summaryrefslogtreecommitdiff
path: root/drivers/virt/nitro_enclaves/ne_misc_dev.c
blob: 51ba4caeef23dbedbcb20ae360e91e270fbba442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 */

/**
 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
 * Nitro is a hypervisor that has been developed by Amazon.
 */

#include <linux/anon_inodes.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/device.h>
#include <linux/file.h>
#include <linux/hugetlb.h>
#include <linux/limits.h>
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/nitro_enclaves.h>
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/range.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <uapi/linux/vm_sockets.h>

#include "ne_misc_dev.h"
#include "ne_pci_dev.h"

/**
 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
 *		  separated. The NE CPU pool includes CPUs from a single NUMA
 *		  node.
 */
#define NE_CPUS_SIZE		(512)

/**
 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
 *			image in enclave memory.
 */
#define NE_EIF_LOAD_OFFSET	(8 * 1024UL * 1024UL)

/**
 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
 *			     with.
 */
#define NE_MIN_ENCLAVE_MEM_SIZE	(64 * 1024UL * 1024UL)

/**
 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
 */
#define NE_MIN_MEM_REGION_SIZE	(2 * 1024UL * 1024UL)

/**
 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
 */
#define NE_PARENT_VM_CID	(3)

static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);

static const struct file_operations ne_fops = {
	.owner		= THIS_MODULE,
	.llseek		= noop_llseek,
	.unlocked_ioctl	= ne_ioctl,
};

static struct miscdevice ne_misc_dev = {
	.minor	= MISC_DYNAMIC_MINOR,
	.name	= "nitro_enclaves",
	.fops	= &ne_fops,
	.mode	= 0660,
};

struct ne_devs ne_devs = {
	.ne_misc_dev	= &ne_misc_dev,
};

/*
 * TODO: Update logic to create new sysfs entries instead of using
 * a kernel parameter e.g. if multiple sysfs files needed.
 */
static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);

static const struct kernel_param_ops ne_cpu_pool_ops = {
	.get	= param_get_string,
	.set	= ne_set_kernel_param,
};

static char ne_cpus[NE_CPUS_SIZE];
static struct kparam_string ne_cpus_arg = {
	.maxlen	= sizeof(ne_cpus),
	.string	= ne_cpus,
};

module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
/* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");

/**
 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
 * @avail_threads_per_core:	Available full CPU cores to be dedicated to
 *				enclave(s). The cpumasks from the array, indexed
 *				by core id, contain all the threads from the
 *				available cores, that are not set for created
 *				enclave(s). The full CPU cores are part of the
 *				NE CPU pool.
 * @mutex:			Mutex for the access to the NE CPU pool.
 * @nr_parent_vm_cores :	The size of the available threads per core array.
 *				The total number of CPU cores available on the
 *				primary / parent VM.
 * @nr_threads_per_core:	The number of threads that a full CPU core has.
 * @numa_node:			NUMA node of the CPUs in the pool.
 */
struct ne_cpu_pool {
	cpumask_var_t	*avail_threads_per_core;
	struct mutex	mutex;
	unsigned int	nr_parent_vm_cores;
	unsigned int	nr_threads_per_core;
	int		numa_node;
};

static struct ne_cpu_pool ne_cpu_pool;

/**
 * struct ne_phys_contig_mem_regions - Contiguous physical memory regions.
 * @num:	The number of regions that currently has.
 * @regions:	The array of physical memory regions.
 */
struct ne_phys_contig_mem_regions {
	unsigned long num;
	struct range  *regions;
};

/**
 * ne_check_enclaves_created() - Verify if at least one enclave has been created.
 * @void:	No parameters provided.
 *
 * Context: Process context.
 * Return:
 * * True if at least one enclave is created.
 * * False otherwise.
 */
static bool ne_check_enclaves_created(void)
{
	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
	bool ret = false;

	if (!ne_pci_dev)
		return ret;

	mutex_lock(&ne_pci_dev->enclaves_list_mutex);

	if (!list_empty(&ne_pci_dev->enclaves_list))
		ret = true;

	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);

	return ret;
}

/**
 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
 *			 as not sharing CPU cores with the primary / parent VM
 *			 or not using CPU 0, which should remain available for
 *			 the primary / parent VM. Offline the CPUs from the
 *			 pool after the checks passed.
 * @ne_cpu_list:	The CPU list used for setting NE CPU pool.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_setup_cpu_pool(const char *ne_cpu_list)
{
	int core_id = -1;
	unsigned int cpu = 0;
	cpumask_var_t cpu_pool;
	unsigned int cpu_sibling = 0;
	unsigned int i = 0;
	int numa_node = -1;
	int rc = -EINVAL;

	if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
		return -ENOMEM;

	mutex_lock(&ne_cpu_pool.mutex);

	rc = cpulist_parse(ne_cpu_list, cpu_pool);
	if (rc < 0) {
		pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);

		goto free_pool_cpumask;
	}

	cpu = cpumask_any(cpu_pool);
	if (cpu >= nr_cpu_ids) {
		pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);

		rc = -EINVAL;

