summaryrefslogtreecommitdiff
path: root/drivers/pci/controller/cadence/pcie-cadence-ep.c
blob: b8b655d4047ecafca24fd112882d45a5f6e0f295 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017 Cadence
// Cadence PCIe endpoint controller driver.
// Author: Cyrille Pitchen <cyrille.pitchen@free-electrons.com>

#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/pci-epc.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>

#include "pcie-cadence.h"

#define CDNS_PCIE_EP_MIN_APERTURE		128	/* 128 bytes */
#define CDNS_PCIE_EP_IRQ_PCI_ADDR_NONE		0x1
#define CDNS_PCIE_EP_IRQ_PCI_ADDR_LEGACY	0x3

static u8 cdns_pcie_get_fn_from_vfn(struct cdns_pcie *pcie, u8 fn, u8 vfn)
{
	u32 cap = CDNS_PCIE_EP_FUNC_SRIOV_CAP_OFFSET;
	u32 first_vf_offset, stride;

	if (vfn == 0)
		return fn;

	first_vf_offset = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_SRIOV_VF_OFFSET);
	stride = cdns_pcie_ep_fn_readw(pcie, fn, cap +  PCI_SRIOV_VF_STRIDE);
	fn = fn + first_vf_offset + ((vfn - 1) * stride);

	return fn;
}

static int cdns_pcie_ep_write_header(struct pci_epc *epc, u8 fn, u8 vfn,
				     struct pci_epf_header *hdr)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	u32 cap = CDNS_PCIE_EP_FUNC_SRIOV_CAP_OFFSET;
	struct cdns_pcie *pcie = &ep->pcie;
	u32 reg;

	if (vfn > 1) {
		dev_err(&epc->dev, "Only Virtual Function #1 has deviceID\n");
		return -EINVAL;
	} else if (vfn == 1) {
		reg = cap + PCI_SRIOV_VF_DID;
		cdns_pcie_ep_fn_writew(pcie, fn, reg, hdr->deviceid);
		return 0;
	}

	cdns_pcie_ep_fn_writew(pcie, fn, PCI_DEVICE_ID, hdr->deviceid);
	cdns_pcie_ep_fn_writeb(pcie, fn, PCI_REVISION_ID, hdr->revid);
	cdns_pcie_ep_fn_writeb(pcie, fn, PCI_CLASS_PROG, hdr->progif_code);
	cdns_pcie_ep_fn_writew(pcie, fn, PCI_CLASS_DEVICE,
			       hdr->subclass_code | hdr->baseclass_code << 8);
	cdns_pcie_ep_fn_writeb(pcie, fn, PCI_CACHE_LINE_SIZE,
			       hdr->cache_line_size);
	cdns_pcie_ep_fn_writew(pcie, fn, PCI_SUBSYSTEM_ID, hdr->subsys_id);
	cdns_pcie_ep_fn_writeb(pcie, fn, PCI_INTERRUPT_PIN, hdr->interrupt_pin);

	/*
	 * Vendor ID can only be modified from function 0, all other functions
	 * use the same vendor ID as function 0.
	 */
	if (fn == 0) {
		/* Update the vendor IDs. */
		u32 id = CDNS_PCIE_LM_ID_VENDOR(hdr->vendorid) |
			 CDNS_PCIE_LM_ID_SUBSYS(hdr->subsys_vendor_id);

		cdns_pcie_writel(pcie, CDNS_PCIE_LM_ID, id);
	}

	return 0;
}

static int cdns_pcie_ep_set_bar(struct pci_epc *epc, u8 fn, u8 vfn,
				struct pci_epf_bar *epf_bar)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie_epf *epf = &ep->epf[fn];
	struct cdns_pcie *pcie = &ep->pcie;
	dma_addr_t bar_phys = epf_bar->phys_addr;
	enum pci_barno bar = epf_bar->barno;
	int flags = epf_bar->flags;
	u32 addr0, addr1, reg, cfg, b, aperture, ctrl;
	u64 sz;

