summaryrefslogtreecommitdiff
path: root/drivers/pci/endpoint/pci-epc-mem.c
blob: 7dcf6f480b827b0779ecd472103fedd83bab2dd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// SPDX-License-Identifier: GPL-2.0
/*
 * PCI Endpoint *Controller* Address Space Management
 *
 * Copyright (C) 2017 Texas Instruments
 * Author: Kishon Vijay Abraham I <kishon@ti.com>
 */

#include <linux/io.h>
#include <linux/module.h>
#include <linux/slab.h>

#include <linux/pci-epc.h>

/**
 * pci_epc_mem_get_order() - determine the allocation order of a memory size
 * @mem: address space of the endpoint controller
 * @size: the size for which to get the order
 *
 * Reimplement get_order() for mem->page_size since the generic get_order
 * always gets order with a constant PAGE_SIZE.
 */
static int pci_epc_mem_get_order(struct pci_epc_mem *mem, size_t size)
{
	int order;
	unsigned int page_shift = ilog2(mem->window.page_size);

	size--;
	size >>= page_shift;
#if BITS_PER_LONG == 32
	order = fls(size);
#else
	order = fls64(size);
#endif
	return order;
}

/**
 * pci_epc_multi_mem_init() - initialize the pci_epc_mem structure
 * @epc: the EPC device that invoked pci_epc_mem_init
 * @windows: pointer to windows supported by the device
 * @num_windows: number of windows device supports
 *
 * Invoke to initialize the pci_epc_mem structure used by the
 * endpoint functions to allocate mapped PCI address.
 */
int pci_epc_multi_mem_init(struct pci_epc *epc,
			   struct pci_epc_mem_window *windows,
			   unsigned int num_windows)
{
	struct pci_epc_mem *mem = NULL;
	unsigned long *bitmap = NULL;
	unsigned int page_shift;
	size_t page_size;
	int bitmap_size;
	int pages;
	int ret;
	int i;

	epc->num_windows = 0;

	if (!windows || !num_windows)
		return -EINVAL;

	epc->windows = kcalloc(num_windows, sizeof(*epc->windows), GFP_KERNEL);
	if (!epc->windows)
		return -ENOMEM;

	for (i = 0; i < num_windows; i++) {
		page_size = windows[i].page_size;
		if (page_size < PAGE_SIZE)
			page_size = PAGE_SIZE;
		page_shift = ilog2(page_size);
		pages = windows[i].size >> page_shift;
		bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);

		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
		if (!mem) {
			ret = -ENOMEM;
			i--;
			goto err_mem;
		}

		bitmap = kzalloc(bitmap_size, GFP_KERNEL);
		if (!bitmap) {
			ret = -ENOMEM;
			kfree(mem);
			i--;
			goto err_mem;
		}

		mem->window.phys_base = windows[i].phys_base;
		mem->window.size = windows[i].size;
		mem->window.page_size = page_size;
		mem->bitmap = bitmap;
		mem->pages = pages;
		mutex_init(&mem->lock);
		epc->windows[i] = mem;
	}

	epc->mem = epc->windows[0];
	epc->num_windows = num_windows;

	return 0;

err_mem:
	for (; i >= 0; i--) {
		mem = epc->windows[i];
		kfree(mem->bitmap);
		kfree(mem);
	}
	kfree(epc->windows);

	return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_multi_mem_init);

int pci_epc_mem_init(struct pci_epc *epc, phys_addr_t base,
		     size_t size, size_t page_size)
{
	struct pci_epc_mem_window mem_window;

	mem_window.phys_base = base;
	mem_window.size = size;
	mem_window.page_size = page_size;

	return pci_epc_multi_mem_init(epc, &mem_window, 1);
}
EXPORT_SYMBOL_GPL(pci_epc_mem_init);

