summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/qlogic/qed/qed_int.c
blob: e23980e301b6a2be7f015d6a0c6f6aaadbf788b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
/* QLogic qed NIC Driver
 * Copyright (c) 2015-2017  QLogic Corporation
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and /or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "qed.h"
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_int.h"
#include "qed_mcp.h"
#include "qed_reg_addr.h"
#include "qed_sp.h"
#include "qed_sriov.h"
#include "qed_vf.h"

struct qed_pi_info {
	qed_int_comp_cb_t	comp_cb;
	void			*cookie;
};

struct qed_sb_sp_info {
	struct qed_sb_info sb_info;

	/* per protocol index data */
	struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
};

enum qed_attention_type {
	QED_ATTN_TYPE_ATTN,
	QED_ATTN_TYPE_PARITY,
};

#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)

struct aeu_invert_reg_bit {
	char bit_name[30];

#define ATTENTION_PARITY                (1 << 0)

#define ATTENTION_LENGTH_MASK           (0x00000ff0)
#define ATTENTION_LENGTH_SHIFT          (4)
#define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
					 ATTENTION_LENGTH_SHIFT)
#define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
#define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
#define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
					 ATTENTION_PARITY)

/* Multiple bits start with this offset */
#define ATTENTION_OFFSET_MASK           (0x000ff000)
#define ATTENTION_OFFSET_SHIFT          (12)

#define ATTENTION_BB_MASK               (0x00700000)
#define ATTENTION_BB_SHIFT              (20)
#define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
#define ATTENTION_BB_DIFFERENT          BIT(23)

	unsigned int flags;

	/* Callback to call if attention will be triggered */
	int (*cb)(struct qed_hwfn *p_hwfn);

	enum block_id block_index;
};

struct aeu_invert_reg {
	struct aeu_invert_reg_bit bits[32];
};

#define MAX_ATTN_GRPS           (8)
#define NUM_ATTN_REGS           (9)

/* Specific HW attention callbacks */
static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
{
	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);

	/* This might occur on certain instances; Log it once then mask it */
	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
		tmp);
	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
	       0xffffffff);

	return 0;
}

#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
#define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
{
	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
			 PSWHST_REG_INCORRECT_ACCESS_VALID);

	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
		u32 addr, data, length;

		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
			      PSWHST_REG_INCORRECT_ACCESS_DATA);
		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
				PSWHST_REG_INCORRECT_ACCESS_LENGTH);

		DP_INFO(p_hwfn->cdev,
			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
			addr, length,
			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
			(u8) GET_FIELD(data,
				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
			(u8) GET_FIELD(data,
				       ATTENTION_INCORRECT_ACCESS_CLIENT),
			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
			(u8) GET_FIELD(data,
				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
			data);
	}

	return 0;
}

#define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
#define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
#define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
#define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
#define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
#define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
#define QED_GRC_ATTENTION_PF_MASK	(0xf)
#define QED_GRC_ATTENTION_PF_SHIFT	(0)
#define QED_GRC_ATTENTION_VF_MASK	(0xff)
#define QED_GRC_ATTENTION_VF_SHIFT	(4)
#define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
#define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
#define QED_GRC_ATTENTION_PRIV_VF	(0)
static const char *attn_master_to_str(u8 master)
{
	switch (master) {
	case 1: return "PXP";
	case 2: return "MCP";
	case 3: return "MSDM";
	case 4: return "PSDM";
	case 5: return "YSDM";
	case 6: return "USDM";
	case 7: return "TSDM";
	case 8: return "XSDM";
	case 9: return "DBU";
	case 10: return "DMAE";
	default:
		return "Unknown";
	}
}

static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
{
	u32 tmp, tmp2;

	/* We've already cleared the timeout interrupt register, so we learn
	 * of interrupts via the validity register
	 */
	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
		goto out;

	/* Read the GRC timeout information */
	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);

	DP_INFO(p_hwfn->cdev,
		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
		tmp2, tmp,
		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));

out:
	/* Regardles of anything else, clean the validity bit */
	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
	return 0;
}

#define PGLUE_ATTENTION_VALID			(1 << 29)
#define PGLUE_ATTENTION_RD_VALID		(1 << 26)
#define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
#define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
#define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
#define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
#define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
#define PGLUE_ATTENTION_ILT_VALID		(1 << 23)

int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn,
				struct qed_ptt *p_ptt)
{
	u32 tmp;

	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
	if (tmp & PGLUE_ATTENTION_VALID) {
		u32 addr_lo, addr_hi, details;

		addr_lo = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
		addr_hi = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
		details = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_TX_ERR_WR_DETAILS);

		DP_NOTICE(p_hwfn,
			  "Illegal write by chip to [%08x:%08x] blocked.\n"
			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
			  addr_hi, addr_lo, details,
			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
			  GET_FIELD(details,
				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
			  tmp,
			  GET_FIELD(tmp,
				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
			  GET_FIELD(tmp,
				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
			  GET_FIELD(tmp,
				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
	}

	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
	if (tmp & PGLUE_ATTENTION_RD_VALID) {
		u32 addr_lo, addr_hi, details;

		addr_lo = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
		addr_hi = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
		details = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_TX_ERR_RD_DETAILS);

		DP_NOTICE(p_hwfn,
			  "Illegal read by chip from [%08x:%08x] blocked.\n"
			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
			  addr_hi, addr_lo, details,
			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
			  GET_FIELD(details,
				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
			  tmp,
			  GET_FIELD(tmp,
				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
			  GET_FIELD(tmp,
				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
			  GET_FIELD(tmp,
				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
	}

	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
	if (tmp & PGLUE_ATTENTION_ICPL_VALID)
		DP_NOTICE(p_hwfn, "ICPL error - %08x\n", tmp);