	/* BAR size is 2^(aperture + 7) */
	sz = max_t(size_t, epf_bar->size, CDNS_PCIE_EP_MIN_APERTURE);
	/*
	 * roundup_pow_of_two() returns an unsigned long, which is not suited
	 * for 64bit values.
	 */
	sz = 1ULL << fls64(sz - 1);
	aperture = ilog2(sz) - 7; /* 128B -> 0, 256B -> 1, 512B -> 2, ... */

	if ((flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
		ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_IO_32BITS;
	} else {
		bool is_prefetch = !!(flags & PCI_BASE_ADDRESS_MEM_PREFETCH);
		bool is_64bits = sz > SZ_2G;

		if (is_64bits && (bar & 1))
			return -EINVAL;

		if (is_64bits && !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
			epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;

		if (is_64bits && is_prefetch)
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_64BITS;
		else if (is_prefetch)
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_32BITS;
		else if (is_64bits)
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_64BITS;
		else
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_32BITS;
	}

	addr0 = lower_32_bits(bar_phys);
	addr1 = upper_32_bits(bar_phys);

	if (vfn == 1)
		reg = CDNS_PCIE_LM_EP_VFUNC_BAR_CFG(bar, fn);
	else
		reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG(bar, fn);
	b = (bar < BAR_4) ? bar : bar - BAR_4;

	if (vfn == 0 || vfn == 1) {
		cfg = cdns_pcie_readl(pcie, reg);
		cfg &= ~(CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) |
			 CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b));
		cfg |= (CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE(b, aperture) |
			CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl));
		cdns_pcie_writel(pcie, reg, cfg);
	}

	fn = cdns_pcie_get_fn_from_vfn(pcie, fn, vfn);
	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar),
			 addr0);
	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar),
			 addr1);

	if (vfn > 0)
		epf = &epf->epf[vfn - 1];
	epf->epf_bar[bar] = epf_bar;

	return 0;
}

static void cdns_pcie_ep_clear_bar(struct pci_epc *epc, u8 fn, u8 vfn,
				   struct pci_epf_bar *epf_bar)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie_epf *epf = &ep->epf[fn];
	struct cdns_pcie *pcie = &ep->pcie;
	enum pci_barno bar = epf_bar->barno;
	u32 reg, cfg, b, ctrl;

	if (vfn == 1)
		reg = CDNS_PCIE_LM_EP_VFUNC_BAR_CFG(bar, fn);
	else
		reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG(bar, fn);
	b = (bar < BAR_4) ? bar : bar - BAR_4;

	if (vfn == 0 || vfn == 1) {
		ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_DISABLED;
		cfg = cdns_pcie_readl(pcie, reg);
		cfg &= ~(CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) |
			 CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b));
		cfg |= CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl);
		cdns_pcie_writel(pcie, reg, cfg);
	}

	fn = cdns_pcie_get_fn_from_vfn(pcie, fn, vfn);
	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar), 0);
	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar), 0);

	if (vfn > 0)
		epf = &epf->epf[vfn - 1];
	epf->epf_bar[bar] = NULL;
}

static int cdns_pcie_ep_map_addr(struct pci_epc *epc, u8 fn, u8 vfn,
				 phys_addr_t addr, u64 pci_addr, size_t size)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 r;

	r = find_first_zero_bit(&ep->ob_region_map, BITS_PER_LONG);
	if (r >= ep->max_regions - 1) {
		dev_err(&epc->dev, "no free outbound region\n");
		return -EINVAL;
	}

	fn = cdns_pcie_get_fn_from_vfn(pcie, fn, vfn);
	cdns_pcie_set_outbound_region(pcie, 0, fn, r, false, addr, pci_addr, size);

	set_bit(r, &ep->ob_region_map);
	ep->ob_addr[r] = addr;

