summaryrefslogtreecommitdiff
path: root/drivers/rtc/rtc-mpfs.c
blob: 944ad10365164c4d39505f4033eab139dc19305c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// SPDX-License-Identifier: GPL-2.0
/*
 * Microchip MPFS RTC driver
 *
 * Copyright (c) 2021-2022 Microchip Corporation. All rights reserved.
 *
 * Author: Daire McNamara <daire.mcnamara@microchip.com>
 *         & Conor Dooley <conor.dooley@microchip.com>
 */
#include "linux/bits.h"
#include "linux/iopoll.h"
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_wakeirq.h>
#include <linux/slab.h>
#include <linux/rtc.h>

#define CONTROL_REG		0x00
#define MODE_REG		0x04
#define PRESCALER_REG		0x08
#define ALARM_LOWER_REG		0x0c
#define ALARM_UPPER_REG		0x10
#define COMPARE_LOWER_REG	0x14
#define COMPARE_UPPER_REG	0x18
#define DATETIME_LOWER_REG	0x20
#define DATETIME_UPPER_REG	0x24

#define CONTROL_RUNNING_BIT	BIT(0)
#define CONTROL_START_BIT	BIT(0)
#define CONTROL_STOP_BIT	BIT(1)
#define CONTROL_ALARM_ON_BIT	BIT(2)
#define CONTROL_ALARM_OFF_BIT	BIT(3)
#define CONTROL_RESET_BIT	BIT(4)
#define CONTROL_UPLOAD_BIT	BIT(5)
#define CONTROL_DOWNLOAD_BIT	BIT(6)
#define CONTROL_MATCH_BIT	BIT(7)
#define CONTROL_WAKEUP_CLR_BIT	BIT(8)
#define CONTROL_WAKEUP_SET_BIT	BIT(9)
#define CONTROL_UPDATED_BIT	BIT(10)

#define MODE_CLOCK_CALENDAR	BIT(0)
#define MODE_WAKE_EN		BIT(1)
#define MODE_WAKE_RESET		BIT(2)
#define MODE_WAKE_CONTINUE	BIT(3)

#define MAX_PRESCALER_COUNT	GENMASK(25, 0)
#define DATETIME_UPPER_MASK	GENMASK(29, 0)
#define ALARM_UPPER_MASK	GENMASK(10, 0)

#define UPLOAD_TIMEOUT_US	50

struct mpfs_rtc_dev {
	struct rtc_device *rtc;
	void __iomem *base;
};

static void mpfs_rtc_start(struct mpfs_rtc_dev *rtcdev)
{
	u32 ctrl;

	ctrl = readl(rtcdev->base + CONTROL_REG);
	ctrl &= ~CONTROL_STOP_BIT;
	ctrl |= CONTROL_START_BIT;
	writel(ctrl, rtcdev->base + CONTROL_REG);
}

static void mpfs_rtc_clear_irq(struct mpfs_rtc_dev *rtcdev)
{
	u32 val = readl(rtcdev->base + CONTROL_REG);

	val &= ~(CONTROL_ALARM_ON_BIT | CONTROL_STOP_BIT);
	val |= CONTROL_ALARM_OFF_BIT;
	writel(val, rtcdev->base + CONTROL_REG);
	/*
	 * Ensure that the posted write to the CONTROL_REG register completed before
	 * returning from this function. Not doing this may result in the interrupt
	 * only being cleared some time after this function returns.
	 */
	(void)readl(rtcdev->base + CONTROL_REG);
}

static int mpfs_rtc_readtime(struct device *dev, struct rtc_time *tm)
{
	struct mpfs_rtc_dev *rtcdev = dev_get_drvdata(dev);
	u64 time;

	time = readl(rtcdev->base + DATETIME_LOWER_REG);
	time |= ((u64)readl(rtcdev->base + DATETIME_UPPER_REG) & DATETIME_UPPER_MASK) << 32;
	rtc_time64_to_tm(time, tm);

	return 0;
}

static int mpfs_rtc_settime(struct device *dev, struct rtc_time *tm)
{
	struct mpfs_rtc_dev *rtcdev = dev_get_drvdata(dev);
	u32 ctrl, prog;
	u64 time;
	int ret;