	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
		u32 addr_hi, addr_lo;

		addr_lo = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
		addr_hi = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);

		DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
			  tmp, addr_hi, addr_lo);
	}

	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
		u32 addr_hi, addr_lo, details;

		addr_lo = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
		addr_hi = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
		details = qed_rd(p_hwfn, p_ptt,
				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);

		DP_NOTICE(p_hwfn,
			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
			  details, tmp, addr_hi, addr_lo);
	}

	/* Clear the indications */
	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));

	return 0;
}

static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
{
	return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
}

#define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
#define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
#define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
#define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
#define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)

#define QED_DB_REC_COUNT                        1000
#define QED_DB_REC_INTERVAL                     100

static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
				  struct qed_ptt *p_ptt)
{
	u32 count = QED_DB_REC_COUNT;
	u32 usage = 1;

	/* wait for usage to zero or count to run out. This is necessary since
	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
	 * can "split" over the pci. Possibly, the doorbell drop can happen with
	 * half an EDPM in the queue and other half dropped. Another EDPM
	 * doorbell to the same address (from doorbell recovery mechanism or
	 * from the doorbelling entity) could have first half dropped and second
	 * half interpreted as continuation of the first. To prevent such
	 * malformed doorbells from reaching the device, flush the queue before
	 * releasing the overflow sticky indication.
	 */
	while (count-- && usage) {
		usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
		udelay(QED_DB_REC_INTERVAL);
	}

	/* should have been depleted by now */
	if (usage) {
		DP_NOTICE(p_hwfn->cdev,
			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
			  QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
		return -EBUSY;
	}

	return 0;
}

int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	u32 overflow;
	int rc;

	overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
	DP_NOTICE(p_hwfn, "PF Overflow sticky 0x%x\n", overflow);
	if (!overflow) {
		qed_db_recovery_execute(p_hwfn, DB_REC_ONCE);
		return 0;
	}

	if (qed_edpm_enabled(p_hwfn)) {
		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
		if (rc)
			return rc;
	}

	/* Flush any pending (e)dpm as they may never arrive */
	qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);

	/* Release overflow sticky indication (stop silently dropping everything) */
	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);

	/* Repeat all last doorbells (doorbell drop recovery) */
	qed_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);

	return 0;
}

static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
{
	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
	int rc;

	int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
	DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);

	/* int_sts may be zero since all PFs were interrupted for doorbell
	 * overflow but another one already handled it. Can abort here. If
	 * This PF also requires overflow recovery we will be interrupted again.
	 * The masked almost full indication may also be set. Ignoring.
	 */
	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
		return 0;

	/* check if db_drop or overflow happened */
	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
		/* Obtain data about db drop/overflow */
		first_drop_reason = qed_rd(p_hwfn, p_ptt,
					   DORQ_REG_DB_DROP_REASON) &
		    QED_DORQ_ATTENTION_REASON_MASK;
		details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
		address = qed_rd(p_hwfn, p_ptt,
				 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
		all_drops_reason = qed_rd(p_hwfn, p_ptt,
					  DORQ_REG_DB_DROP_DETAILS_REASON);

		/* Log info */
		DP_NOTICE(p_hwfn->cdev,
			  "Doorbell drop occurred\n"
			  "Address\t\t0x%08x\t(second BAR address)\n"
			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
			  "Size\t\t0x%04x\t\t(in bytes)\n"
			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
			  address,
			  GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
			  GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
			  first_drop_reason, all_drops_reason);

		rc = qed_db_rec_handler(p_hwfn, p_ptt);
		qed_periodic_db_rec_start(p_hwfn);
		if (rc)
			return rc;

		/* Clear the doorbell drop details and prepare for next drop */
		qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);

		/* Mark interrupt as handled (note: even if drop was due to a different
		 * reason than overflow we mark as handled)
		 */
		qed_wr(p_hwfn,
		       p_ptt,
		       DORQ_REG_INT_STS_WR,
		       DORQ_REG_INT_STS_DB_DROP |
		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);

		/* If there are no indications other than drop indications, success */
		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
			return 0;
	}

	/* Some other indication was present - non recoverable */
	DP_INFO(p_hwfn, "DORQ fatal attention\n");

	return -EINVAL;
}

/* Instead of major changes to the data-structure, we have a some 'special'
 * identifiers for sources that changed meaning between adapters.
 */
enum aeu_invert_reg_special_type {
	AEU_INVERT_REG_SPECIAL_CNIG_0,
	AEU_INVERT_REG_SPECIAL_CNIG_1,
	AEU_INVERT_REG_SPECIAL_CNIG_2,
	AEU_INVERT_REG_SPECIAL_CNIG_3,
	AEU_INVERT_REG_SPECIAL_MAX,
};

static struct aeu_invert_reg_bit
aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
};

/* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
	{
		{       /* After Invert 1 */
			{"GPIO0 function%d",
			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
		}
	},

	{
		{       /* After Invert 2 */
			{"PGLUE config_space", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"PGLUE misc_flr", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"PGLUE B RBC", ATTENTION_PAR_INT,
			 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
			{"PGLUE misc_mctp", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
					  (1 << ATTENTION_OFFSET_SHIFT),
			 NULL, MAX_BLOCK_ID},
			{"PCIE glue/PXP VPD %d",
			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
		}
	},

	{
		{       /* After Invert 3 */
			{"General Attention %d",
			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
		}
	},