	return 0;
}

static void cdns_pcie_ep_unmap_addr(struct pci_epc *epc, u8 fn, u8 vfn,
				    phys_addr_t addr)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 r;

	for (r = 0; r < ep->max_regions - 1; r++)
		if (ep->ob_addr[r] == addr)
			break;

	if (r == ep->max_regions - 1)
		return;

	cdns_pcie_reset_outbound_region(pcie, r);

	ep->ob_addr[r] = 0;
	clear_bit(r, &ep->ob_region_map);
}

static int cdns_pcie_ep_set_msi(struct pci_epc *epc, u8 fn, u8 vfn, u8 mmc)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET;
	u16 flags;

	fn = cdns_pcie_get_fn_from_vfn(pcie, fn, vfn);

	/*
	 * Set the Multiple Message Capable bitfield into the Message Control
	 * register.
	 */
	flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS);
	flags = (flags & ~PCI_MSI_FLAGS_QMASK) | (mmc << 1);
	flags |= PCI_MSI_FLAGS_64BIT;
	flags &= ~PCI_MSI_FLAGS_MASKBIT;
	cdns_pcie_ep_fn_writew(pcie, fn, cap + PCI_MSI_FLAGS, flags);

	return 0;
}

static int cdns_pcie_ep_get_msi(struct pci_epc *epc, u8 fn, u8 vfn)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET;
	u16 flags, mme;

	fn = cdns_pcie_get_fn_from_vfn(pcie, fn, vfn);

	/* Validate that the MSI feature is actually enabled. */
	flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS);
	if (!(flags & PCI_MSI_FLAGS_ENABLE))
		return -EINVAL;

	/*
	 * Get the Multiple Message Enable bitfield from the Message Control
	 * register.
	 */
	mme = (flags & PCI_MSI_FLAGS_QSIZE) >> 4;

	return mme;
}

static int cdns_pcie_ep_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 cap = CDNS_PCIE_EP_FUNC_MSIX_CAP_OFFSET;
	u32 val, reg;

	func_no = cdns_pcie_get_fn_from_vfn(pcie, func_no, vfunc_no);

	reg = cap + PCI_MSIX_FLAGS;
	val = cdns_pcie_ep_fn_readw(pcie, func_no, reg);
	if (!(val & PCI_MSIX_FLAGS_ENABLE))
		return -EINVAL;

	val &= PCI_MSIX_FLAGS_QSIZE;

	return val;
}

static int cdns_pcie_ep_set_msix(struct pci_epc *epc, u8 fn, u8 vfn,
				 u16 interrupts, enum pci_barno bir,
				 u32 offset)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 cap = CDNS_PCIE_EP_FUNC_MSIX_CAP_OFFSET;
	u32 val, reg;

	fn = cdns_pcie_get_fn_from_vfn(pcie, fn, vfn);

	reg = cap + PCI_MSIX_FLAGS;
	val = cdns_pcie_ep_fn_readw(pcie, fn, reg);
	val &= ~PCI_MSIX_FLAGS_QSIZE;
	val |= interrupts;
	cdns_pcie_ep_fn_writew(pcie, fn, reg, val);

	/* Set MSIX BAR and offset */
	reg = cap + PCI_MSIX_TABLE;
	val = offset | bir;
	cdns_pcie_ep_fn_writel(pcie, fn, reg, val);

	/* Set PBA BAR and offset.  BAR must match MSIX BAR */
	reg = cap + PCI_MSIX_PBA;
	val = (offset + (interrupts * PCI_MSIX_ENTRY_SIZE)) | bir;
	cdns_pcie_ep_fn_writel(pcie, fn, reg, val);

	return 0;
}

static void cdns_pcie_ep_assert_intx(struct cdns_pcie_ep *ep, u8 fn, u8 intx,
				     bool is_asserted)
{
	struct cdns_pcie *pcie = &ep->pcie;
	unsigned long flags;
	u32 offset;
	u16 status;
	u8 msg_code;

	intx &= 3;