		goto free_pool_cpumask;
	}

	/*
	 * Check if the CPUs are online, to further get info about them
	 * e.g. numa node, core id, siblings.
	 */
	for_each_cpu(cpu, cpu_pool)
		if (cpu_is_offline(cpu)) {
			pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
			       ne_misc_dev.name, cpu);

			rc = -EINVAL;

			goto free_pool_cpumask;
		}

	/*
	 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
	 */
	for_each_cpu(cpu, cpu_pool)
		if (numa_node < 0) {
			numa_node = cpu_to_node(cpu);
			if (numa_node < 0) {
				pr_err("%s: Invalid NUMA node %d\n",
				       ne_misc_dev.name, numa_node);

				rc = -EINVAL;

				goto free_pool_cpumask;
			}
		} else {
			if (numa_node != cpu_to_node(cpu)) {
				pr_err("%s: CPUs with different NUMA nodes\n",
				       ne_misc_dev.name);

				rc = -EINVAL;

				goto free_pool_cpumask;
			}
		}

	/*
	 * Check if CPU 0 and its siblings are included in the provided CPU pool
	 * They should remain available for the primary / parent VM.
	 */
	if (cpumask_test_cpu(0, cpu_pool)) {
		pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);

		rc = -EINVAL;

		goto free_pool_cpumask;
	}

	for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
		if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
			pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
			       ne_misc_dev.name, cpu_sibling);

			rc = -EINVAL;

			goto free_pool_cpumask;
		}
	}

	/*
	 * Check if CPU siblings are included in the provided CPU pool. The
	 * expectation is that full CPU cores are made available in the CPU pool
	 * for enclaves.
	 */
	for_each_cpu(cpu, cpu_pool) {
		for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
			if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
				pr_err("%s: CPU %d is not in CPU pool\n",
				       ne_misc_dev.name, cpu_sibling);

				rc = -EINVAL;

				goto free_pool_cpumask;
			}
		}
	}

	/* Calculate the number of threads from a full CPU core. */
	cpu = cpumask_any(cpu_pool);
	for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
		ne_cpu_pool.nr_threads_per_core++;

	ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;

	ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
						     sizeof(*ne_cpu_pool.avail_threads_per_core),
						     GFP_KERNEL);
	if (!ne_cpu_pool.avail_threads_per_core) {
		rc = -ENOMEM;

		goto free_pool_cpumask;
	}

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
			rc = -ENOMEM;

			goto free_cores_cpumask;
		}

	/*
	 * Split the NE CPU pool in threads per core to keep the CPU topology
	 * after offlining the CPUs.
	 */
	for_each_cpu(cpu, cpu_pool) {
		core_id = topology_core_id(cpu);
		if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
			pr_err("%s: Invalid core id  %d for CPU %d\n",
			       ne_misc_dev.name, core_id, cpu);

			rc = -EINVAL;

			goto clear_cpumask;
		}

		cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
	}

	/*
	 * CPUs that are given to enclave(s) should not be considered online
	 * by Linux anymore, as the hypervisor will degrade them to floating.
	 * The physical CPUs (full cores) are carved out of the primary / parent
	 * VM and given to the enclave VM. The same number of vCPUs would run
	 * on less pCPUs for the primary / parent VM.
	 *
	 * We offline them here, to not degrade performance and expose correct
	 * topology to Linux and user space.
	 */
	for_each_cpu(cpu, cpu_pool) {
		rc = remove_cpu(cpu);
		if (rc != 0) {
			pr_err("%s: CPU %d is not offlined [rc=%d]\n",
			       ne_misc_dev.name, cpu, rc);

			goto online_cpus;
		}
	}

	free_cpumask_var(cpu_pool);

	ne_cpu_pool.numa_node = numa_node;

	mutex_unlock(&ne_cpu_pool.mutex);

	return 0;

online_cpus:
	for_each_cpu(cpu, cpu_pool)
		add_cpu(cpu);
clear_cpumask:
	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
free_cores_cpumask:
	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
	kfree(ne_cpu_pool.avail_threads_per_core);
free_pool_cpumask:
	free_cpumask_var(cpu_pool);
	ne_cpu_pool.nr_parent_vm_cores = 0;
	ne_cpu_pool.nr_threads_per_core = 0;
	ne_cpu_pool.numa_node = -1;
	mutex_unlock(&ne_cpu_pool.mutex);

	return rc;
}

/**
 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
 *			    CPU pool.
 * @void:	No parameters provided.
 *
 * Context: Process context.
 */
static void ne_teardown_cpu_pool(void)
{
	unsigned int cpu = 0;
	unsigned int i = 0;
	int rc = -EINVAL;

	mutex_lock(&ne_cpu_pool.mutex);

	if (!ne_cpu_pool.nr_parent_vm_cores) {
		mutex_unlock(&ne_cpu_pool.mutex);

		return;
	}

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
		for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
			rc = add_cpu(cpu);
			if (rc != 0)
				pr_err("%s: CPU %d is not onlined [rc=%d]\n",
				       ne_misc_dev.name, cpu, rc);
		}

		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);