	time = rtc_tm_to_time64(tm);

	writel((u32)time, rtcdev->base + DATETIME_LOWER_REG);
	writel((u32)(time >> 32) & DATETIME_UPPER_MASK, rtcdev->base + DATETIME_UPPER_REG);

	ctrl = readl(rtcdev->base + CONTROL_REG);
	ctrl &= ~CONTROL_STOP_BIT;
	ctrl |= CONTROL_UPLOAD_BIT;
	writel(ctrl, rtcdev->base + CONTROL_REG);

	ret = read_poll_timeout(readl, prog, prog & CONTROL_UPLOAD_BIT, 0, UPLOAD_TIMEOUT_US,
				false, rtcdev->base + CONTROL_REG);
	if (ret) {
		dev_err(dev, "timed out uploading time to rtc");
		return ret;
	}
	mpfs_rtc_start(rtcdev);

	return 0;
}

static int mpfs_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct mpfs_rtc_dev *rtcdev = dev_get_drvdata(dev);
	u32 mode = readl(rtcdev->base + MODE_REG);
	u64 time;

	alrm->enabled = mode & MODE_WAKE_EN;

	time = (u64)readl(rtcdev->base + ALARM_LOWER_REG) << 32;
	time |= (readl(rtcdev->base + ALARM_UPPER_REG) & ALARM_UPPER_MASK);
	rtc_time64_to_tm(time, &alrm->time);

	return 0;
}

static int mpfs_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct mpfs_rtc_dev *rtcdev = dev_get_drvdata(dev);
	u32 mode, ctrl;
	u64 time;

	/* Disable the alarm before updating */
	ctrl = readl(rtcdev->base + CONTROL_REG);
	ctrl |= CONTROL_ALARM_OFF_BIT;
	writel(ctrl, rtcdev->base + CONTROL_REG);

	time = rtc_tm_to_time64(&alrm->time);

	writel((u32)time, rtcdev->base + ALARM_LOWER_REG);
	writel((u32)(time >> 32) & ALARM_UPPER_MASK, rtcdev->base + ALARM_UPPER_REG);

	/* Bypass compare register in alarm mode */
	writel(GENMASK(31, 0), rtcdev->base + COMPARE_LOWER_REG);
	writel(GENMASK(29, 0), rtcdev->base + COMPARE_UPPER_REG);

	/* Configure the RTC to enable the alarm. */
	ctrl = readl(rtcdev->base + CONTROL_REG);
	mode = readl(rtcdev->base + MODE_REG);
	if (alrm->enabled) {
		mode = MODE_WAKE_EN | MODE_WAKE_CONTINUE;
		/* Enable the alarm */
		ctrl &= ~CONTROL_ALARM_OFF_BIT;
		ctrl |= CONTROL_ALARM_ON_BIT;
	}
	ctrl &= ~CONTROL_STOP_BIT;
	ctrl |= CONTROL_START_BIT;
	writel(ctrl, rtcdev->base + CONTROL_REG);
	writel(mode, rtcdev->base + MODE_REG);

	return 0;
}

static int mpfs_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
	struct mpfs_rtc_dev *rtcdev = dev_get_drvdata(dev);
	u32 ctrl;

	ctrl = readl(rtcdev->base + CONTROL_REG);
	ctrl &= ~(CONTROL_ALARM_ON_BIT | CONTROL_ALARM_OFF_BIT | CONTROL_STOP_BIT);

	if (enabled)
		ctrl |= CONTROL_ALARM_ON_BIT;
	else
		ctrl |= CONTROL_ALARM_OFF_BIT;

	writel(ctrl, rtcdev->base + CONTROL_REG);

	return 0;
}

static inline struct clk *mpfs_rtc_init_clk(struct device *dev)
{
	struct clk *clk;
	int ret;

	clk = devm_clk_get(dev, "rtc");
	if (IS_ERR(clk))
		return clk;

	ret = clk_prepare_enable(clk);
	if (ret)
		return ERR_PTR(ret);

	devm_add_action_or_reset(dev, (void (*) (void *))clk_disable_unprepare, clk);
	return clk;
}