	/* Set the outbound region if needed. */
	if (unlikely(ep->irq_pci_addr != CDNS_PCIE_EP_IRQ_PCI_ADDR_LEGACY ||
		     ep->irq_pci_fn != fn)) {
		/* First region was reserved for IRQ writes. */
		cdns_pcie_set_outbound_region_for_normal_msg(pcie, 0, fn, 0,
							     ep->irq_phys_addr);
		ep->irq_pci_addr = CDNS_PCIE_EP_IRQ_PCI_ADDR_LEGACY;
		ep->irq_pci_fn = fn;
	}

	if (is_asserted) {
		ep->irq_pending |= BIT(intx);
		msg_code = MSG_CODE_ASSERT_INTA + intx;
	} else {
		ep->irq_pending &= ~BIT(intx);
		msg_code = MSG_CODE_DEASSERT_INTA + intx;
	}

	spin_lock_irqsave(&ep->lock, flags);
	status = cdns_pcie_ep_fn_readw(pcie, fn, PCI_STATUS);
	if (((status & PCI_STATUS_INTERRUPT) != 0) ^ (ep->irq_pending != 0)) {
		status ^= PCI_STATUS_INTERRUPT;
		cdns_pcie_ep_fn_writew(pcie, fn, PCI_STATUS, status);
	}
	spin_unlock_irqrestore(&ep->lock, flags);

	offset = CDNS_PCIE_NORMAL_MSG_ROUTING(MSG_ROUTING_LOCAL) |
		 CDNS_PCIE_NORMAL_MSG_CODE(msg_code) |
		 CDNS_PCIE_MSG_NO_DATA;
	writel(0, ep->irq_cpu_addr + offset);
}

static int cdns_pcie_ep_send_legacy_irq(struct cdns_pcie_ep *ep, u8 fn, u8 vfn,
					u8 intx)
{
	u16 cmd;

	cmd = cdns_pcie_ep_fn_readw(&ep->pcie, fn, PCI_COMMAND);
	if (cmd & PCI_COMMAND_INTX_DISABLE)
		return -EINVAL;

	cdns_pcie_ep_assert_intx(ep, fn, intx, true);
	/*
	 * The mdelay() value was taken from dra7xx_pcie_raise_legacy_irq()
	 */
	mdelay(1);
	cdns_pcie_ep_assert_intx(ep, fn, intx, false);
	return 0;
}

static int cdns_pcie_ep_send_msi_irq(struct cdns_pcie_ep *ep, u8 fn, u8 vfn,
				     u8 interrupt_num)
{
	struct cdns_pcie *pcie = &ep->pcie;
	u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET;
	u16 flags, mme, data, data_mask;
	u8 msi_count;
	u64 pci_addr, pci_addr_mask = 0xff;

	fn = cdns_pcie_get_fn_from_vfn(pcie, fn, vfn);

	/* Check whether the MSI feature has been enabled by the PCI host. */
	flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS);
	if (!(flags & PCI_MSI_FLAGS_ENABLE))
		return -EINVAL;

	/* Get the number of enabled MSIs */
	mme = (flags & PCI_MSI_FLAGS_QSIZE) >> 4;
	msi_count = 1 << mme;
	if (!interrupt_num || interrupt_num > msi_count)
		return -EINVAL;

	/* Compute the data value to be written. */
	data_mask = msi_count - 1;
	data = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_DATA_64);
	data = (data & ~data_mask) | ((interrupt_num - 1) & data_mask);

	/* Get the PCI address where to write the data into. */
	pci_addr = cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_HI);
	pci_addr <<= 32;
	pci_addr |= cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_LO);
	pci_addr &= GENMASK_ULL(63, 2);