		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
	}

	kfree(ne_cpu_pool.avail_threads_per_core);
	ne_cpu_pool.nr_parent_vm_cores = 0;
	ne_cpu_pool.nr_threads_per_core = 0;
	ne_cpu_pool.numa_node = -1;

	mutex_unlock(&ne_cpu_pool.mutex);
}

/**
 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
 * @val:	NE CPU pool string value.
 * @kp :	NE kernel parameter associated with the NE CPU pool.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
{
	char error_val[] = "";
	int rc = -EINVAL;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	if (ne_check_enclaves_created()) {
		pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);

		return -EPERM;
	}

	ne_teardown_cpu_pool();

	rc = ne_setup_cpu_pool(val);
	if (rc < 0) {
		pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);

		param_set_copystring(error_val, kp);

		return rc;
	}

	rc = param_set_copystring(val, kp);
	if (rc < 0) {
		pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);

		ne_teardown_cpu_pool();

		param_set_copystring(error_val, kp);

		return rc;
	}

	return 0;
}

/**
 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
 * @ne_enclave :	Private data associated with the current enclave.
 * @cpu:		CPU to check if already used.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * True if the provided CPU is already used by the enclave.
 * * False otherwise.
 */
static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
{
	if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
		return true;

	return false;
}

/**
 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
 *					NE CPU pool.
 * @void:	No parameters provided.
 *
 * Context: Process context. This function is called with the ne_enclave and
 *	    ne_cpu_pool mutexes held.
 * Return:
 * * Core id.
 * * -1 if no CPU core available in the pool.
 */
static int ne_get_unused_core_from_cpu_pool(void)
{
	int core_id = -1;
	unsigned int i = 0;

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
			core_id = i;

			break;
		}

	return core_id;
}

/**
 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
 *				       the enclave data structure.
 * @ne_enclave :	Private data associated with the current enclave.
 * @core_id:		Core id to get its threads from the NE CPU pool.
 * @vcpu_id:		vCPU id part of the provided core.
 *
 * Context: Process context. This function is called with the ne_enclave and
 *	    ne_cpu_pool mutexes held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
					   int core_id, u32 vcpu_id)
{
	unsigned int cpu = 0;

	if (core_id < 0 && vcpu_id == 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "No CPUs available in NE CPU pool\n");

		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
	}

	if (core_id < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "CPU %d is not in NE CPU pool\n", vcpu_id);

		return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
	}

	if (core_id >= ne_enclave->nr_parent_vm_cores) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Invalid core id %d - ne_enclave\n", core_id);

		return -NE_ERR_VCPU_INVALID_CPU_CORE;
	}

	for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
		cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);

	cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);

	return 0;
}

/**
 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
 *				remaining sibling(s) of a CPU core or the first
 *				sibling of a new CPU core.
 * @ne_enclave :	Private data associated with the current enclave.
 * @vcpu_id:		vCPU to get from the NE CPU pool.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
{
	int core_id = -1;
	unsigned int cpu = 0;
	unsigned int i = 0;
	int rc = -EINVAL;

	/*
	 * If previously allocated a thread of a core to this enclave, first
	 * check remaining sibling(s) for new CPU allocations, so that full
	 * CPU cores are used for the enclave.
	 */
	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
			if (!ne_donated_cpu(ne_enclave, cpu)) {
				*vcpu_id = cpu;

				return 0;
			}

	mutex_lock(&ne_cpu_pool.mutex);

	/*
	 * If no remaining siblings, get a core from the NE CPU pool and keep
	 * track of all the threads in the enclave threads per core data structure.
	 */
	core_id = ne_get_unused_core_from_cpu_pool();

	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
	if (rc < 0)
		goto unlock_mutex;

	*vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);

	rc = 0;

unlock_mutex:
	mutex_unlock(&ne_cpu_pool.mutex);

	return rc;
}

/**
 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
 *				      core associated with the provided vCPU.
 * @vcpu_id:	Provided vCPU id to get its associated core id.
 *
 * Context: Process context. This function is called with the ne_enclave and
 *	    ne_cpu_pool mutexes held.
 * Return:
 * * Core id.
 * * -1 if the provided vCPU is not in the pool.
 */
static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
{
	int core_id = -1;
	unsigned int i = 0;

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
			core_id = i;

			break;
	}

	return core_id;
}

/**
 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
 *				from the pool.
 * @ne_enclave :	Private data associated with the current enclave.
 * @vcpu_id:		ID of the vCPU to check if available in the NE CPU pool.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
{
	int core_id = -1;
	unsigned int i = 0;
	int rc = -EINVAL;

	if (ne_donated_cpu(ne_enclave, vcpu_id)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "CPU %d already used\n", vcpu_id);

		return -NE_ERR_VCPU_ALREADY_USED;
	}

	/*
	 * If previously allocated a thread of a core to this enclave, but not
	 * the full core, first check remaining sibling(s).
	 */
	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
			return 0;

	mutex_lock(&ne_cpu_pool.mutex);

	/*
	 * If no remaining siblings, get from the NE CPU pool the core
	 * associated with the vCPU and keep track of all the threads in the
	 * enclave threads per core data structure.
	 */
	core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);