	{
		{       /* After Invert 4 */
			{"General Attention 32", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"General Attention %d",
			 (2 << ATTENTION_LENGTH_SHIFT) |
			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
			{"General Attention 35", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"NWS Parity",
			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
			 NULL, BLOCK_NWS},
			{"NWS Interrupt",
			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
			 NULL, BLOCK_NWS},
			{"NWM Parity",
			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
			 NULL, BLOCK_NWM},
			{"NWM Interrupt",
			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
			 NULL, BLOCK_NWM},
			{"MCP CPU", ATTENTION_SINGLE,
			 qed_mcp_attn_cb, MAX_BLOCK_ID},
			{"MCP Watchdog timer", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
			{"AVS stop status ready", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
			{"MSTAT per-path", ATTENTION_PAR_INT,
			 NULL, MAX_BLOCK_ID},
			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
			 NULL, MAX_BLOCK_ID},
			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
		}
	},

	{
		{       /* After Invert 5 */
			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
		}
	},

	{
		{       /* After Invert 6 */
			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
			{"DORQ", ATTENTION_PAR_INT,
			 qed_dorq_attn_cb, BLOCK_DORQ},
			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
		}
	},

	{
		{       /* After Invert 7 */
			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
		}
	},

	{
		{       /* After Invert 8 */
			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
			 NULL, BLOCK_PSWRQ2},
			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
			 NULL, BLOCK_PSWWR2},
			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
			 NULL, BLOCK_PSWRD2},
			{"PSWHST", ATTENTION_PAR_INT,
			 qed_pswhst_attn_cb, BLOCK_PSWHST},
			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
			 NULL, BLOCK_PSWHST2},
			{"GRC",	ATTENTION_PAR_INT,
			 qed_grc_attn_cb, BLOCK_GRC},
			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
			 NULL, BLOCK_PGLCS},
			{"PERST_B assertion", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"PERST_B deassertion", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
			 NULL, MAX_BLOCK_ID},
		}
	},

	{
		{       /* After Invert 9 */
			{"MCP Latched memory", ATTENTION_PAR,
			 NULL, MAX_BLOCK_ID},
			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
			 NULL, MAX_BLOCK_ID},
			{"MCP Latched ump_tx", ATTENTION_PAR,
			 NULL, MAX_BLOCK_ID},
			{"MCP Latched scratchpad", ATTENTION_PAR,
			 NULL, MAX_BLOCK_ID},
			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
			 NULL, MAX_BLOCK_ID},
		}
	},
};

static struct aeu_invert_reg_bit *
qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
		      struct aeu_invert_reg_bit *p_bit)
{
	if (!QED_IS_BB(p_hwfn->cdev))
		return p_bit;

	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
		return p_bit;

	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
				  ATTENTION_BB_SHIFT];
}

static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
				   struct aeu_invert_reg_bit *p_bit)
{
	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
		   ATTENTION_PARITY);
}

#define ATTN_STATE_BITS         (0xfff)
#define ATTN_BITS_MASKABLE      (0x3ff)
struct qed_sb_attn_info {
	/* Virtual & Physical address of the SB */
	struct atten_status_block       *sb_attn;
	dma_addr_t			sb_phys;

	/* Last seen running index */
	u16				index;

	/* A mask of the AEU bits resulting in a parity error */
	u32				parity_mask[NUM_ATTN_REGS];

	/* A pointer to the attention description structure */
	struct aeu_invert_reg		*p_aeu_desc;

	/* Previously asserted attentions, which are still unasserted */
	u16				known_attn;

	/* Cleanup address for the link's general hw attention */
	u32				mfw_attn_addr;
};

static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
				      struct qed_sb_attn_info *p_sb_desc)
{
	u16 rc = 0, index;

	/* Make certain HW write took affect */
	mmiowb();

	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
	if (p_sb_desc->index != index) {
		p_sb_desc->index	= index;
		rc		      = QED_SB_ATT_IDX;
	}

	/* Make certain we got a consistent view with HW */
	mmiowb();

	return rc;
}

/**
 *  @brief qed_int_assertion - handles asserted attention bits
 *
 *  @param p_hwfn
 *  @param asserted_bits newly asserted bits
 *  @return int
 */
static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
{
	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
	u32 igu_mask;

	/* Mask the source of the attention in the IGU */
	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);

	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
		   sb_attn_sw->known_attn,
		   sb_attn_sw->known_attn | asserted_bits);
	sb_attn_sw->known_attn |= asserted_bits;

	/* Handle MCP events */
	if (asserted_bits & 0x100) {
		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
		/* Clean the MCP attention */
		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
		       sb_attn_sw->mfw_attn_addr, 0);
	}

	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
		      GTT_BAR0_MAP_REG_IGU_CMD +
		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
			IGU_CMD_INT_ACK_BASE) << 3),
		      (u32)asserted_bits);

	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
		   asserted_bits);

	return 0;
}

static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
			       enum block_id id,
			       enum dbg_attn_type type, bool b_clear)
{
	struct dbg_attn_block_result attn_results;
	enum dbg_status status;

	memset(&attn_results, 0, sizeof(attn_results));

	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
				   b_clear, &attn_results);
	if (status != DBG_STATUS_OK)
		DP_NOTICE(p_hwfn,
			  "Failed to parse attention information [status: %s]\n",
			  qed_dbg_get_status_str(status));
	else
		qed_dbg_parse_attn(p_hwfn, &attn_results);
}

/**
 * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
 * cause of the attention
 *
 * @param p_hwfn
 * @param p_aeu - descriptor of an AEU bit which caused the attention
 * @param aeu_en_reg - register offset of the AEU enable reg. which configured
 *  this bit to this group.
 * @param bit_index - index of this bit in the aeu_en_reg
 *
 * @return int
 */
static int
qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
			    struct aeu_invert_reg_bit *p_aeu,
			    u32 aeu_en_reg,
			    const char *p_bit_name, u32 bitmask)
{
	bool b_fatal = false;
	int rc = -EINVAL;
	u32 val;

	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
		p_bit_name, bitmask);

