summaryrefslogtreecommitdiff
path: root/fs/crypto/keysetup_v1.c
blob: a52686729a675c6aae577290b2569326e51044fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// SPDX-License-Identifier: GPL-2.0
/*
 * Key setup for v1 encryption policies
 *
 * Copyright 2015, 2019 Google LLC
 */

/*
 * This file implements compatibility functions for the original encryption
 * policy version ("v1"), including:
 *
 * - Deriving per-file encryption keys using the AES-128-ECB based KDF
 *   (rather than the new method of using HKDF-SHA512)
 *
 * - Retrieving fscrypt master keys from process-subscribed keyrings
 *   (rather than the new method of using a filesystem-level keyring)
 *
 * - Handling policies with the DIRECT_KEY flag set using a master key table
 *   (rather than the new method of implementing DIRECT_KEY with per-mode keys
 *    managed alongside the master keys in the filesystem-level keyring)
 */

#include <crypto/algapi.h>
#include <crypto/skcipher.h>
#include <keys/user-type.h>
#include <linux/hashtable.h>
#include <linux/scatterlist.h>

#include "fscrypt_private.h"

/* Table of keys referenced by DIRECT_KEY policies */
static DEFINE_HASHTABLE(fscrypt_direct_keys, 6); /* 6 bits = 64 buckets */
static DEFINE_SPINLOCK(fscrypt_direct_keys_lock);

/*
 * v1 key derivation function.  This generates the derived key by encrypting the
 * master key with AES-128-ECB using the nonce as the AES key.  This provides a
 * unique derived key with sufficient entropy for each inode.  However, it's
 * nonstandard, non-extensible, doesn't evenly distribute the entropy from the
 * master key, and is trivially reversible: an attacker who compromises a
 * derived key can "decrypt" it to get back to the master key, then derive any
 * other key.  For all new code, use HKDF instead.
 *
 * The master key must be at least as long as the derived key.  If the master
 * key is longer, then only the first 'derived_keysize' bytes are used.
 */
static int derive_key_aes(const u8 *master_key,
			  const u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE],
			  u8 *derived_key, unsigned int derived_keysize)
{
	int res = 0;
	struct skcipher_request *req = NULL;
	DECLARE_CRYPTO_WAIT(wait);
	struct scatterlist src_sg, dst_sg;
	struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);

	if (IS_ERR(tfm)) {
		res = PTR_ERR(tfm);
		tfm = NULL;
		goto out;
	}
	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req) {
		res = -ENOMEM;
		goto out;
	}
	skcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			crypto_req_done, &wait);
	res = crypto_skcipher_setkey(tfm, nonce, FS_KEY_DERIVATION_NONCE_SIZE);
	if (res < 0)
		goto out;

	sg_init_one(&src_sg, master_key, derived_keysize);
	sg_init_one(&dst_sg, derived_key, derived_keysize);
	skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize,
				   NULL);
	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
out:
	skcipher_request_free(req);
	crypto_free_skcipher(tfm);
	return res;
}

/*
 * Search the current task's subscribed keyrings for a "logon" key with
 * description prefix:descriptor, and if found acquire a read lock on it and
 * return a pointer to its validated payload in *payload_ret.
 */
static struct key *
find_and_lock_process_key(const char *prefix,
			  const u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE],
			  unsigned int min_keysize,
			  const struct fscrypt_key **payload_ret)
{
	char *description;
	struct key *key;
	const struct user_key_payload *ukp;
	const struct fscrypt_key *payload;

	description = kasprintf(GFP_NOFS, "%s%*phN", prefix,
				FSCRYPT_KEY_DESCRIPTOR_SIZE, descriptor);
	if (!description)
		return ERR_PTR(-ENOMEM);

	key = request_key(&key_type_logon, description, NULL);
	kfree(description);
	if (IS_ERR(key))
		return key;

	down_read(&key->sem);
	ukp = user_key_payload_locked(key);

	if (!ukp) /* was the key revoked before we acquired its semaphore? */
		goto invalid;

	payload = (const struct fscrypt_key *)ukp->data;

	if (ukp->datalen != sizeof(struct fscrypt_key) ||
	    payload->size < 1 || payload->size > FSCRYPT_MAX_KEY_SIZE) {
		fscrypt_warn(NULL,
			     "key with description '%s' has invalid payload",
			     key->description);
		goto invalid;
	}

	if (payload->size < min_keysize) {
		fscrypt_warn(NULL,
			     "key with description '%s' is too short (got %u bytes, need %u+ bytes)",
			     key->description, payload->size, min_keysize);
		goto invalid;
	}

	*payload_ret = payload;
	return key;

invalid:
	up_read(&key->sem);
	key_put(key);
	return ERR_PTR(-ENOKEY);
}

/* Master key referenced by DIRECT_KEY policy */
struct fscrypt_direct_key {
	struct hlist_node		dk_node;
	refcount_t			dk_refcount;
	const struct fscrypt_mode	*dk_mode;
	struct fscrypt_prepared_key	dk_key;
	u8				dk_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
	u8				dk_raw[FSCRYPT_MAX_KEY_SIZE];
};

static void free_direct_key(struct fscrypt_direct_key *dk)
{
	if (dk) {
		fscrypt_destroy_prepared_key(&dk->dk_key);
		kzfree(dk);
	}
}

void fscrypt_put_direct_key(struct fscrypt_direct_key *dk)
{
	if (!refcount_dec_and_lock(&dk->dk_refcount, &fscrypt_direct_keys_lock))
		return;
	hash_del(&dk->dk_node);
	spin_unlock(&fscrypt_direct_keys_lock);

	free_direct_key(dk);
}

/*
 * Find/insert the given key into the fscrypt_direct_keys table.  If found, it
 * is returned with elevated refcount, and 'to_insert' is freed if non-NULL.  If
 * not found, 'to_insert' is inserted and returned if it's non-NULL; otherwise
 * NULL is returned.
 */
static struct fscrypt_direct_key *
find_or_insert_direct_key(struct fscrypt_direct_key *to_insert,
			  const u8 *raw_key, const struct fscrypt_info *ci)
{
	unsigned long hash_key;
	struct fscrypt_direct_key *dk;

