summaryrefslogtreecommitdiff
path: root/drivers/net/wireless/ath/ath9k/ar9002_phy.c
blob: 6f32b8d2ec7f99b0b0d8e8b840848720dbdaa35e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/*
 * Copyright (c) 2008-2011 Atheros Communications Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/**
 * DOC: Programming Atheros 802.11n analog front end radios
 *
 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
 * devices have either an external AR2133 analog front end radio for single
 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
 * band 2.4 GHz / 5 GHz communication.
 *
 * All devices after the AR5416 and AR5418 family starting with the AR9280
 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
 * into a single-chip and require less programming.
 *
 * The following single-chips exist with a respective embedded radio:
 *
 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
 * AR9281 - 11n single-band 1x2 MIMO for PCIe
 * AR9285 - 11n single-band 1x1 for PCIe
 * AR9287 - 11n single-band 2x2 MIMO for PCIe
 *
 * AR9220 - 11n dual-band 2x2 MIMO for PCI
 * AR9223 - 11n single-band 2x2 MIMO for PCI
 *
 * AR9287 - 11n single-band 1x1 MIMO for USB
 */

#include "hw.h"
#include "ar9002_phy.h"

/**
 * ar9002_hw_set_channel - set channel on single-chip device
 * @ah: atheros hardware structure
 * @chan:
 *
 * This is the function to change channel on single-chip devices, that is
 * all devices after ar9280.
 *
 * This function takes the channel value in MHz and sets
 * hardware channel value. Assumes writes have been enabled to analog bus.
 *
 * Actual Expression,
 *
 * For 2GHz channel,
 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
 * (freq_ref = 40MHz)
 *
 * For 5GHz channel,
 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
 * (freq_ref = 40MHz/(24>>amodeRefSel))
 */
static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
	u16 bMode, fracMode, aModeRefSel = 0;
	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
	struct chan_centers centers;
	u32 refDivA = 24;

	ath9k_hw_get_channel_centers(ah, chan, &centers);
	freq = centers.synth_center;

	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
	reg32 &= 0xc0000000;

	if (freq < 4800) { /* 2 GHz, fractional mode */
		u32 txctl;
		int regWrites = 0;

		bMode = 1;
		fracMode = 1;
		aModeRefSel = 0;
		channelSel = CHANSEL_2G(freq);

		if (AR_SREV_9287_11_OR_LATER(ah)) {
			if (freq == 2484) {
				/* Enable channel spreading for channel 14 */
				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
						1, regWrites);
			} else {
				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
						1, regWrites);
			}
		} else {
			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
			if (freq == 2484) {
				/* Enable channel spreading for channel 14 */
				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
			} else {
				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
			}
		}
	} else {
		bMode = 0;
		fracMode = 0;

		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
		case 0:
			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
				aModeRefSel = 0;
			else if ((freq % 20) == 0)
				aModeRefSel = 3;
			else if ((freq % 10) == 0)
				aModeRefSel = 2;
			if (aModeRefSel)
				break;
			/* fall through */
		case 1:
		default:
			aModeRefSel = 0;
			/*
			 * Enable 2G (fractional) mode for channels
			 * which are 5MHz spaced.
			 */
			fracMode = 1;
			refDivA = 1;
			channelSel = CHANSEL_5G(freq);

			/* RefDivA setting */
			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
				      AR_AN_SYNTH9_REFDIVA,
				      AR_AN_SYNTH9_REFDIVA_S, refDivA);

		}

		if (!fracMode) {
			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
			channelSel = ndiv & 0x1ff;
			channelFrac = (ndiv & 0xfffffe00) * 2;
			channelSel = (channelSel << 17) | channelFrac;
		}
	}

	reg32 = reg32 |
	    (bMode << 29) |
	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);