	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
	if (rc < 0)
		goto unlock_mutex;

	rc = 0;

unlock_mutex:
	mutex_unlock(&ne_cpu_pool.mutex);

	return rc;
}

/**
 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
 *			 enclave.
 * @ne_enclave :	Private data associated with the current enclave.
 * @vcpu_id:		ID of the CPU to be associated with the given slot,
 *			apic id on x86.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
{
	struct ne_pci_dev_cmd_reply cmd_reply = {};
	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
	int rc = -EINVAL;
	struct slot_add_vcpu_req slot_add_vcpu_req = {};

	if (ne_enclave->mm != current->mm)
		return -EIO;

	slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
	slot_add_vcpu_req.vcpu_id = vcpu_id;

	rc = ne_do_request(pdev, SLOT_ADD_VCPU,
			   &slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
			   &cmd_reply, sizeof(cmd_reply));
	if (rc < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in slot add vCPU [rc=%d]\n", rc);

		return rc;
	}

	cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);

	ne_enclave->nr_vcpus++;

	return 0;
}

/**
 * ne_sanity_check_user_mem_region() - Sanity check the user space memory
 *				       region received during the set user
 *				       memory region ioctl call.
 * @ne_enclave :	Private data associated with the current enclave.
 * @mem_region :	User space memory region to be sanity checked.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
					   struct ne_user_memory_region mem_region)
{
	struct ne_mem_region *ne_mem_region = NULL;

	if (ne_enclave->mm != current->mm)
		return -EIO;

	if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "User space memory size is not multiple of 2 MiB\n");

		return -NE_ERR_INVALID_MEM_REGION_SIZE;
	}

	if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "User space address is not 2 MiB aligned\n");

		return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
	}

	if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
	    !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
		       mem_region.memory_size)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Invalid user space address range\n");

		return -NE_ERR_INVALID_MEM_REGION_ADDR;
	}

	list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
			    mem_region_list_entry) {
		u64 memory_size = ne_mem_region->memory_size;
		u64 userspace_addr = ne_mem_region->userspace_addr;

		if ((userspace_addr <= mem_region.userspace_addr &&
		     mem_region.userspace_addr < (userspace_addr + memory_size)) ||
		    (mem_region.userspace_addr <= userspace_addr &&
		    (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "User space memory region already used\n");

			return -NE_ERR_MEM_REGION_ALREADY_USED;
		}
	}

	return 0;
}

/**
 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
 *					    memory region received during the set
 *					    user memory region ioctl call.
 * @ne_enclave :	Private data associated with the current enclave.
 * @mem_region_page:	Page from the user space memory region to be sanity checked.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
						struct page *mem_region_page)
{
	if (!PageHuge(mem_region_page)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Not a hugetlbfs page\n");

		return -NE_ERR_MEM_NOT_HUGE_PAGE;
	}

	if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Page size not multiple of 2 MiB\n");

		return -NE_ERR_INVALID_PAGE_SIZE;
	}

	if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Page is not from NUMA node %d\n",
				    ne_enclave->numa_node);

		return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
	}

	return 0;
}

/**
 * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size
 *                                     of a physical memory region.
 * @phys_mem_region_paddr : Physical start address of the region to be sanity checked.
 * @phys_mem_region_size  : Length of the region to be sanity checked.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr,
					   u64 phys_mem_region_size)
{
	if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Physical mem region size is not multiple of 2 MiB\n");

		return -EINVAL;
	}

	if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Physical mem region address is not 2 MiB aligned\n");

		return -EINVAL;
	}

	return 0;
}

/**
 * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent
 *                                         regions if they are physically contiguous.
 * @phys_contig_regions : Private data associated with the contiguous physical memory regions.
 * @page_paddr :          Physical start address of the region to be added.
 * @page_size :           Length of the region to be added.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int
ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions,
				    u64 page_paddr, u64 page_size)
{
	unsigned long num = phys_contig_regions->num;
	int rc = 0;

	rc = ne_sanity_check_phys_mem_region(page_paddr, page_size);
	if (rc < 0)
		return rc;

	/* Physically contiguous, just merge */
	if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) {
		phys_contig_regions->regions[num - 1].end += page_size;
	} else {
		phys_contig_regions->regions[num].start = page_paddr;
		phys_contig_regions->regions[num].end = page_paddr + page_size - 1;
		phys_contig_regions->num++;
	}

	return 0;
}

/**
 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
 *				       associated with the current enclave.
 * @ne_enclave :	Private data associated with the current enclave.
 * @mem_region :	User space memory region to be associated with the given slot.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
					   struct ne_user_memory_region mem_region)
{
	long gup_rc = 0;
	unsigned long i = 0;
	unsigned long max_nr_pages = 0;
	unsigned long memory_size = 0;
	struct ne_mem_region *ne_mem_region = NULL;
	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
	struct ne_phys_contig_mem_regions phys_contig_mem_regions = {};
	int rc = -EINVAL;

	rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
	if (rc < 0)
		return rc;

	ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
	if (!ne_mem_region)
		return -ENOMEM;

	max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;

	ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
				       GFP_KERNEL);
	if (!ne_mem_region->pages) {
		rc = -ENOMEM;

		goto free_mem_region;
	}

	phys_contig_mem_regions.regions = kcalloc(max_nr_pages,
						  sizeof(*phys_contig_mem_regions.regions),
						  GFP_KERNEL);
	if (!phys_contig_mem_regions.regions) {
		rc = -ENOMEM;

		goto free_mem_region;
	}

	do {
		i = ne_mem_region->nr_pages;

		if (i == max_nr_pages) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Reached max nr of pages in the pages data struct\n");

			rc = -ENOMEM;

			goto put_pages;
		}

		gup_rc = get_user_pages(mem_region.userspace_addr + memory_size, 1, FOLL_GET,
					ne_mem_region->pages + i, NULL);
		if (gup_rc < 0) {
			rc = gup_rc;

			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Error in get user pages [rc=%d]\n", rc);

			goto put_pages;
		}

		rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
		if (rc < 0)
			goto put_pages;

		rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions,
							 page_to_phys(ne_mem_region->pages[i]),
							 page_size(ne_mem_region->pages[i]));
		if (rc < 0)
			goto put_pages;

		memory_size += page_size(ne_mem_region->pages[i]);

		ne_mem_region->nr_pages++;
	} while (memory_size < mem_region.memory_size);

	if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) >
	    ne_enclave->max_mem_regions) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Reached max memory regions %lld\n",
				    ne_enclave->max_mem_regions);

		rc = -NE_ERR_MEM_MAX_REGIONS;

		goto put_pages;
	}

	for (i = 0; i < phys_contig_mem_regions.num; i++) {
		u64 phys_region_addr = phys_contig_mem_regions.regions[i].start;
		u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]);

		rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size);
		if (rc < 0)
			goto put_pages;
	}

	ne_mem_region->memory_size = mem_region.memory_size;
	ne_mem_region->userspace_addr = mem_region.userspace_addr;

	list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);

	for (i = 0; i < phys_contig_mem_regions.num; i++) {
		struct ne_pci_dev_cmd_reply cmd_reply = {};
		struct slot_add_mem_req slot_add_mem_req = {};

		slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
		slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start;
		slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]);

		rc = ne_do_request(pdev, SLOT_ADD_MEM,
				   &slot_add_mem_req, sizeof(slot_add_mem_req),
				   &cmd_reply, sizeof(cmd_reply));
		if (rc < 0) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Error in slot add mem [rc=%d]\n", rc);

			kfree(phys_contig_mem_regions.regions);

			/*
			 * Exit here without put pages as memory regions may
			 * already been added.
			 */
			return rc;
		}

		ne_enclave->mem_size += slot_add_mem_req.size;
		ne_enclave->nr_mem_regions++;
	}

	kfree(phys_contig_mem_regions.regions);

	return 0;

put_pages:
	for (i = 0; i < ne_mem_region->nr_pages; i++)
		put_page(ne_mem_region->pages[i]);
free_mem_region:
	kfree(phys_contig_mem_regions.regions);
	kfree(ne_mem_region->pages);
	kfree(ne_mem_region);

	return rc;
}

/**
 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
 *			      such as memory and CPU, have been set.
 * @ne_enclave :		Private data associated with the current enclave.
 * @enclave_start_info :	Enclave info that includes enclave cid and flags.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
				  struct ne_enclave_start_info *enclave_start_info)
{
	struct ne_pci_dev_cmd_reply cmd_reply = {};
	unsigned int cpu = 0;
	struct enclave_start_req enclave_start_req = {};
	unsigned int i = 0;
	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
	int rc = -EINVAL;

	if (!ne_enclave->nr_mem_regions) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Enclave has no mem regions\n");

		return -NE_ERR_NO_MEM_REGIONS_ADDED;
	}

	if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Enclave memory is less than %ld\n",
				    NE_MIN_ENCLAVE_MEM_SIZE);

		return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
	}

	if (!ne_enclave->nr_vcpus) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Enclave has no vCPUs\n");

		return -NE_ERR_NO_VCPUS_ADDED;
	}

	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
			if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
				dev_err_ratelimited(ne_misc_dev.this_device,
						    "Full CPU cores not used\n");

				return -NE_ERR_FULL_CORES_NOT_USED;
			}

	enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
	enclave_start_req.flags = enclave_start_info->flags;
	enclave_start_req.slot_uid = ne_enclave->slot_uid;

	rc = ne_do_request(pdev, ENCLAVE_START,
			   &enclave_start_req, sizeof(enclave_start_req),
			   &cmd_reply, sizeof(cmd_reply));
	if (rc < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in enclave start [rc=%d]\n", rc);

		return rc;
	}

	ne_enclave->state = NE_STATE_RUNNING;

	enclave_start_info->enclave_cid = cmd_reply.enclave_cid;

	return 0;
}

/**
 * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
 * @file:	File associated with this ioctl function.
 * @cmd:	The command that is set for the ioctl call.
 * @arg:	The argument that is provided for the ioctl call.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct ne_enclave *ne_enclave = file->private_data;

	switch (cmd) {
	case NE_ADD_VCPU: {
		int rc = -EINVAL;
		u32 vcpu_id = 0;

		if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
			return -EFAULT;

		mutex_lock(&ne_enclave->enclave_info_mutex);

		if (ne_enclave->state != NE_STATE_INIT) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Enclave is not in init state\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_NOT_IN_INIT_STATE;
		}

		if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
		    ne_enclave->nr_threads_per_core)) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "vCPU id higher than max CPU id\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_INVALID_VCPU;
		}

