summaryrefslogtreecommitdiff
path: root/fs/bcachefs/rebalance.c
blob: 461af44dbde784e07fa6ab8053811aa004771a86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
// SPDX-License-Identifier: GPL-2.0

#include "bcachefs.h"
#include "alloc_foreground.h"
#include "btree_iter.h"
#include "buckets.h"
#include "clock.h"
#include "disk_groups.h"
#include "extents.h"
#include "io.h"
#include "move.h"
#include "rebalance.h"
#include "super-io.h"
#include "trace.h"

#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/sched/cputime.h>

static inline bool rebalance_ptr_pred(struct bch_fs *c,
				      const struct bch_extent_ptr *ptr,
				      struct bch_extent_crc_unpacked crc,
				      struct bch_io_opts *io_opts)
{
	if (io_opts->background_target &&
	    !bch2_dev_in_target(c, ptr->dev, io_opts->background_target) &&
	    !ptr->cached)
		return true;

	if (io_opts->background_compression &&
	    crc.compression_type !=
	    bch2_compression_opt_to_type[io_opts->background_compression])
		return true;

	return false;
}

void bch2_rebalance_add_key(struct bch_fs *c,
			    struct bkey_s_c k,
			    struct bch_io_opts *io_opts)
{
	const struct bch_extent_ptr *ptr;
	struct bch_extent_crc_unpacked crc;
	struct bkey_s_c_extent e;

	if (!bkey_extent_is_data(k.k))
		return;

	if (!io_opts->background_target &&
	    !io_opts->background_compression)
		return;

	e = bkey_s_c_to_extent(k);

	extent_for_each_ptr_crc(e, ptr, crc)
		if (rebalance_ptr_pred(c, ptr, crc, io_opts)) {
			struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);

			if (atomic64_add_return(crc.compressed_size,
						&ca->rebalance_work) ==
			    crc.compressed_size)
				rebalance_wakeup(c);
		}
}

void bch2_rebalance_add_work(struct bch_fs *c, u64 sectors)
{
	if (atomic64_add_return(sectors, &c->rebalance.work_unknown_dev) ==
	    sectors)
		rebalance_wakeup(c);
}

static enum data_cmd rebalance_pred(struct bch_fs *c, void *arg,
				    enum bkey_type type,
				    struct bkey_s_c_extent e,
				    struct bch_io_opts *io_opts,
				    struct data_opts *data_opts)
{
	const struct bch_extent_ptr *ptr;
	struct bch_extent_crc_unpacked crc;

	/* Make sure we have room to add a new pointer: */
	if (bkey_val_u64s(e.k) + BKEY_EXTENT_PTR_U64s_MAX >
	    BKEY_EXTENT_VAL_U64s_MAX)
		return DATA_SKIP;

	extent_for_each_ptr_crc(e, ptr, crc)
		if (rebalance_ptr_pred(c, ptr, crc, io_opts))
			goto found;

	return DATA_SKIP;
found:
	data_opts->target		= io_opts->background_target;
	data_opts->btree_insert_flags	= 0;
	return DATA_ADD_REPLICAS;
}

struct rebalance_work {
	int		dev_most_full_idx;
	unsigned	dev_most_full_percent;
	u64		dev_most_full_work;
	u64		dev_most_full_capacity;
	u64		total_work;
};

static void rebalance_work_accumulate(struct rebalance_work *w,
		u64 dev_work, u64 unknown_dev, u64 capacity, int idx)
{
	unsigned percent_full;
	u64 work = dev_work + unknown_dev;

	if (work < dev_work || work < unknown_dev)
		work = U64_MAX;
	work = min(work, capacity);

	percent_full = div64_u64(work * 100, capacity);

	if (percent_full >= w->dev_most_full_percent) {
		w->dev_most_full_idx		= idx;
		w->dev_most_full_percent	= percent_full;
		w->dev_most_full_work		= work;
		w->dev_most_full_capacity	= capacity;
	}

	if (w->total_work + dev_work >= w->total_work &&
	    w->total_work + dev_work >= dev_work)
		w->total_work += dev_work;
}

static struct rebalance_work rebalance_work(struct bch_fs *c)
{
	struct bch_dev *ca;
	struct rebalance_work ret = { .dev_most_full_idx = -1 };
	u64 unknown_dev = atomic64_read(&c->rebalance.work_unknown_dev);
	unsigned i;

	for_each_online_member(ca, c, i)
		rebalance_work_accumulate(&ret,
			atomic64_read(&ca->rebalance_work),
			unknown_dev,
			bucket_to_sector(ca, ca->mi.nbuckets -
					 ca->mi.first_bucket),
			i);

	rebalance_work_accumulate(&ret,
		unknown_dev, 0, c->capacity, -1);

	return ret;
}

static void rebalance_work_reset(struct bch_fs *c)
{
	struct bch_dev *ca;
	unsigned i;

	for_each_online_member(ca, c, i)
		atomic64_set(&ca->rebalance_work, 0);

	atomic64_set(&c->rebalance.work_unknown_dev, 0);
}

static unsigned long curr_cputime(void)
{
	u64 utime, stime;

	task_cputime_adjusted(current, &utime, &stime);
	return nsecs_to_jiffies(utime + stime);
}