	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);

	ah->curchan = chan;

	return 0;
}

/**
 * ar9002_hw_spur_mitigate - convert baseband spur frequency
 * @ah: atheros hardware structure
 * @chan:
 *
 * For single-chip solutions. Converts to baseband spur frequency given the
 * input channel frequency and compute register settings below.
 */
static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
				    struct ath9k_channel *chan)
{
	int bb_spur = AR_NO_SPUR;
	int freq;
	int bin;
	int bb_spur_off, spur_subchannel_sd;
	int spur_freq_sd;
	int spur_delta_phase;
	int denominator;
	int tmp, newVal;
	int i;
	struct chan_centers centers;

	int cur_bb_spur;
	bool is2GHz = IS_CHAN_2GHZ(chan);

	ath9k_hw_get_channel_centers(ah, chan, &centers);
	freq = centers.synth_center;

	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);

		if (AR_NO_SPUR == cur_bb_spur)
			break;

		if (is2GHz)
			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
		else
			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;

		cur_bb_spur = cur_bb_spur - freq;

		if (IS_CHAN_HT40(chan)) {
			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
				bb_spur = cur_bb_spur;
				break;
			}
		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
			bb_spur = cur_bb_spur;
			break;
		}
	}

	if (AR_NO_SPUR == bb_spur) {
		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
		return;
	} else {
		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
	}

	bin = bb_spur * 320;

	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));

	ENABLE_REGWRITE_BUFFER(ah);

	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);

	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);

	if (IS_CHAN_HT40(chan)) {
		if (bb_spur < 0) {
			spur_subchannel_sd = 1;
			bb_spur_off = bb_spur + 10;
		} else {
			spur_subchannel_sd = 0;
			bb_spur_off = bb_spur - 10;
		}
	} else {
		spur_subchannel_sd = 0;
		bb_spur_off = bb_spur;
	}

	if (IS_CHAN_HT40(chan))
		spur_delta_phase =
			((bb_spur * 262144) /
			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
	else
		spur_delta_phase =
			((bb_spur * 524288) /
			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;

	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;

	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
	REG_WRITE(ah, AR_PHY_TIMING11, newVal);

	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);

	ar5008_hw_cmn_spur_mitigate(ah, chan, bin);

	REGWRITE_BUFFER_FLUSH(ah);
}

static void ar9002_olc_init(struct ath_hw *ah)
{
	u32 i;

	if (!OLC_FOR_AR9280_20_LATER)
		return;

	if (OLC_FOR_AR9287_10_LATER) {
		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
				AR9287_AN_TXPC0_TXPCMODE,
				AR9287_AN_TXPC0_TXPCMODE_S,
				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
		udelay(100);
	} else {
		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
			ah->originalGain[i] =
				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
						AR_PHY_TX_GAIN);
		ah->PDADCdelta = 0;
	}
}

static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
					 struct ath9k_channel *chan)
{
	int ref_div = 5;
	int pll_div = 0x2c;
	u32 pll;

	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
		if (AR_SREV_9280_20(ah)) {
			ref_div = 10;
			pll_div = 0x50;
		} else {
			pll_div = 0x28;
		}
	}

	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);

	if (chan && IS_CHAN_HALF_RATE(chan))
		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
	else if (chan && IS_CHAN_QUARTER_RATE(chan))
		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);

	return pll;
}

static void ar9002_hw_do_getnf(struct ath_hw *ah,
			      int16_t nfarray[NUM_NF_READINGS])
{
	int16_t nf;

	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
	nfarray[0] = sign_extend32(nf, 8);

	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
	if (IS_CHAN_HT40(ah->curchan))
		nfarray[3] = sign_extend32(nf, 8);

	if (!(ah->rxchainmask & BIT(1)))
		return;

	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
	nfarray[1] = sign_extend32(nf, 8);

	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
	if (IS_CHAN_HT40(ah->curchan))
		nfarray[4] = sign_extend32(nf, 8);
}

static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
{
	if (AR_SREV_9285(ah)) {
		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
	} else if (AR_SREV_9287(ah)) {
		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
	} else if (AR_SREV_9271(ah)) {
		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
	} else {
		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
	}
}

static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
				   struct ath_hw_antcomb_conf *antconf)
{
	u32 regval;