	/*
	 * Careful: to avoid potentially leaking secret key bytes via timing
	 * information, we must key the hash table by descriptor rather than by
	 * raw key, and use crypto_memneq() when comparing raw keys.
	 */

	BUILD_BUG_ON(sizeof(hash_key) > FSCRYPT_KEY_DESCRIPTOR_SIZE);
	memcpy(&hash_key, ci->ci_policy.v1.master_key_descriptor,
	       sizeof(hash_key));

	spin_lock(&fscrypt_direct_keys_lock);
	hash_for_each_possible(fscrypt_direct_keys, dk, dk_node, hash_key) {
		if (memcmp(ci->ci_policy.v1.master_key_descriptor,
			   dk->dk_descriptor, FSCRYPT_KEY_DESCRIPTOR_SIZE) != 0)
			continue;
		if (ci->ci_mode != dk->dk_mode)
			continue;
		if (!fscrypt_is_key_prepared(&dk->dk_key, ci))
			continue;
		if (crypto_memneq(raw_key, dk->dk_raw, ci->ci_mode->keysize))
			continue;
		/* using existing tfm with same (descriptor, mode, raw_key) */
		refcount_inc(&dk->dk_refcount);
		spin_unlock(&fscrypt_direct_keys_lock);
		free_direct_key(to_insert);
		return dk;
	}
	if (to_insert)
		hash_add(fscrypt_direct_keys, &to_insert->dk_node, hash_key);
	spin_unlock(&fscrypt_direct_keys_lock);
	return to_insert;
}

/* Prepare to encrypt directly using the master key in the given mode */
static struct fscrypt_direct_key *
fscrypt_get_direct_key(const struct fscrypt_info *ci, const u8 *raw_key)
{
	struct fscrypt_direct_key *dk;
	int err;

	/* Is there already a tfm for this key? */
	dk = find_or_insert_direct_key(NULL, raw_key, ci);
	if (dk)
		return dk;

	/* Nope, allocate one. */
	dk = kzalloc(sizeof(*dk), GFP_NOFS);
	if (!dk)
		return ERR_PTR(-ENOMEM);
	refcount_set(&dk->dk_refcount, 1);
	dk->dk_mode = ci->ci_mode;
	err = fscrypt_prepare_key(&dk->dk_key, raw_key, ci);
	if (err)
		goto err_free_dk;
	memcpy(dk->dk_descriptor, ci->ci_policy.v1.master_key_descriptor,
	       FSCRYPT_KEY_DESCRIPTOR_SIZE);
	memcpy(dk->dk_raw, raw_key, ci->ci_mode->keysize);

	return find_or_insert_direct_key(dk, raw_key, ci);

err_free_dk:
	free_direct_key(dk);
	return ERR_PTR(err);
}

/* v1 policy, DIRECT_KEY: use the master key directly */
static int setup_v1_file_key_direct(struct fscrypt_info *ci,
				    const u8 *raw_master_key)
{
	struct fscrypt_direct_key *dk;

	dk = fscrypt_get_direct_key(ci, raw_master_key);
	if (IS_ERR(dk))
		return PTR_ERR(dk);
	ci->ci_direct_key = dk;
	ci->ci_enc_key = dk->dk_key;
	return 0;
}

/* v1 policy, !DIRECT_KEY: derive the file's encryption key */
static int setup_v1_file_key_derived(struct fscrypt_info *ci,
				     const u8 *raw_master_key)
{
	u8 *derived_key;
	int err;

	/*
	 * This cannot be a stack buffer because it will be passed to the
	 * scatterlist crypto API during derive_key_aes().
	 */
	derived_key = kmalloc(ci->ci_mode->keysize, GFP_NOFS);
	if (!derived_key)
		return -ENOMEM;

	err = derive_key_aes(raw_master_key, ci->ci_nonce,
			     derived_key, ci->ci_mode->keysize);
	if (err)
		goto out;

	err = fscrypt_set_per_file_enc_key(ci, derived_key);
out:
	kzfree(derived_key);
	return err;
}

int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, const u8 *raw_master_key)
{
	if (ci->ci_policy.v1.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
		return setup_v1_file_key_direct(ci, raw_master_key);
	else
		return setup_v1_file_key_derived(ci, raw_master_key);
}

int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci)
{
	struct key *key;
	const struct fscrypt_key *payload;
	int err;

	key = find_and_lock_process_key(FSCRYPT_KEY_DESC_PREFIX,
					ci->ci_policy.v1.master_key_descriptor,
					ci->ci_mode->keysize, &payload);
	if (key == ERR_PTR(-ENOKEY) && ci->ci_inode->i_sb->s_cop->key_prefix) {
		key = find_and_lock_process_key(ci->ci_inode->i_sb->s_cop->key_prefix,
						ci->ci_policy.v1.master_key_descriptor,
						ci->ci_mode->keysize, &payload);
	}
	if (IS_ERR(key))
		return PTR_ERR(key);

	err = fscrypt_setup_v1_file_key(ci, payload->raw);
	up_read(&key->sem);
	key_put(key);
	return err;
}