		if (!vcpu_id) {
			/* Use the CPU pool for choosing a CPU for the enclave. */
			rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
			if (rc < 0) {
				dev_err_ratelimited(ne_misc_dev.this_device,
						    "Error in get CPU from pool [rc=%d]\n",
						    rc);

				mutex_unlock(&ne_enclave->enclave_info_mutex);

				return rc;
			}
		} else {
			/* Check if the provided vCPU is available in the NE CPU pool. */
			rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
			if (rc < 0) {
				dev_err_ratelimited(ne_misc_dev.this_device,
						    "Error in check CPU %d in pool [rc=%d]\n",
						    vcpu_id, rc);

				mutex_unlock(&ne_enclave->enclave_info_mutex);

				return rc;
			}
		}

		rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
		if (rc < 0) {
			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return rc;
		}

		mutex_unlock(&ne_enclave->enclave_info_mutex);

		if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
			return -EFAULT;

		return 0;
	}

	case NE_GET_IMAGE_LOAD_INFO: {
		struct ne_image_load_info image_load_info = {};

		if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
			return -EFAULT;

		mutex_lock(&ne_enclave->enclave_info_mutex);

		if (ne_enclave->state != NE_STATE_INIT) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Enclave is not in init state\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_NOT_IN_INIT_STATE;
		}

		mutex_unlock(&ne_enclave->enclave_info_mutex);

		if (!image_load_info.flags ||
		    image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Incorrect flag in enclave image load info\n");

			return -NE_ERR_INVALID_FLAG_VALUE;
		}

		if (image_load_info.flags == NE_EIF_IMAGE)
			image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;

		if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
			return -EFAULT;

		return 0;
	}

	case NE_SET_USER_MEMORY_REGION: {
		struct ne_user_memory_region mem_region = {};
		int rc = -EINVAL;

		if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
			return -EFAULT;

		if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Incorrect flag for user memory region\n");

			return -NE_ERR_INVALID_FLAG_VALUE;
		}

		mutex_lock(&ne_enclave->enclave_info_mutex);

		if (ne_enclave->state != NE_STATE_INIT) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Enclave is not in init state\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_NOT_IN_INIT_STATE;
		}

		rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
		if (rc < 0) {
			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return rc;
		}

		mutex_unlock(&ne_enclave->enclave_info_mutex);

		return 0;
	}

	case NE_START_ENCLAVE: {
		struct ne_enclave_start_info enclave_start_info = {};
		int rc = -EINVAL;

		if (copy_from_user(&enclave_start_info, (void __user *)arg,
				   sizeof(enclave_start_info)))
			return -EFAULT;

		if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Incorrect flag in enclave start info\n");

			return -NE_ERR_INVALID_FLAG_VALUE;
		}

		/*
		 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
		 * VMADDR_CID_ANY = -1U
		 * VMADDR_CID_HYPERVISOR = 0
		 * VMADDR_CID_LOCAL = 1
		 * VMADDR_CID_HOST = 2
		 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
		 * http://man7.org/linux/man-pages/man7/vsock.7.html
		 */
		if (enclave_start_info.enclave_cid > 0 &&
		    enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Well-known CID value, not to be used for enclaves\n");

			return -NE_ERR_INVALID_ENCLAVE_CID;
		}

		if (enclave_start_info.enclave_cid == U32_MAX) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Well-known CID value, not to be used for enclaves\n");

			return -NE_ERR_INVALID_ENCLAVE_CID;
		}

		/*
		 * Do not use the CID of the primary / parent VM for enclaves.
		 */
		if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "CID of the parent VM, not to be used for enclaves\n");

			return -NE_ERR_INVALID_ENCLAVE_CID;
		}

		/* 64-bit CIDs are not yet supported for the vsock device. */
		if (enclave_start_info.enclave_cid > U32_MAX) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "64-bit CIDs not yet supported for the vsock device\n");

			return -NE_ERR_INVALID_ENCLAVE_CID;
		}

		mutex_lock(&ne_enclave->enclave_info_mutex);

		if (ne_enclave->state != NE_STATE_INIT) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Enclave is not in init state\n");

			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return -NE_ERR_NOT_IN_INIT_STATE;
		}

		rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
		if (rc < 0) {
			mutex_unlock(&ne_enclave->enclave_info_mutex);

			return rc;
		}

		mutex_unlock(&ne_enclave->enclave_info_mutex);

		if (copy_to_user((void __user *)arg, &enclave_start_info,
				 sizeof(enclave_start_info)))
			return -EFAULT;

		return 0;
	}

	default:
		return -ENOTTY;
	}

	return 0;
}

/**
 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
 *						from the enclave data structure.
 * @ne_enclave :	Private data associated with the current enclave.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 */
static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
{
	unsigned long i = 0;
	struct ne_mem_region *ne_mem_region = NULL;
	struct ne_mem_region *ne_mem_region_tmp = NULL;

	list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
				 &ne_enclave->mem_regions_list,
				 mem_region_list_entry) {
		list_del(&ne_mem_region->mem_region_list_entry);

		for (i = 0; i < ne_mem_region->nr_pages; i++)
			put_page(ne_mem_region->pages[i]);

		kfree(ne_mem_region->pages);

		kfree(ne_mem_region);
	}
}

/**
 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
 *					     the enclave data structure.
 * @ne_enclave :	Private data associated with the current enclave.
 *
 * Context: Process context. This function is called with the ne_enclave mutex held.
 */
static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
{
	unsigned int cpu = 0;
	unsigned int i = 0;

	mutex_lock(&ne_cpu_pool.mutex);