	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
				  AR_PHY_9285_FAST_DIV_BIAS_S;
	antconf->lna1_lna2_switch_delta = -1;
	antconf->lna1_lna2_delta = -3;
	antconf->div_group = 0;
}

static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
				   struct ath_hw_antcomb_conf *antconf)
{
	u32 regval;

	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
		    AR_PHY_9285_FAST_DIV_BIAS);
	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
		   & AR_PHY_9285_FAST_DIV_BIAS);

	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
}

#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT

static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
{
	struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
	u8 antdiv_ctrl1, antdiv_ctrl2;
	u32 regval;

	if (enable) {
		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;

		/*
		 * Don't disable BT ant to allow BB to control SWCOM.
		 */
		btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);

		REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
	} else {
		/*
		 * Disable antenna diversity, use LNA1 only.
		 */
		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;

		/*
		 * Disable BT Ant. to allow concurrent BT and WLAN receive.
		 */
		btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);

		/*
		 * Program SWCOM table to make sure RF switch always parks
		 * at BT side.
		 */
		REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
	}

	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
	regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
        /*
	 * Clear ant_fast_div_bias [14:9] since for WB195,
	 * the main LNA is always LNA1.
	 */
	regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
	regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
	regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
	regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
	regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
	regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);

	regval = REG_READ(ah, AR_PHY_CCK_DETECT);
	regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
	regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
	REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
}

#endif

static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
				    struct ath_spec_scan *param)
{
	u32 repeat_bit;
	u8 count;

	if (!param->enabled) {
		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
			    AR_PHY_SPECTRAL_SCAN_ENABLE);
		return;
	}
	REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);

	if (AR_SREV_9280(ah))
		repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT;
	else
		repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT_KIWI;

	if (param->short_repeat)
		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
	else
		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);

	/* on AR92xx, the highest bit of count will make the the chip send
	 * spectral samples endlessly. Check if this really was intended,
	 * and fix otherwise.
	 */
	count = param->count;
	if (param->endless) {
		if (AR_SREV_9280(ah))
			count = 0x80;
		else
			count = 0;
	} else if (count & 0x80)
		count = 0x7f;
	else if (!count)
		count = 1;

	if (AR_SREV_9280(ah)) {
		REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
			      AR_PHY_SPECTRAL_SCAN_COUNT, count);
	} else {
		REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
			      AR_PHY_SPECTRAL_SCAN_COUNT_KIWI, count);
		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
			    AR_PHY_SPECTRAL_SCAN_PHYERR_MASK_SELECT);
	}

	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
		      AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
		      AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);

	return;
}

static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
{
	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
	/* Activate spectral scan */
	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
		    AR_PHY_SPECTRAL_SCAN_ACTIVE);
}

static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
{
	struct ath_common *common = ath9k_hw_common(ah);

	/* Poll for spectral scan complete */
	if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
			   AR_PHY_SPECTRAL_SCAN_ACTIVE,
			   0, AH_WAIT_TIMEOUT)) {
		ath_err(common, "spectral scan wait failed\n");
		return;
	}
}

static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
{
	REG_SET_BIT(ah, 0x9864, 0x7f000);
	REG_SET_BIT(ah, 0x9924, 0x7f00fe);
	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
	REG_WRITE(ah, AR_CR, AR_CR_RXD);
	REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
	REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
	REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
	REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
	REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
}

static void ar9002_hw_tx99_stop(struct ath_hw *ah)
{
	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
}

void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
{
	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
	struct ath_hw_ops *ops = ath9k_hw_ops(ah);

	priv_ops->set_rf_regs = NULL;
	priv_ops->rf_set_freq = ar9002_hw_set_channel;
	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
	priv_ops->olc_init = ar9002_olc_init;
	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
	priv_ops->do_getnf = ar9002_hw_do_getnf;

	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
	ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
	ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
	ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;

#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
	ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
#endif
	ops->tx99_start = ar9002_hw_tx99_start;
	ops->tx99_stop = ar9002_hw_tx99_stop;

	ar9002_hw_set_nf_limits(ah);
}