/**
 * pci_epc_mem_exit() - cleanup the pci_epc_mem structure
 * @epc: the EPC device that invoked pci_epc_mem_exit
 *
 * Invoke to cleanup the pci_epc_mem structure allocated in
 * pci_epc_mem_init().
 */
void pci_epc_mem_exit(struct pci_epc *epc)
{
	struct pci_epc_mem *mem;
	int i;

	if (!epc->num_windows)
		return;

	for (i = 0; i < epc->num_windows; i++) {
		mem = epc->windows[i];
		kfree(mem->bitmap);
		kfree(mem);
	}
	kfree(epc->windows);

	epc->windows = NULL;
	epc->mem = NULL;
	epc->num_windows = 0;
}
EXPORT_SYMBOL_GPL(pci_epc_mem_exit);

/**
 * pci_epc_mem_alloc_addr() - allocate memory address from EPC addr space
 * @epc: the EPC device on which memory has to be allocated
 * @phys_addr: populate the allocated physical address here
 * @size: the size of the address space that has to be allocated
 *
 * Invoke to allocate memory address from the EPC address space. This
 * is usually done to map the remote RC address into the local system.
 */
void __iomem *pci_epc_mem_alloc_addr(struct pci_epc *epc,
				     phys_addr_t *phys_addr, size_t size)
{
	void __iomem *virt_addr = NULL;
	struct pci_epc_mem *mem;
	unsigned int page_shift;
	size_t align_size;
	int pageno;
	int order;
	int i;

	for (i = 0; i < epc->num_windows; i++) {
		mem = epc->windows[i];
		mutex_lock(&mem->lock);
		align_size = ALIGN(size, mem->window.page_size);
		order = pci_epc_mem_get_order(mem, align_size);

		pageno = bitmap_find_free_region(mem->bitmap, mem->pages,
						 order);
		if (pageno >= 0) {
			page_shift = ilog2(mem->window.page_size);
			*phys_addr = mem->window.phys_base +
				((phys_addr_t)pageno << page_shift);
			virt_addr = ioremap(*phys_addr, align_size);
			if (!virt_addr) {
				bitmap_release_region(mem->bitmap,
						      pageno, order);
				mutex_unlock(&mem->lock);
				continue;
			}
			mutex_unlock(&mem->lock);
			return virt_addr;
		}
		mutex_unlock(&mem->lock);
	}

	return virt_addr;
}
EXPORT_SYMBOL_GPL(pci_epc_mem_alloc_addr);

static struct pci_epc_mem *pci_epc_get_matching_window(struct pci_epc *epc,
						       phys_addr_t phys_addr)
{
	struct pci_epc_mem *mem;
	int i;

	for (i = 0; i < epc->num_windows; i++) {
		mem = epc->windows[i];

		if (phys_addr >= mem->window.phys_base &&
		    phys_addr < (mem->window.phys_base + mem->window.size))
			return mem;
	}

	return NULL;
}

/**
 * pci_epc_mem_free_addr() - free the allocated memory address
 * @epc: the EPC device on which memory was allocated
 * @phys_addr: the allocated physical address
 * @virt_addr: virtual address of the allocated mem space
 * @size: the size of the allocated address space
 *
 * Invoke to free the memory allocated using pci_epc_mem_alloc_addr.
 */
void pci_epc_mem_free_addr(struct pci_epc *epc, phys_addr_t phys_addr,
			   void __iomem *virt_addr, size_t size)
{
	struct pci_epc_mem *mem;
	unsigned int page_shift;
	size_t page_size;
	int pageno;
	int order;

	mem = pci_epc_get_matching_window(epc, phys_addr);
	if (!mem) {
		pr_err("failed to get matching window\n");
		return;
	}

	page_size = mem->window.page_size;
	page_shift = ilog2(page_size);
	iounmap(virt_addr);
	pageno = (phys_addr - mem->window.phys_base) >> page_shift;
	size = ALIGN(size, page_size);
	order = pci_epc_mem_get_order(mem, size);
	mutex_lock(&mem->lock);
	bitmap_release_region(mem->bitmap, pageno, order);
	mutex_unlock(&mem->lock);
}
EXPORT_SYMBOL_GPL(pci_epc_mem_free_addr);

MODULE_DESCRIPTION("PCI EPC Address Space Management");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");