	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
			/* Update the available NE CPU pool. */
			cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);

		free_cpumask_var(ne_enclave->threads_per_core[i]);
	}

	mutex_unlock(&ne_cpu_pool.mutex);

	kfree(ne_enclave->threads_per_core);

	free_cpumask_var(ne_enclave->vcpu_ids);
}

/**
 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
 *				       structure that is part of the NE PCI
 *				       device private data.
 * @ne_enclave :	Private data associated with the current enclave.
 * @ne_pci_dev :	Private data associated with the PCI device.
 *
 * Context: Process context. This function is called with the ne_pci_dev enclave
 *	    mutex held.
 */
static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
					    struct ne_pci_dev *ne_pci_dev)
{
	struct ne_enclave *ne_enclave_entry = NULL;
	struct ne_enclave *ne_enclave_entry_tmp = NULL;

	list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
				 &ne_pci_dev->enclaves_list, enclave_list_entry) {
		if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
			list_del(&ne_enclave_entry->enclave_list_entry);

			break;
		}
	}
}

/**
 * ne_enclave_release() - Release function provided by the enclave file.
 * @inode:	Inode associated with this file release function.
 * @file:	File associated with this release function.
 *
 * Context: Process context.
 * Return:
 * * 0 on success.
 * * Negative return value on failure.
 */
static int ne_enclave_release(struct inode *inode, struct file *file)
{
	struct ne_pci_dev_cmd_reply cmd_reply = {};
	struct enclave_stop_req enclave_stop_request = {};
	struct ne_enclave *ne_enclave = file->private_data;
	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
	struct pci_dev *pdev = ne_pci_dev->pdev;
	int rc = -EINVAL;
	struct slot_free_req slot_free_req = {};

	if (!ne_enclave)
		return 0;

	/*
	 * Early exit in case there is an error in the enclave creation logic
	 * and fput() is called on the cleanup path.
	 */
	if (!ne_enclave->slot_uid)
		return 0;

	/*
	 * Acquire the enclave list mutex before the enclave mutex
	 * in order to avoid deadlocks with @ref ne_event_work_handler.
	 */
	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
	mutex_lock(&ne_enclave->enclave_info_mutex);

	if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
		enclave_stop_request.slot_uid = ne_enclave->slot_uid;

		rc = ne_do_request(pdev, ENCLAVE_STOP,
				   &enclave_stop_request, sizeof(enclave_stop_request),
				   &cmd_reply, sizeof(cmd_reply));
		if (rc < 0) {
			dev_err_ratelimited(ne_misc_dev.this_device,
					    "Error in enclave stop [rc=%d]\n", rc);

			goto unlock_mutex;
		}

		memset(&cmd_reply, 0, sizeof(cmd_reply));
	}

	slot_free_req.slot_uid = ne_enclave->slot_uid;

	rc = ne_do_request(pdev, SLOT_FREE,
			   &slot_free_req, sizeof(slot_free_req),
			   &cmd_reply, sizeof(cmd_reply));
	if (rc < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in slot free [rc=%d]\n", rc);

		goto unlock_mutex;
	}

	ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
	ne_enclave_remove_all_mem_region_entries(ne_enclave);
	ne_enclave_remove_all_vcpu_id_entries(ne_enclave);

	mutex_unlock(&ne_enclave->enclave_info_mutex);
	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);

	kfree(ne_enclave);

	return 0;

unlock_mutex:
	mutex_unlock(&ne_enclave->enclave_info_mutex);
	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);

	return rc;
}

/**
 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
 * @file:	File associated with this poll function.
 * @wait:	Poll table data structure.
 *
 * Context: Process context.
 * Return:
 * * Poll mask.
 */
static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
{
	__poll_t mask = 0;
	struct ne_enclave *ne_enclave = file->private_data;

	poll_wait(file, &ne_enclave->eventq, wait);

	if (ne_enclave->has_event)
		mask |= EPOLLHUP;

	return mask;
}

static const struct file_operations ne_enclave_fops = {
	.owner		= THIS_MODULE,
	.llseek		= noop_llseek,
	.poll		= ne_enclave_poll,
	.unlocked_ioctl	= ne_enclave_ioctl,
	.release	= ne_enclave_release,
};

/**
 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
 *			  enclave file descriptor to be further used for enclave
 *			  resources handling e.g. memory regions and CPUs.
 * @ne_pci_dev :	Private data associated with the PCI device.
 * @slot_uid:		User pointer to store the generated unique slot id
 *			associated with an enclave to.
 *
 * Context: Process context. This function is called with the ne_pci_dev enclave
 *	    mutex held.
 * Return:
 * * Enclave fd on success.
 * * Negative return value on failure.
 */
static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
{
	struct ne_pci_dev_cmd_reply cmd_reply = {};
	int enclave_fd = -1;
	struct file *enclave_file = NULL;
	unsigned int i = 0;
	struct ne_enclave *ne_enclave = NULL;
	struct pci_dev *pdev = ne_pci_dev->pdev;
	int rc = -EINVAL;
	struct slot_alloc_req slot_alloc_req = {};

	mutex_lock(&ne_cpu_pool.mutex);