	/* Call callback before clearing the interrupt status */
	if (p_aeu->cb) {
		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
			p_bit_name);
		rc = p_aeu->cb(p_hwfn);
	}

	if (rc)
		b_fatal = true;

	/* Print HW block interrupt registers */
	if (p_aeu->block_index != MAX_BLOCK_ID)
		qed_int_attn_print(p_hwfn, p_aeu->block_index,
				   ATTN_TYPE_INTERRUPT, !b_fatal);


	/* If the attention is benign, no need to prevent it */
	if (!rc)
		goto out;

	/* Prevent this Attention from being asserted in the future */
	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
		p_bit_name);

out:
	return rc;
}

/**
 * @brief qed_int_deassertion_parity - handle a single parity AEU source
 *
 * @param p_hwfn
 * @param p_aeu - descriptor of an AEU bit which caused the parity
 * @param aeu_en_reg - address of the AEU enable register
 * @param bit_index
 */
static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
				       struct aeu_invert_reg_bit *p_aeu,
				       u32 aeu_en_reg, u8 bit_index)
{
	u32 block_id = p_aeu->block_index, mask, val;

	DP_NOTICE(p_hwfn->cdev,
		  "%s parity attention is set [address 0x%08x, bit %d]\n",
		  p_aeu->bit_name, aeu_en_reg, bit_index);

	if (block_id != MAX_BLOCK_ID) {
		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);

		/* In BB, there's a single parity bit for several blocks */
		if (block_id == BLOCK_BTB) {
			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
					   ATTN_TYPE_PARITY, false);
			qed_int_attn_print(p_hwfn, BLOCK_MCP,
					   ATTN_TYPE_PARITY, false);
		}
	}

	/* Prevent this parity error from being re-asserted */
	mask = ~BIT(bit_index);
	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
		p_aeu->bit_name);
}

/**
 * @brief - handles deassertion of previously asserted attentions.
 *
 * @param p_hwfn
 * @param deasserted_bits - newly deasserted bits
 * @return int
 *
 */
static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
			       u16 deasserted_bits)
{
	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
	u8 i, j, k, bit_idx;
	int rc = 0;

	/* Read the attention registers in the AEU */
	for (i = 0; i < NUM_ATTN_REGS; i++) {
		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
					MISC_REG_AEU_AFTER_INVERT_1_IGU +
					i * 0x4);
		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
			   "Deasserted bits [%d]: %08x\n",
			   i, aeu_inv_arr[i]);
	}

	/* Find parity attentions first */
	for (i = 0; i < NUM_ATTN_REGS; i++) {
		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
		u32 parities;

		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);

		/* Skip register in which no parity bit is currently set */
		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
		if (!parities)
			continue;

		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];

			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
			    !!(parities & BIT(bit_idx)))
				qed_int_deassertion_parity(p_hwfn, p_bit,
							   aeu_en, bit_idx);

			bit_idx += ATTENTION_LENGTH(p_bit->flags);
		}
	}

	/* Find non-parity cause for attention and act */
	for (k = 0; k < MAX_ATTN_GRPS; k++) {
		struct aeu_invert_reg_bit *p_aeu;

		/* Handle only groups whose attention is currently deasserted */
		if (!(deasserted_bits & (1 << k)))
			continue;

		for (i = 0; i < NUM_ATTN_REGS; i++) {
			u32 bits;

			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
				 i * sizeof(u32) +
				 k * sizeof(u32) * NUM_ATTN_REGS;

			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
			bits = aeu_inv_arr[i] & en;

			/* Skip if no bit from this group is currently set */
			if (!bits)
				continue;

			/* Find all set bits from current register which belong
			 * to current group, making them responsible for the
			 * previous assertion.
			 */
			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
				long unsigned int bitmask;
				u8 bit, bit_len;

				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);

				bit = bit_idx;
				bit_len = ATTENTION_LENGTH(p_aeu->flags);
				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
					/* Skip Parity */
					bit++;
					bit_len--;
				}

				bitmask = bits & (((1 << bit_len) - 1) << bit);
				bitmask >>= bit;

				if (bitmask) {
					u32 flags = p_aeu->flags;
					char bit_name[30];
					u8 num;

					num = (u8)find_first_bit(&bitmask,
								 bit_len);

					/* Some bits represent more than a
					 * a single interrupt. Correctly print
					 * their name.
					 */
					if (ATTENTION_LENGTH(flags) > 2 ||
					    ((flags & ATTENTION_PAR_INT) &&
					     ATTENTION_LENGTH(flags) > 1))
						snprintf(bit_name, 30,
							 p_aeu->bit_name, num);
					else
						strncpy(bit_name,
							p_aeu->bit_name, 30);

					/* We now need to pass bitmask in its
					 * correct position.
					 */
					bitmask <<= bit;

					/* Handle source of the attention */
					qed_int_deassertion_aeu_bit(p_hwfn,
								    p_aeu,
								    aeu_en,
								    bit_name,
								    bitmask);
				}

				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
			}
		}
	}

	/* Clear IGU indication for the deasserted bits */
	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
				    GTT_BAR0_MAP_REG_IGU_CMD +
				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
				      IGU_CMD_INT_ACK_BASE) << 3),
				    ~((u32)deasserted_bits));

	/* Unmask deasserted attentions in IGU */
	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);

	/* Clear deassertion from inner state */
	sb_attn_sw->known_attn &= ~deasserted_bits;

	return rc;
}

static int qed_int_attentions(struct qed_hwfn *p_hwfn)
{
	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
	u32 attn_bits = 0, attn_acks = 0;
	u16 asserted_bits, deasserted_bits;
	__le16 index;
	int rc = 0;