static int bch2_rebalance_thread(void *arg)
{
	struct bch_fs *c = arg;
	struct bch_fs_rebalance *r = &c->rebalance;
	struct io_clock *clock = &c->io_clock[WRITE];
	struct rebalance_work w, p;
	unsigned long start, prev_start;
	unsigned long prev_run_time, prev_run_cputime;
	unsigned long cputime, prev_cputime;
	unsigned long io_start;
	long throttle;

	set_freezable();

	io_start	= atomic_long_read(&clock->now);
	p		= rebalance_work(c);
	prev_start	= jiffies;
	prev_cputime	= curr_cputime();

	while (!kthread_wait_freezable(r->enabled)) {
		start			= jiffies;
		cputime			= curr_cputime();

		prev_run_time		= start - prev_start;
		prev_run_cputime	= cputime - prev_cputime;

		w			= rebalance_work(c);
		BUG_ON(!w.dev_most_full_capacity);

		if (!w.total_work) {
			r->state = REBALANCE_WAITING;
			kthread_wait_freezable(rebalance_work(c).total_work);
			continue;
		}

		/*
		 * If there isn't much work to do, throttle cpu usage:
		 */
		throttle = prev_run_cputime * 100 /
			max(1U, w.dev_most_full_percent) -
			prev_run_time;

		if (w.dev_most_full_percent < 20 && throttle > 0) {
			r->state = REBALANCE_THROTTLED;
			r->throttled_until_iotime = io_start +
				div_u64(w.dev_most_full_capacity *
					(20 - w.dev_most_full_percent),
					50);
			r->throttled_until_cputime = start + throttle;

			bch2_kthread_io_clock_wait(clock,
				r->throttled_until_iotime,
				throttle);
			continue;
		}

		/* minimum 1 mb/sec: */
		r->pd.rate.rate =
			max_t(u64, 1 << 11,
			      r->pd.rate.rate *
			      max(p.dev_most_full_percent, 1U) /
			      max(w.dev_most_full_percent, 1U));

		io_start	= atomic_long_read(&clock->now);
		p		= w;
		prev_start	= start;
		prev_cputime	= cputime;

		r->state = REBALANCE_RUNNING;
		memset(&r->move_stats, 0, sizeof(r->move_stats));
		rebalance_work_reset(c);

		bch2_move_data(c,
			       /* ratelimiting disabled for now */
			       NULL, /*  &r->pd.rate, */
			       writepoint_ptr(&c->rebalance_write_point),
			       POS_MIN, POS_MAX,
			       rebalance_pred, NULL,
			       &r->move_stats);
	}

	return 0;
}

ssize_t bch2_rebalance_work_show(struct bch_fs *c, char *buf)
{
	char *out = buf, *end = out + PAGE_SIZE;
	struct bch_fs_rebalance *r = &c->rebalance;
	struct rebalance_work w = rebalance_work(c);
	char h1[21], h2[21];

	bch2_hprint(h1, w.dev_most_full_work << 9);
	bch2_hprint(h2, w.dev_most_full_capacity << 9);
	out += scnprintf(out, end - out,
			 "fullest_dev (%i):\t%s/%s\n",
			 w.dev_most_full_idx, h1, h2);

	bch2_hprint(h1, w.total_work << 9);
	bch2_hprint(h2, c->capacity << 9);
	out += scnprintf(out, end - out,
			 "total work:\t\t%s/%s\n",
			 h1, h2);

	out += scnprintf(out, end - out,
			 "rate:\t\t\t%u\n",
			 r->pd.rate.rate);

	switch (r->state) {
	case REBALANCE_WAITING:
		out += scnprintf(out, end - out, "waiting\n");
		break;
	case REBALANCE_THROTTLED:
		bch2_hprint(h1,
			    (r->throttled_until_iotime -
			     atomic_long_read(&c->io_clock[WRITE].now)) << 9);
		out += scnprintf(out, end - out,
				 "throttled for %lu sec or %s io\n",
				 (r->throttled_until_cputime - jiffies) / HZ,
				 h1);
		break;
	case REBALANCE_RUNNING:
		out += scnprintf(out, end - out, "running\n");
		out += scnprintf(out, end - out, "pos %llu:%llu\n",
				 r->move_stats.iter.pos.inode,
				 r->move_stats.iter.pos.offset);
		break;
	}

	return out - buf;
}

void bch2_rebalance_stop(struct bch_fs *c)
{
	struct task_struct *p;

	c->rebalance.pd.rate.rate = UINT_MAX;
	bch2_ratelimit_reset(&c->rebalance.pd.rate);

	p = rcu_dereference_protected(c->rebalance.thread, 1);
	c->rebalance.thread = NULL;

	if (p) {
		/* for sychronizing with rebalance_wakeup() */
		synchronize_rcu();

		kthread_stop(p);
		put_task_struct(p);
	}
}

int bch2_rebalance_start(struct bch_fs *c)
{
	struct task_struct *p;

	if (c->opts.nochanges)
		return 0;

	p = kthread_create(bch2_rebalance_thread, c, "bch_rebalance");
	if (IS_ERR(p))
		return PTR_ERR(p);

	get_task_struct(p);
	rcu_assign_pointer(c->rebalance.thread, p);
	wake_up_process(p);
	return 0;
}

void bch2_fs_rebalance_init(struct bch_fs *c)
{
	bch2_pd_controller_init(&c->rebalance.pd);

	atomic64_set(&c->rebalance.work_unknown_dev, S64_MAX);
}