	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
			break;

	if (i == ne_cpu_pool.nr_parent_vm_cores) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "No CPUs available in CPU pool\n");

		mutex_unlock(&ne_cpu_pool.mutex);

		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
	}

	mutex_unlock(&ne_cpu_pool.mutex);

	ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
	if (!ne_enclave)
		return -ENOMEM;

	mutex_lock(&ne_cpu_pool.mutex);

	ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
	ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
	ne_enclave->numa_node = ne_cpu_pool.numa_node;

	mutex_unlock(&ne_cpu_pool.mutex);

	ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
					       sizeof(*ne_enclave->threads_per_core),
					       GFP_KERNEL);
	if (!ne_enclave->threads_per_core) {
		rc = -ENOMEM;

		goto free_ne_enclave;
	}

	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
			rc = -ENOMEM;

			goto free_cpumask;
		}

	if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
		rc = -ENOMEM;

		goto free_cpumask;
	}

	enclave_fd = get_unused_fd_flags(O_CLOEXEC);
	if (enclave_fd < 0) {
		rc = enclave_fd;

		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in getting unused fd [rc=%d]\n", rc);

		goto free_cpumask;
	}

	enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
	if (IS_ERR(enclave_file)) {
		rc = PTR_ERR(enclave_file);

		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in anon inode get file [rc=%d]\n", rc);

		goto put_fd;
	}

	rc = ne_do_request(pdev, SLOT_ALLOC,
			   &slot_alloc_req, sizeof(slot_alloc_req),
			   &cmd_reply, sizeof(cmd_reply));
	if (rc < 0) {
		dev_err_ratelimited(ne_misc_dev.this_device,
				    "Error in slot alloc [rc=%d]\n", rc);

		goto put_file;
	}

	init_waitqueue_head(&ne_enclave->eventq);
	ne_enclave->has_event = false;
	mutex_init(&ne_enclave->enclave_info_mutex);
	ne_enclave->max_mem_regions = cmd_reply.mem_regions;
	INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
	ne_enclave->mm = current->mm;
	ne_enclave->slot_uid = cmd_reply.slot_uid;
	ne_enclave->state = NE_STATE_INIT;

	list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);

	if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) {
		/*
		 * As we're holding the only reference to 'enclave_file', fput()
		 * will call ne_enclave_release() which will do a proper cleanup
		 * of all so far allocated resources, leaving only the unused fd
		 * for us to free.
		 */
		fput(enclave_file);
		put_unused_fd(enclave_fd);

		return -EFAULT;
	}

	fd_install(enclave_fd, enclave_file);

	return enclave_fd;

put_file:
	fput(enclave_file);
put_fd:
	put_unused_fd(enclave_fd);
free_cpumask:
	free_cpumask_var(ne_enclave->vcpu_ids);
	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
		free_cpumask_var(ne_enclave->threads_per_core[i]);
	kfree(ne_enclave->threads_per_core);
free_ne_enclave:
	kfree(ne_enclave);

	return rc;
}

/**
 * ne_ioctl() - Ioctl function provided by the NE misc device.
 * @file:	File associated with this ioctl function.
 * @cmd:	The command that is set for the ioctl call.
 * @arg:	The argument that is provided for the ioctl call.
 *
 * Context: Process context.
 * Return:
 * * Ioctl result (e.g. enclave file descriptor) on success.
 * * Negative return value on failure.
 */
static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case NE_CREATE_VM: {
		int enclave_fd = -1;
		struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
		u64 __user *slot_uid = (void __user *)arg;

		mutex_lock(&ne_pci_dev->enclaves_list_mutex);
		enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
		mutex_unlock(&ne_pci_dev->enclaves_list_mutex);

		return enclave_fd;
	}

	default:
		return -ENOTTY;
	}

	return 0;
}

#if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST)
#include "ne_misc_dev_test.c"

static inline int ne_misc_dev_test_init(void)
{
	return __kunit_test_suites_init(ne_misc_dev_test_suites);
}

static inline void ne_misc_dev_test_exit(void)
{
	__kunit_test_suites_exit(ne_misc_dev_test_suites);
}
#else
static inline int ne_misc_dev_test_init(void)
{
	return 0;
}

static inline void ne_misc_dev_test_exit(void)
{
}
#endif

static int __init ne_init(void)
{
	int rc = 0;

	rc = ne_misc_dev_test_init();
	if (rc < 0)
		return rc;

	mutex_init(&ne_cpu_pool.mutex);

	return pci_register_driver(&ne_pci_driver);
}

static void __exit ne_exit(void)
{
	pci_unregister_driver(&ne_pci_driver);

	ne_teardown_cpu_pool();

	ne_misc_dev_test_exit();
}

module_init(ne_init);
module_exit(ne_exit);

MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
MODULE_DESCRIPTION("Nitro Enclaves Driver");
MODULE_LICENSE("GPL v2");