1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
/*******************************************************************************
Specialised functions for managing Chained mode
Copyright(C) 2011 STMicroelectronics Ltd
It defines all the functions used to handle the normal/enhanced
descriptors in case of the DMA is configured to work in chained or
in ring mode.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
*******************************************************************************/
#include "stmmac.h"
static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum)
{
struct stmmac_priv *priv = (struct stmmac_priv *)p;
unsigned int txsize = priv->dma_tx_size;
unsigned int entry = priv->cur_tx % txsize;
struct dma_desc *desc = priv->dma_tx + entry;
unsigned int nopaged_len = skb_headlen(skb);
unsigned int bmax;
unsigned int i = 1, len;
if (priv->plat->enh_desc)
bmax = BUF_SIZE_8KiB;
else
bmax = BUF_SIZE_2KiB;
len = nopaged_len - bmax;
desc->des2 = dma_map_single(priv->device, skb->data,
bmax, DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, desc->des2))
return -1;
priv->tx_skbuff_dma[entry].buf = desc->des2;
priv->hw->desc->prepare_tx_desc(desc, 1, bmax, csum, STMMAC_CHAIN_MODE);
while (len != 0) {
priv->tx_skbuff[entry] = NULL;
entry = (++priv->cur_tx) % txsize;
desc = priv->dma_tx + entry;
if (len > bmax) {
desc->des2 = dma_map_single(priv->device,
(skb->data + bmax * i),
bmax, DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, desc->des2))
return -1;
priv->tx_skbuff_dma[entry].buf = desc->des2;
priv->hw->desc->prepare_tx_desc(desc, 0, bmax, csum,
STMMAC_CHAIN_MODE);
priv->hw->desc->set_tx_owner(desc);
len -= bmax;
i++;
} else {
desc->des2 = dma_map_single(priv->device,
(skb->data + bmax * i), len,
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, desc->des2))
return -1;
priv->tx_skbuff_dma[entry].buf = desc->des2;
priv->hw->desc->prepare_tx_desc(desc, 0, len, csum,
STMMAC_CHAIN_MODE);
priv->hw->desc->set_tx_owner(desc);
len = 0;
}
}
return entry;
}
static unsigned int stmmac_is_jumbo_frm(int len, int enh_desc)
{
unsigned int ret = 0;
if ((enh_desc && (len > BUF_SIZE_8KiB)) ||
(!enh_desc && (len > BUF_SIZE_2KiB))) {
ret = 1;
}
return ret;
}
static void stmmac_init_dma_chain(void *des, dma_addr_t phy_addr,
unsigned int size, unsigned int extend_desc)
{
/*
* In chained mode the des3 points to the next element in the ring.
* The latest element has to point to the head.
*/
int i;
dma_addr_t dma_phy = phy_addr;
if (extend_desc) {
struct dma_extended_desc *p = (struct dma_extended_desc *)des;
for (i = 0; i < (size - 1); i++) {
dma_phy += sizeof(struct dma_extended_desc);
p->basic.des3 = (unsigned int)dma_phy;
p++;
}
p->basic.des3 = (unsigned int)phy_addr;
} else {
struct dma_desc *p = (struct dma_desc *)des;
for (i = 0; i < (size - 1); i++) {
dma_phy += sizeof(struct dma_desc);
p->des3 = (unsigned int)dma_phy;
p++;
}
p->des3 = (unsigned int)phy_addr;
}
}
static void stmmac_refill_desc3(void *priv_ptr, struct dma_desc *p)
{
struct stmmac_priv *priv = (struct stmmac_priv *)priv_ptr;
if (priv->hwts_rx_en && !priv->extend_desc)
/* NOTE: Device will overwrite des3 with timestamp value if
* 1588-2002 time stamping is enabled, hence reinitialize it
* to keep explicit chaining in the descriptor.
*/
p->des3 = (unsigned int)(priv->dma_rx_phy +
(((priv->dirty_rx) + 1) %
priv->dma_rx_size) *
sizeof(struct dma_desc));
}
static void stmmac_clean_desc3(void *priv_ptr, struct dma_desc *p)
{
struct stmmac_priv *priv = (struct stmmac_priv *)priv_ptr;
if (priv->hw->desc->get_tx_ls(p) && !priv->extend_desc)
/* NOTE: Device will overwrite des3 with timestamp value if
* 1588-2002 time stamping is enabled, hence reinitialize it
* to keep explicit chaining in the descriptor.
*/
p->des3 = (unsigned int)(priv->dma_tx_phy +
(((priv->dirty_tx + 1) %
priv->dma_tx_size) *
sizeof(struct dma_desc)));
}
const struct stmmac_mode_ops chain_mode_ops = {
.init = stmmac_init_dma_chain,
.is_jumbo_frm = stmmac_is_jumbo_frm,
.jumbo_frm = stmmac_jumbo_frm,
.refill_desc3 = stmmac_refill_desc3,
.clean_desc3 = stmmac_clean_desc3,
};
|