	/* Read current attention bits/acks - safeguard against attentions
	 * by guaranting work on a synchronized timeframe
	 */
	do {
		index = p_sb_attn->sb_index;
		/* finish reading index before the loop condition */
		dma_rmb();
		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
	} while (index != p_sb_attn->sb_index);
	p_sb_attn->sb_index = index;

	/* Attention / Deassertion are meaningful (and in correct state)
	 * only when they differ and consistent with known state - deassertion
	 * when previous attention & current ack, and assertion when current
	 * attention with no previous attention
	 */
	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
		~p_sb_attn_sw->known_attn;
	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
		p_sb_attn_sw->known_attn;

	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
		DP_INFO(p_hwfn,
			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
			index, attn_bits, attn_acks, asserted_bits,
			deasserted_bits, p_sb_attn_sw->known_attn);
	} else if (asserted_bits == 0x100) {
		DP_INFO(p_hwfn, "MFW indication via attention\n");
	} else {
		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
			   "MFW indication [deassertion]\n");
	}

	if (asserted_bits) {
		rc = qed_int_assertion(p_hwfn, asserted_bits);
		if (rc)
			return rc;
	}

	if (deasserted_bits)
		rc = qed_int_deassertion(p_hwfn, deasserted_bits);

	return rc;
}

static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
			    void __iomem *igu_addr, u32 ack_cons)
{
	struct igu_prod_cons_update igu_ack = { 0 };

	igu_ack.sb_id_and_flags =
		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
		 (IGU_SEG_ACCESS_ATTN <<
		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));

	DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);

	/* Both segments (interrupts & acks) are written to same place address;
	 * Need to guarantee all commands will be received (in-order) by HW.
	 */
	mmiowb();
	barrier();
}

void qed_int_sp_dpc(unsigned long hwfn_cookie)
{
	struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
	struct qed_pi_info *pi_info = NULL;
	struct qed_sb_attn_info *sb_attn;
	struct qed_sb_info *sb_info;
	int arr_size;
	u16 rc = 0;

	if (!p_hwfn->p_sp_sb) {
		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
		return;
	}

	sb_info = &p_hwfn->p_sp_sb->sb_info;
	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
	if (!sb_info) {
		DP_ERR(p_hwfn->cdev,
		       "Status block is NULL - cannot ack interrupts\n");
		return;
	}

	if (!p_hwfn->p_sb_attn) {
		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
		return;
	}
	sb_attn = p_hwfn->p_sb_attn;

	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
		   p_hwfn, p_hwfn->my_id);

	/* Disable ack for def status block. Required both for msix +
	 * inta in non-mask mode, in inta does no harm.
	 */
	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);

	/* Gather Interrupts/Attentions information */
	if (!sb_info->sb_virt) {
		DP_ERR(p_hwfn->cdev,
		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
	} else {
		u32 tmp_index = sb_info->sb_ack;

		rc = qed_sb_update_sb_idx(sb_info);
		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
			   "Interrupt indices: 0x%08x --> 0x%08x\n",
			   tmp_index, sb_info->sb_ack);
	}

	if (!sb_attn || !sb_attn->sb_attn) {
		DP_ERR(p_hwfn->cdev,
		       "Attentions Status block is NULL - cannot check for new attentions!\n");
	} else {
		u16 tmp_index = sb_attn->index;

		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
			   "Attention indices: 0x%08x --> 0x%08x\n",
			   tmp_index, sb_attn->index);
	}

	/* Check if we expect interrupts at this time. if not just ack them */
	if (!(rc & QED_SB_EVENT_MASK)) {
		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
		return;
	}

	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
	if (!p_hwfn->p_dpc_ptt) {
		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
		return;
	}

	if (rc & QED_SB_ATT_IDX)
		qed_int_attentions(p_hwfn);

	if (rc & QED_SB_IDX) {
		int pi;

		/* Look for a free index */
		for (pi = 0; pi < arr_size; pi++) {
			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
			if (pi_info->comp_cb)
				pi_info->comp_cb(p_hwfn, pi_info->cookie);
		}
	}

	if (sb_attn && (rc & QED_SB_ATT_IDX))
		/* This should be done before the interrupts are enabled,
		 * since otherwise a new attention will be generated.
		 */
		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);

	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
}

static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
{
	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;

	if (!p_sb)
		return;

	if (p_sb->sb_attn)
		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
				  p_sb->sb_attn, p_sb->sb_phys);
	kfree(p_sb);
	p_hwfn->p_sb_attn = NULL;
}

static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
				  struct qed_ptt *p_ptt)
{
	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;

	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));

	sb_info->index = 0;
	sb_info->known_attn = 0;

	/* Configure Attention Status Block in IGU */
	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
}

static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
				 struct qed_ptt *p_ptt,
				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
{
	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
	int i, j, k;

	sb_info->sb_attn = sb_virt_addr;
	sb_info->sb_phys = sb_phy_addr;

	/* Set the pointer to the AEU descriptors */
	sb_info->p_aeu_desc = aeu_descs;

	/* Calculate Parity Masks */
	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
	for (i = 0; i < NUM_ATTN_REGS; i++) {
		/* j is array index, k is bit index */
		for (j = 0, k = 0; k < 32; j++) {
			struct aeu_invert_reg_bit *p_aeu;

			p_aeu = &aeu_descs[i].bits[j];
			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
				sb_info->parity_mask[i] |= 1 << k;

			k += ATTENTION_LENGTH(p_aeu->flags);
		}
		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
			   "Attn Mask [Reg %d]: 0x%08x\n",
			   i, sb_info->parity_mask[i]);
	}

	/* Set the address of cleanup for the mcp attention */
	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
				 MISC_REG_AEU_GENERAL_ATTN_0;

	qed_int_sb_attn_setup(p_hwfn, p_ptt);
}

static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
				 struct qed_ptt *p_ptt)
{
	struct qed_dev *cdev = p_hwfn->cdev;
	struct qed_sb_attn_info *p_sb;
	dma_addr_t p_phys = 0;
	void *p_virt;

