Return: Zero on success, non-zero otherwise.
 */
int ext4_init_crypto(void)
{
	int i, res = -ENOMEM;

	mutex_lock(&crypto_init);
	if (ext4_read_workqueue)
		goto already_initialized;
	ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
	if (!ext4_read_workqueue)
		goto fail;

	ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
					    SLAB_RECLAIM_ACCOUNT);
	if (!ext4_crypto_ctx_cachep)
		goto fail;

	ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
					    SLAB_RECLAIM_ACCOUNT);
	if (!ext4_crypt_info_cachep)
		goto fail;

	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
		struct ext4_crypto_ctx *ctx;

		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
		if (!ctx) {
			res = -ENOMEM;
			goto fail;
		}
		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
	}

	ext4_bounce_page_pool =
		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
	if (!ext4_bounce_page_pool) {
		res = -ENOMEM;
		goto fail;
	}
already_initialized:
	mutex_unlock(&crypto_init);
	return 0;
fail:
	ext4_exit_crypto();
	mutex_unlock(&crypto_init);
	return res;
}

void ext4_restore_control_page(struct page *data_page)
{
	struct ext4_crypto_ctx *ctx =
		(struct ext4_crypto_ctx *)page_private(data_page);

	set_page_private(data_page, (unsigned long)NULL);
	ClearPagePrivate(data_page);
	unlock_page(data_page);
	ext4_release_crypto_ctx(ctx);
}

/**
 * ext4_crypt_complete() - The completion callback for page encryption
 * @req: The asynchronous encryption request context
 * @res: The result of the encryption operation
 */
static void ext4_crypt_complete(struct crypto_async_request *req, int res)
{
	struct ext4_completion_result *ecr = req->data;

	if (res == -EINPROGRESS)
		return;
	ecr->res = res;
	complete(&ecr->completion);
}

typedef enum {
	EXT4_DECRYPT = 0,
	EXT4_ENCRYPT,
} ext4_direction_t;

static int ext4_page_crypto(struct inode *inode,
			    ext4_direction_t rw,
			    pgoff_t index,
			    struct page *src_page,
			    struct page *dest_page)

{
	u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
	struct skcipher_request *req = NULL;
	DECLARE_EXT4_COMPLETION_RESULT(ecr);
	struct scatterlist dst, src;
	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
	struct crypto_skcipher *tfm = ci->ci_ctfm;
	int res = 0;

	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req) {
		printk_ratelimited(KERN_ERR
				   "%s: crypto_request_alloc() failed\n",
				   __func__);
		return -ENOMEM;
	}
	skcipher_request_set_callback(
		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
		ext4_crypt_complete, &ecr);

	BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
	memcpy(xts_tweak, &index, sizeof(index));
	memset(&xts_tweak[sizeof(index)], 0,
	       EXT4_XTS_TWEAK_SIZE - sizeof(index));

	sg_init_table(&dst, 1);
	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
	sg_init_table(&src, 1);
	sg_set_page(&src, src_page, PAGE_SIZE, 0);
	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
				   xts_tweak);
	if (rw == EXT4_DECRYPT)
		res = crypto_skcipher_decrypt(req);
	else
		res = crypto_skcipher_encrypt(req);
	if (res == -EINPROGRESS || res == -EBUSY) {
		wait_for_completion(&ecr.completion);
		res = ecr.res;
	}
	skcipher_request_free(req);
	if (res) {
		printk_ratelimited(
			KERN_ERR
			"%s: crypto_skcipher_encrypt() returned %d\n",
			__func__, res);
		return res;
	}
	return 0;
}

static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx)
{
	ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, GFP_NOWAIT);
	if (ctx->w.bounce_page == NULL)
		return ERR_PTR(-ENOMEM);
	ctx->flags |= EXT4_WRITE_PATH_FL;
	return ctx->w.bounce_page;
}

/**
 * ext4_encrypt() - Encrypts a page
 * @inode:          The inode for which the encryption should take place
 * @plaintext_page: The page to encrypt. Must be locked.
 *
 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
 * encryption context.
 *
 * Called on the page write path.  The caller must call
 * ext4_restore_control_page() on the returned ciphertext page to
 * release the bounce buffer and the encryption context.
 *
 * Return: An allocated page with the encrypted content on success. Else, an
 * error value or NULL.
 */
struct page *ext4_encrypt(struct inode *inode,
			  struct page *plaintext_page)
{
	struct ext4_crypto_ctx *ctx;
	struct page *ciphertext_page = NULL;
	int err;

	BUG_ON(!PageLocked(plaintext_page));

	ctx = ext4_get_crypto_ctx(inode);
	if (IS_ERR(ctx))
		return (struct page *) ctx;