	/* Set the outbound region if needed. */
	if (unlikely(ep->irq_pci_addr != (pci_addr & ~pci_addr_mask) ||
		     ep->irq_pci_fn != fn)) {
		/* First region was reserved for IRQ writes. */
		cdns_pcie_set_outbound_region(pcie, 0, fn, 0,
					      false,
					      ep->irq_phys_addr,
					      pci_addr & ~pci_addr_mask,
					      pci_addr_mask + 1);
		ep->irq_pci_addr = (pci_addr & ~pci_addr_mask);
		ep->irq_pci_fn = fn;
	}
	writel(data, ep->irq_cpu_addr + (pci_addr & pci_addr_mask));

	return 0;
}

static int cdns_pcie_ep_map_msi_irq(struct pci_epc *epc, u8 fn, u8 vfn,
				    phys_addr_t addr, u8 interrupt_num,
				    u32 entry_size, u32 *msi_data,
				    u32 *msi_addr_offset)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET;
	struct cdns_pcie *pcie = &ep->pcie;
	u64 pci_addr, pci_addr_mask = 0xff;
	u16 flags, mme, data, data_mask;
	u8 msi_count;
	int ret;
	int i;

	fn = cdns_pcie_get_fn_from_vfn(pcie, fn, vfn);

	/* Check whether the MSI feature has been enabled by the PCI host. */
	flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS);
	if (!(flags & PCI_MSI_FLAGS_ENABLE))
		return -EINVAL;

	/* Get the number of enabled MSIs */
	mme = (flags & PCI_MSI_FLAGS_QSIZE) >> 4;
	msi_count = 1 << mme;
	if (!interrupt_num || interrupt_num > msi_count)
		return -EINVAL;

	/* Compute the data value to be written. */
	data_mask = msi_count - 1;
	data = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_DATA_64);
	data = data & ~data_mask;

	/* Get the PCI address where to write the data into. */
	pci_addr = cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_HI);
	pci_addr <<= 32;
	pci_addr |= cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_LO);
	pci_addr &= GENMASK_ULL(63, 2);

	for (i = 0; i < interrupt_num; i++) {
		ret = cdns_pcie_ep_map_addr(epc, fn, vfn, addr,
					    pci_addr & ~pci_addr_mask,
					    entry_size);
		if (ret)
			return ret;
		addr = addr + entry_size;
	}

	*msi_data = data;
	*msi_addr_offset = pci_addr & pci_addr_mask;

	return 0;
}

static int cdns_pcie_ep_send_msix_irq(struct cdns_pcie_ep *ep, u8 fn, u8 vfn,
				      u16 interrupt_num)
{
	u32 cap = CDNS_PCIE_EP_FUNC_MSIX_CAP_OFFSET;
	u32 tbl_offset, msg_data, reg;
	struct cdns_pcie *pcie = &ep->pcie;
	struct pci_epf_msix_tbl *msix_tbl;
	struct cdns_pcie_epf *epf;
	u64 pci_addr_mask = 0xff;
	u64 msg_addr;
	u16 flags;
	u8 bir;

	epf = &ep->epf[fn];
	if (vfn > 0)
		epf = &epf->epf[vfn - 1];

	fn = cdns_pcie_get_fn_from_vfn(pcie, fn, vfn);

	/* Check whether the MSI-X feature has been enabled by the PCI host. */
	flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSIX_FLAGS);
	if (!(flags & PCI_MSIX_FLAGS_ENABLE))
		return -EINVAL;

	reg = cap + PCI_MSIX_TABLE;
	tbl_offset = cdns_pcie_ep_fn_readl(pcie, fn, reg);
	bir = tbl_offset & PCI_MSIX_TABLE_BIR;
	tbl_offset &= PCI_MSIX_TABLE_OFFSET;

	msix_tbl = epf->epf_bar[bir]->addr + tbl_offset;
	msg_addr = msix_tbl[(interrupt_num - 1)].msg_addr;
	msg_data = msix_tbl[(interrupt_num - 1)].msg_data;