	/* SB struct */
	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
	if (!p_sb)
		return -ENOMEM;

	/* SB ring  */
	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
				    &p_phys, GFP_KERNEL);

	if (!p_virt) {
		kfree(p_sb);
		return -ENOMEM;
	}

	/* Attention setup */
	p_hwfn->p_sb_attn = p_sb;
	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);

	return 0;
}

/* coalescing timeout = timeset << (timer_res + 1) */
#define QED_CAU_DEF_RX_USECS 24
#define QED_CAU_DEF_TX_USECS 48

void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
			   struct cau_sb_entry *p_sb_entry,
			   u8 pf_id, u16 vf_number, u8 vf_valid)
{
	struct qed_dev *cdev = p_hwfn->cdev;
	u32 cau_state;
	u8 timer_res;

	memset(p_sb_entry, 0, sizeof(*p_sb_entry));

	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);

	cau_state = CAU_HC_DISABLE_STATE;

	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
		cau_state = CAU_HC_ENABLE_STATE;
		if (!cdev->rx_coalesce_usecs)
			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
		if (!cdev->tx_coalesce_usecs)
			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
	}

	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
	if (cdev->rx_coalesce_usecs <= 0x7F)
		timer_res = 0;
	else if (cdev->rx_coalesce_usecs <= 0xFF)
		timer_res = 1;
	else
		timer_res = 2;
	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);

	if (cdev->tx_coalesce_usecs <= 0x7F)
		timer_res = 0;
	else if (cdev->tx_coalesce_usecs <= 0xFF)
		timer_res = 1;
	else
		timer_res = 2;
	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);

	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
}

static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
				struct qed_ptt *p_ptt,
				u16 igu_sb_id,
				u32 pi_index,
				enum qed_coalescing_fsm coalescing_fsm,
				u8 timeset)
{
	struct cau_pi_entry pi_entry;
	u32 sb_offset, pi_offset;

	if (IS_VF(p_hwfn->cdev))
		return;

	sb_offset = igu_sb_id * PIS_PER_SB_E4;
	memset(&pi_entry, 0, sizeof(struct cau_pi_entry));

	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
	else
		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);

	pi_offset = sb_offset + pi_index;
	if (p_hwfn->hw_init_done) {
		qed_wr(p_hwfn, p_ptt,
		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
		       *((u32 *)&(pi_entry)));
	} else {
		STORE_RT_REG(p_hwfn,
			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
			     *((u32 *)&(pi_entry)));
	}
}

void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
			 struct qed_ptt *p_ptt,
			 dma_addr_t sb_phys,
			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
{
	struct cau_sb_entry sb_entry;

	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
			      vf_number, vf_valid);

	if (p_hwfn->hw_init_done) {
		/* Wide-bus, initialize via DMAE */
		u64 phys_addr = (u64)sb_phys;

		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
				  CAU_REG_SB_ADDR_MEMORY +
				  igu_sb_id * sizeof(u64), 2, 0);
		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
				  CAU_REG_SB_VAR_MEMORY +
				  igu_sb_id * sizeof(u64), 2, 0);
	} else {
		/* Initialize Status Block Address */
		STORE_RT_REG_AGG(p_hwfn,
				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
				 igu_sb_id * 2,
				 sb_phys);

		STORE_RT_REG_AGG(p_hwfn,
				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
				 igu_sb_id * 2,
				 sb_entry);
	}

	/* Configure pi coalescing if set */
	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
		u8 timeset, timer_res;
		u8 i;

		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
			timer_res = 0;
		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
			timer_res = 1;
		else
			timer_res = 2;
		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
				    QED_COAL_RX_STATE_MACHINE, timeset);

		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
			timer_res = 0;
		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
			timer_res = 1;
		else
			timer_res = 2;
		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
		for (i = 0; i < num_tc; i++) {
			qed_int_cau_conf_pi(p_hwfn, p_ptt,
					    igu_sb_id, TX_PI(i),
					    QED_COAL_TX_STATE_MACHINE,
					    timeset);
		}
	}
}

void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
{
	/* zero status block and ack counter */
	sb_info->sb_ack = 0;
	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));

	if (IS_PF(p_hwfn->cdev))
		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
				    sb_info->igu_sb_id, 0, 0);
}

struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
{
	struct qed_igu_block *p_block;
	u16 igu_id;

	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
	     igu_id++) {
		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];

		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
		    !(p_block->status & QED_IGU_STATUS_FREE))
			continue;

		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
			return p_block;
	}

	return NULL;
}

static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
{
	struct qed_igu_block *p_block;
	u16 igu_id;

	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
	     igu_id++) {
		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];

		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
		    !p_block->is_pf ||
		    p_block->vector_number != vector_id)
			continue;

		return igu_id;
	}

	return QED_SB_INVALID_IDX;
}

u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
{
	u16 igu_sb_id;

	/* Assuming continuous set of IGU SBs dedicated for given PF */
	if (sb_id == QED_SP_SB_ID)
		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
	else if (IS_PF(p_hwfn->cdev))
		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
	else
		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);

	if (sb_id == QED_SP_SB_ID)
		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
	else
		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);

	return igu_sb_id;
}

int qed_int_sb_init(struct qed_hwfn *p_hwfn,
		    struct qed_ptt *p_ptt,
		    struct qed_sb_info *sb_info,
		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
{
	sb_info->sb_virt = sb_virt_addr;
	sb_info->sb_phys = sb_phy_addr;