static irqreturn_t mpfs_rtc_wakeup_irq_handler(int irq, void *dev)
{
	struct mpfs_rtc_dev *rtcdev = dev;

	mpfs_rtc_clear_irq(rtcdev);

	rtc_update_irq(rtcdev->rtc, 1, RTC_IRQF | RTC_AF);

	return IRQ_HANDLED;
}

static const struct rtc_class_ops mpfs_rtc_ops = {
	.read_time		= mpfs_rtc_readtime,
	.set_time		= mpfs_rtc_settime,
	.read_alarm		= mpfs_rtc_readalarm,
	.set_alarm		= mpfs_rtc_setalarm,
	.alarm_irq_enable	= mpfs_rtc_alarm_irq_enable,
};

static int mpfs_rtc_probe(struct platform_device *pdev)
{
	struct mpfs_rtc_dev *rtcdev;
	struct clk *clk;
	unsigned long prescaler;
	int wakeup_irq, ret;

	rtcdev = devm_kzalloc(&pdev->dev, sizeof(struct mpfs_rtc_dev), GFP_KERNEL);
	if (!rtcdev)
		return -ENOMEM;

	platform_set_drvdata(pdev, rtcdev);

	rtcdev->rtc = devm_rtc_allocate_device(&pdev->dev);
	if (IS_ERR(rtcdev->rtc))
		return PTR_ERR(rtcdev->rtc);

	rtcdev->rtc->ops = &mpfs_rtc_ops;

	/* range is capped by alarm max, lower reg is 31:0 & upper is 10:0 */
	rtcdev->rtc->range_max = GENMASK_ULL(42, 0);

	clk = mpfs_rtc_init_clk(&pdev->dev);
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	rtcdev->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(rtcdev->base)) {
		dev_dbg(&pdev->dev, "invalid ioremap resources\n");
		return PTR_ERR(rtcdev->base);
	}

	wakeup_irq = platform_get_irq(pdev, 0);
	if (wakeup_irq <= 0) {
		dev_dbg(&pdev->dev, "could not get wakeup irq\n");
		return wakeup_irq;
	}
	ret = devm_request_irq(&pdev->dev, wakeup_irq, mpfs_rtc_wakeup_irq_handler, 0,
			       dev_name(&pdev->dev), rtcdev);
	if (ret) {
		dev_dbg(&pdev->dev, "could not request wakeup irq\n");
		return ret;
	}

	/* prescaler hardware adds 1 to reg value */
	prescaler = clk_get_rate(devm_clk_get(&pdev->dev, "rtcref")) - 1;
	if (prescaler > MAX_PRESCALER_COUNT) {
		dev_dbg(&pdev->dev, "invalid prescaler %lu\n", prescaler);
		return -EINVAL;
	}

	writel(prescaler, rtcdev->base + PRESCALER_REG);
	dev_info(&pdev->dev, "prescaler set to: %lu\n", prescaler);

	device_init_wakeup(&pdev->dev, true);
	ret = dev_pm_set_wake_irq(&pdev->dev, wakeup_irq);
	if (ret)
		dev_err(&pdev->dev, "failed to enable irq wake\n");

	return devm_rtc_register_device(rtcdev->rtc);
}

static int mpfs_rtc_remove(struct platform_device *pdev)
{
	dev_pm_clear_wake_irq(&pdev->dev);

	return 0;
}

static const struct of_device_id mpfs_rtc_of_match[] = {
	{ .compatible = "microchip,mpfs-rtc" },
	{ }
};

MODULE_DEVICE_TABLE(of, mpfs_rtc_of_match);

static struct platform_driver mpfs_rtc_driver = {
	.probe = mpfs_rtc_probe,
	.remove = mpfs_rtc_remove,
	.driver	= {
		.name = "mpfs_rtc",
		.of_match_table = mpfs_rtc_of_match,
	},
};

module_platform_driver(mpfs_rtc_driver);

MODULE_DESCRIPTION("Real time clock for Microchip Polarfire SoC");
MODULE_AUTHOR("Daire McNamara <daire.mcnamara@microchip.com>");
MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
MODULE_LICENSE("GPL");