	/* Set the outbound region if needed. */
	if (ep->irq_pci_addr != (msg_addr & ~pci_addr_mask) ||
	    ep->irq_pci_fn != fn) {
		/* First region was reserved for IRQ writes. */
		cdns_pcie_set_outbound_region(pcie, 0, fn, 0,
					      false,
					      ep->irq_phys_addr,
					      msg_addr & ~pci_addr_mask,
					      pci_addr_mask + 1);
		ep->irq_pci_addr = (msg_addr & ~pci_addr_mask);
		ep->irq_pci_fn = fn;
	}
	writel(msg_data, ep->irq_cpu_addr + (msg_addr & pci_addr_mask));

	return 0;
}

static int cdns_pcie_ep_raise_irq(struct pci_epc *epc, u8 fn, u8 vfn,
				  enum pci_epc_irq_type type,
				  u16 interrupt_num)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	struct device *dev = pcie->dev;

	switch (type) {
	case PCI_EPC_IRQ_LEGACY:
		if (vfn > 0) {
			dev_err(dev, "Cannot raise legacy interrupts for VF\n");
			return -EINVAL;
		}
		return cdns_pcie_ep_send_legacy_irq(ep, fn, vfn, 0);

	case PCI_EPC_IRQ_MSI:
		return cdns_pcie_ep_send_msi_irq(ep, fn, vfn, interrupt_num);

	case PCI_EPC_IRQ_MSIX:
		return cdns_pcie_ep_send_msix_irq(ep, fn, vfn, interrupt_num);

	default:
		break;
	}

	return -EINVAL;
}

static int cdns_pcie_ep_start(struct pci_epc *epc)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	struct device *dev = pcie->dev;
	int max_epfs = sizeof(epc->function_num_map) * 8;
	int ret, value, epf;

	/*
	 * BIT(0) is hardwired to 1, hence function 0 is always enabled
	 * and can't be disabled anyway.
	 */
	cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, epc->function_num_map);

	if (ep->quirk_disable_flr) {
		for (epf = 0; epf < max_epfs; epf++) {
			if (!(epc->function_num_map & BIT(epf)))
				continue;

			value = cdns_pcie_ep_fn_readl(pcie, epf,
					CDNS_PCIE_EP_FUNC_DEV_CAP_OFFSET +
					PCI_EXP_DEVCAP);
			value &= ~PCI_EXP_DEVCAP_FLR;
			cdns_pcie_ep_fn_writel(pcie, epf,
					CDNS_PCIE_EP_FUNC_DEV_CAP_OFFSET +
					PCI_EXP_DEVCAP, value);
		}
	}

	ret = cdns_pcie_start_link(pcie);
	if (ret) {
		dev_err(dev, "Failed to start link\n");
		return ret;
	}

	return 0;
}

static const struct pci_epc_features cdns_pcie_epc_vf_features = {
	.linkup_notifier = false,
	.msi_capable = true,
	.msix_capable = true,
	.align = 65536,
};

static const struct pci_epc_features cdns_pcie_epc_features = {
	.linkup_notifier = false,
	.msi_capable = true,
	.msix_capable = true,
	.align = 256,
};

static const struct pci_epc_features*
cdns_pcie_ep_get_features(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
{
	if (!vfunc_no)
		return &cdns_pcie_epc_features;

	return &cdns_pcie_epc_vf_features;
}

static const struct pci_epc_ops cdns_pcie_epc_ops = {
	.write_header	= cdns_pcie_ep_write_header,
	.set_bar	= cdns_pcie_ep_set_bar,
	.clear_bar	= cdns_pcie_ep_clear_bar,
	.map_addr	= cdns_pcie_ep_map_addr,
	.unmap_addr	= cdns_pcie_ep_unmap_addr,
	.set_msi	= cdns_pcie_ep_set_msi,
	.get_msi	= cdns_pcie_ep_get_msi,
	.set_msix	= cdns_pcie_ep_set_msix,
	.get_msix	= cdns_pcie_ep_get_msix,
	.raise_irq	= cdns_pcie_ep_raise_irq,
	.map_msi_irq	= cdns_pcie_ep_map_msi_irq,
	.start		= cdns_pcie_ep_start,
	.get_features	= cdns_pcie_ep_get_features,
};