	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);

	if (sb_id != QED_SP_SB_ID) {
		if (IS_PF(p_hwfn->cdev)) {
			struct qed_igu_info *p_info;
			struct qed_igu_block *p_block;

			p_info = p_hwfn->hw_info.p_igu_info;
			p_block = &p_info->entry[sb_info->igu_sb_id];

			p_block->sb_info = sb_info;
			p_block->status &= ~QED_IGU_STATUS_FREE;
			p_info->usage.free_cnt--;
		} else {
			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
		}
	}

	sb_info->cdev = p_hwfn->cdev;

	/* The igu address will hold the absolute address that needs to be
	 * written to for a specific status block
	 */
	if (IS_PF(p_hwfn->cdev)) {
		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
						  GTT_BAR0_MAP_REG_IGU_CMD +
						  (sb_info->igu_sb_id << 3);
	} else {
		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
						  PXP_VF_BAR0_START_IGU +
						  ((IGU_CMD_INT_ACK_BASE +
						    sb_info->igu_sb_id) << 3);
	}

	sb_info->flags |= QED_SB_INFO_INIT;

	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);

	return 0;
}

int qed_int_sb_release(struct qed_hwfn *p_hwfn,
		       struct qed_sb_info *sb_info, u16 sb_id)
{
	struct qed_igu_block *p_block;
	struct qed_igu_info *p_info;

	if (!sb_info)
		return 0;

	/* zero status block and ack counter */
	sb_info->sb_ack = 0;
	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));

	if (IS_VF(p_hwfn->cdev)) {
		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
		return 0;
	}

	p_info = p_hwfn->hw_info.p_igu_info;
	p_block = &p_info->entry[sb_info->igu_sb_id];

	/* Vector 0 is reserved to Default SB */
	if (!p_block->vector_number) {
		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
		return -EINVAL;
	}

	/* Lose reference to client's SB info, and fix counters */
	p_block->sb_info = NULL;
	p_block->status |= QED_IGU_STATUS_FREE;
	p_info->usage.free_cnt++;

	return 0;
}

static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
{
	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;

	if (!p_sb)
		return;

	if (p_sb->sb_info.sb_virt)
		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
				  SB_ALIGNED_SIZE(p_hwfn),
				  p_sb->sb_info.sb_virt,
				  p_sb->sb_info.sb_phys);
	kfree(p_sb);
	p_hwfn->p_sp_sb = NULL;
}

static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	struct qed_sb_sp_info *p_sb;
	dma_addr_t p_phys = 0;
	void *p_virt;

	/* SB struct */
	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
	if (!p_sb)
		return -ENOMEM;

	/* SB ring  */
	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
				    SB_ALIGNED_SIZE(p_hwfn),
				    &p_phys, GFP_KERNEL);
	if (!p_virt) {
		kfree(p_sb);
		return -ENOMEM;
	}

	/* Status Block setup */
	p_hwfn->p_sp_sb = p_sb;
	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
			p_phys, QED_SP_SB_ID);

	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));

	return 0;
}

int qed_int_register_cb(struct qed_hwfn *p_hwfn,
			qed_int_comp_cb_t comp_cb,
			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
{
	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
	int rc = -ENOMEM;
	u8 pi;

	/* Look for a free index */
	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
		if (p_sp_sb->pi_info_arr[pi].comp_cb)
			continue;

		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
		p_sp_sb->pi_info_arr[pi].cookie = cookie;
		*sb_idx = pi;
		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
		rc = 0;
		break;
	}

	return rc;
}

int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
{
	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;

	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
		return -ENOMEM;

	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
	p_sp_sb->pi_info_arr[pi].cookie = NULL;

	return 0;
}

u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
{
	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
}

void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
{
	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;

	p_hwfn->cdev->int_mode = int_mode;
	switch (p_hwfn->cdev->int_mode) {
	case QED_INT_MODE_INTA:
		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
		break;

	case QED_INT_MODE_MSI:
		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
		break;

	case QED_INT_MODE_MSIX:
		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
		break;
	case QED_INT_MODE_POLL:
		break;
	}

	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
}

static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
				    struct qed_ptt *p_ptt)
{

	/* Configure AEU signal change to produce attentions */
	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);

	/* Flush the writes to IGU */
	mmiowb();

	/* Unmask AEU signals toward IGU */
	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
}

int
qed_int_igu_enable(struct qed_hwfn *p_hwfn,
		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
{
	int rc = 0;

	qed_int_igu_enable_attn(p_hwfn, p_ptt);

	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
		rc = qed_slowpath_irq_req(p_hwfn);
		if (rc) {
			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
			return -EINVAL;
		}
		p_hwfn->b_int_requested = true;
	}
	/* Enable interrupt Generation */
	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
	p_hwfn->b_int_enabled = 1;

	return rc;
}

void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	p_hwfn->b_int_enabled = 0;

	if (IS_VF(p_hwfn->cdev))
		return;

	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
}

#define IGU_CLEANUP_SLEEP_LENGTH                (1000)
static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
				   struct qed_ptt *p_ptt,
				   u16 igu_sb_id,
				   bool cleanup_set, u16 opaque_fid)
{
	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;

	/* Set the data field */
	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);

	/* Set the control register */
	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);

	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);

	barrier();

	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);

	/* Flush the write to IGU */
	mmiowb();

	/* calculate where to read the status bit from */
	sb_bit = 1 << (igu_sb_id % 32);
	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);

	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;

	/* Now wait for the command to complete */
	do {
		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);

		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
			break;

		usleep_range(5000, 10000);
	} while (--sleep_cnt);

	if (!sleep_cnt)
		DP_NOTICE(p_hwfn,
			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
			  val, igu_sb_id);
}

void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
				     struct qed_ptt *p_ptt,
				     u16 igu_sb_id, u16 opaque, bool b_set)
{
	struct qed_igu_block *p_block;
	int pi, i;