	/* The encryption operation will require a bounce page. */
	ciphertext_page = alloc_bounce_page(ctx);
	if (IS_ERR(ciphertext_page))
		goto errout;
	ctx->w.control_page = plaintext_page;
	err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index,
			       plaintext_page, ciphertext_page);
	if (err) {
		ciphertext_page = ERR_PTR(err);
	errout:
		ext4_release_crypto_ctx(ctx);
		return ciphertext_page;
	}
	SetPagePrivate(ciphertext_page);
	set_page_private(ciphertext_page, (unsigned long)ctx);
	lock_page(ciphertext_page);
	return ciphertext_page;
}

/**
 * ext4_decrypt() - Decrypts a page in-place
 * @ctx:  The encryption context.
 * @page: The page to decrypt. Must be locked.
 *
 * Decrypts page in-place using the ctx encryption context.
 *
 * Called from the read completion callback.
 *
 * Return: Zero on success, non-zero otherwise.
 */
int ext4_decrypt(struct page *page)
{
	BUG_ON(!PageLocked(page));

	return ext4_page_crypto(page->mapping->host,
				EXT4_DECRYPT, page->index, page, page);
}

int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk,
			   ext4_fsblk_t pblk, ext4_lblk_t len)
{
	struct ext4_crypto_ctx	*ctx;
	struct page		*ciphertext_page = NULL;
	struct bio		*bio;
	int			ret, err = 0;

#if 0
	ext4_msg(inode->i_sb, KERN_CRIT,
		 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
		 (unsigned long) inode->i_ino, lblk, len);
#endif

	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);

	ctx = ext4_get_crypto_ctx(inode);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	ciphertext_page = alloc_bounce_page(ctx);
	if (IS_ERR(ciphertext_page)) {
		err = PTR_ERR(ciphertext_page);
		goto errout;
	}

	while (len--) {
		err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk,
				       ZERO_PAGE(0), ciphertext_page);
		if (err)
			goto errout;

		bio = bio_alloc(GFP_KERNEL, 1);
		if (!bio) {
			err = -ENOMEM;
			goto errout;
		}
		bio->bi_bdev = inode->i_sb->s_bdev;
		bio->bi_iter.bi_sector =
			pblk << (inode->i_sb->s_blocksize_bits - 9);
		ret = bio_add_page(bio, ciphertext_page,
				   inode->i_sb->s_blocksize, 0);
		if (ret != inode->i_sb->s_blocksize) {
			/* should never happen! */
			ext4_msg(inode->i_sb, KERN_ERR,
				 "bio_add_page failed: %d", ret);
			WARN_ON(1);
			bio_put(bio);
			err = -EIO;
			goto errout;
		}
		err = submit_bio_wait(WRITE, bio);
		if ((err == 0) && bio->bi_error)
			err = -EIO;
		bio_put(bio);
		if (err)
			goto errout;
		lblk++; pblk++;
	}
	err = 0;
errout:
	ext4_release_crypto_ctx(ctx);
	return err;
}

bool ext4_valid_contents_enc_mode(uint32_t mode)
{
	return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
}

/**
 * ext4_validate_encryption_key_size() - Validate the encryption key size
 * @mode: The key mode.
 * @size: The key size to validate.
 *
 * Return: The validated key size for @mode. Zero if invalid.
 */
uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
{
	if (size == ext4_encryption_key_size(mode))
		return size;
	return 0;
}

/*
 * Validate dentries for encrypted directories to make sure we aren't
 * potentially caching stale data after a key has been added or
 * removed.
 */
static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags)
{
	struct inode *dir = d_inode(dentry->d_parent);
	struct ext4_crypt_info *ci = EXT4_I(dir)->i_crypt_info;
	int dir_has_key, cached_with_key;

	if (!ext4_encrypted_inode(dir))
		return 0;

	if (ci && ci->ci_keyring_key &&
	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
					  (1 << KEY_FLAG_REVOKED) |
					  (1 << KEY_FLAG_DEAD))))
		ci = NULL;

	/* this should eventually be an flag in d_flags */
	cached_with_key = dentry->d_fsdata != NULL;
	dir_has_key = (ci != NULL);

	/*
	 * If the dentry was cached without the key, and it is a
	 * negative dentry, it might be a valid name.  We can't check
	 * if the key has since been made available due to locking
	 * reasons, so we fail the validation so ext4_lookup() can do
	 * this check.
	 *
	 * We also fail the validation if the dentry was created with
	 * the key present, but we no longer have the key, or vice versa.
	 */
	if ((!cached_with_key && d_is_negative(dentry)) ||
	    (!cached_with_key && dir_has_key) ||
	    (cached_with_key && !dir_has_key)) {
#if 0				/* Revalidation debug */
		char buf[80];
		char *cp = simple_dname(dentry, buf, sizeof(buf));

		if (IS_ERR(cp))
			cp = (char *) "???";
		pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata,
		       cached_with_key, d_is_negative(dentry),
		       dir_has_key);
#endif
		return 0;
	}
	return 1;
}

const struct dentry_operations ext4_encrypted_d_ops = {
	.d_revalidate = ext4_d_revalidate,
};