int cdns_pcie_ep_setup(struct cdns_pcie_ep *ep)
{
	struct device *dev = ep->pcie.dev;
	struct platform_device *pdev = to_platform_device(dev);
	struct device_node *np = dev->of_node;
	struct cdns_pcie *pcie = &ep->pcie;
	struct cdns_pcie_epf *epf;
	struct resource *res;
	struct pci_epc *epc;
	int ret;
	int i;

	pcie->is_rc = false;

	pcie->reg_base = devm_platform_ioremap_resource_byname(pdev, "reg");
	if (IS_ERR(pcie->reg_base)) {
		dev_err(dev, "missing \"reg\"\n");
		return PTR_ERR(pcie->reg_base);
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mem");
	if (!res) {
		dev_err(dev, "missing \"mem\"\n");
		return -EINVAL;
	}
	pcie->mem_res = res;

	ep->max_regions = CDNS_PCIE_MAX_OB;
	of_property_read_u32(np, "cdns,max-outbound-regions", &ep->max_regions);

	ep->ob_addr = devm_kcalloc(dev,
				   ep->max_regions, sizeof(*ep->ob_addr),
				   GFP_KERNEL);
	if (!ep->ob_addr)
		return -ENOMEM;

	/* Disable all but function 0 (anyway BIT(0) is hardwired to 1). */
	cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, BIT(0));

	epc = devm_pci_epc_create(dev, &cdns_pcie_epc_ops);
	if (IS_ERR(epc)) {
		dev_err(dev, "failed to create epc device\n");
		return PTR_ERR(epc);
	}

	epc_set_drvdata(epc, ep);

	if (of_property_read_u8(np, "max-functions", &epc->max_functions) < 0)
		epc->max_functions = 1;

	ep->epf = devm_kcalloc(dev, epc->max_functions, sizeof(*ep->epf),
			       GFP_KERNEL);
	if (!ep->epf)
		return -ENOMEM;

	epc->max_vfs = devm_kcalloc(dev, epc->max_functions,
				    sizeof(*epc->max_vfs), GFP_KERNEL);
	if (!epc->max_vfs)
		return -ENOMEM;

	ret = of_property_read_u8_array(np, "max-virtual-functions",
					epc->max_vfs, epc->max_functions);
	if (ret == 0) {
		for (i = 0; i < epc->max_functions; i++) {
			epf = &ep->epf[i];
			if (epc->max_vfs[i] == 0)
				continue;
			epf->epf = devm_kcalloc(dev, epc->max_vfs[i],
						sizeof(*ep->epf), GFP_KERNEL);
			if (!epf->epf)
				return -ENOMEM;
		}
	}

	ret = pci_epc_mem_init(epc, pcie->mem_res->start,
			       resource_size(pcie->mem_res), PAGE_SIZE);
	if (ret < 0) {
		dev_err(dev, "failed to initialize the memory space\n");
		return ret;
	}

	ep->irq_cpu_addr = pci_epc_mem_alloc_addr(epc, &ep->irq_phys_addr,
						  SZ_128K);
	if (!ep->irq_cpu_addr) {
		dev_err(dev, "failed to reserve memory space for MSI\n");
		ret = -ENOMEM;
		goto free_epc_mem;
	}
	ep->irq_pci_addr = CDNS_PCIE_EP_IRQ_PCI_ADDR_NONE;
	/* Reserve region 0 for IRQs */
	set_bit(0, &ep->ob_region_map);

	if (ep->quirk_detect_quiet_flag)
		cdns_pcie_detect_quiet_min_delay_set(&ep->pcie);

	spin_lock_init(&ep->lock);

	return 0;

 free_epc_mem:
	pci_epc_mem_exit(epc);

	return ret;
}