	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
		   igu_sb_id,
		   p_block->function_id,
		   p_block->is_pf, p_block->vector_number);

	/* Set */
	if (b_set)
		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);

	/* Clear */
	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);

	/* Wait for the IGU SB to cleanup */
	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
		u32 val;

		val = qed_rd(p_hwfn, p_ptt,
			     IGU_REG_WRITE_DONE_PENDING +
			     ((igu_sb_id / 32) * 4));
		if (val & BIT((igu_sb_id % 32)))
			usleep_range(10, 20);
		else
			break;
	}
	if (i == IGU_CLEANUP_SLEEP_LENGTH)
		DP_NOTICE(p_hwfn,
			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
			  igu_sb_id);

	/* Clear the CAU for the SB */
	for (pi = 0; pi < 12; pi++)
		qed_wr(p_hwfn, p_ptt,
		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
}

void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
			      struct qed_ptt *p_ptt,
			      bool b_set, bool b_slowpath)
{
	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
	struct qed_igu_block *p_block;
	u16 igu_sb_id = 0;
	u32 val = 0;

	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);

	for (igu_sb_id = 0;
	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
		p_block = &p_info->entry[igu_sb_id];

		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
		    !p_block->is_pf ||
		    (p_block->status & QED_IGU_STATUS_DSB))
			continue;

		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
						p_hwfn->hw_info.opaque_fid,
						b_set);
	}

	if (b_slowpath)
		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
						p_info->igu_dsb_id,
						p_hwfn->hw_info.opaque_fid,
						b_set);
}

int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
	struct qed_igu_block *p_block;
	int pf_sbs, vf_sbs;
	u16 igu_sb_id;
	u32 val, rval;

	if (!RESC_NUM(p_hwfn, QED_SB)) {
		p_info->b_allow_pf_vf_change = false;
	} else {
		/* Use the numbers the MFW have provided -
		 * don't forget MFW accounts for the default SB as well.
		 */
		p_info->b_allow_pf_vf_change = true;

		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
			DP_INFO(p_hwfn,
				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
				RESC_NUM(p_hwfn, QED_SB) - 1,
				p_info->usage.cnt);
			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
		}

		if (IS_PF_SRIOV(p_hwfn)) {
			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;

			if (vfs != p_info->usage.iov_cnt)
				DP_VERBOSE(p_hwfn,
					   NETIF_MSG_INTR,
					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
					   p_info->usage.iov_cnt, vfs);

			/* At this point we know how many SBs we have totally
			 * in IGU + number of PF SBs. So we can validate that
			 * we'd have sufficient for VF.
			 */
			if (vfs > p_info->usage.free_cnt +
			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
				DP_NOTICE(p_hwfn,
					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
					  p_info->usage.free_cnt +
					  p_info->usage.free_cnt_iov,
					  p_info->usage.cnt, vfs);
				return -EINVAL;
			}

			/* Currently cap the number of VFs SBs by the
			 * number of VFs.
			 */
			p_info->usage.iov_cnt = vfs;
		}
	}

	/* Mark all SBs as free, now in the right PF/VFs division */
	p_info->usage.free_cnt = p_info->usage.cnt;
	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
	p_info->usage.orig = p_info->usage.cnt;
	p_info->usage.iov_orig = p_info->usage.iov_cnt;

	/* We now proceed to re-configure the IGU cam to reflect the initial
	 * configuration. We can start with the Default SB.
	 */
	pf_sbs = p_info->usage.cnt;
	vf_sbs = p_info->usage.iov_cnt;

	for (igu_sb_id = p_info->igu_dsb_id;
	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
		p_block = &p_info->entry[igu_sb_id];
		val = 0;

		if (!(p_block->status & QED_IGU_STATUS_VALID))
			continue;

		if (p_block->status & QED_IGU_STATUS_DSB) {
			p_block->function_id = p_hwfn->rel_pf_id;
			p_block->is_pf = 1;
			p_block->vector_number = 0;
			p_block->status = QED_IGU_STATUS_VALID |
					  QED_IGU_STATUS_PF |
					  QED_IGU_STATUS_DSB;
		} else if (pf_sbs) {
			pf_sbs--;
			p_block->function_id = p_hwfn->rel_pf_id;
			p_block->is_pf = 1;
			p_block->vector_number = p_info->usage.cnt - pf_sbs;
			p_block->status = QED_IGU_STATUS_VALID |
					  QED_IGU_STATUS_PF |
					  QED_IGU_STATUS_FREE;
		} else if (vf_sbs) {
			p_block->function_id =
			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
			    p_info->usage.iov_cnt - vf_sbs;
			p_block->is_pf = 0;
			p_block->vector_number = 0;
			p_block->status = QED_IGU_STATUS_VALID |
					  QED_IGU_STATUS_FREE;
			vf_sbs--;
		} else {
			p_block->function_id = 0;
			p_block->is_pf = 0;
			p_block->vector_number = 0;
		}

		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
			  p_block->function_id);
		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
			  p_block->vector_number);

		/* VF entries would be enabled when VF is initializaed */
		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);

		rval = qed_rd(p_hwfn, p_ptt,
			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);

		if (rval != val) {
			qed_wr(p_hwfn, p_ptt,
			       IGU_REG_MAPPING_MEMORY +
			       sizeof(u32) * igu_sb_id, val);

			DP_VERBOSE(p_hwfn,
				   NETIF_MSG_INTR,
				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
				   igu_sb_id,
				   p_block->function_id,
				   p_block->is_pf,
				   p_block->vector_number, rval, val);
		}
	}

	return 0;
}

static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
				       struct qed_ptt *p_ptt, u16 igu_sb_id)
{
	u32 val = qed_rd(p_hwfn, p_ptt,
			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
	struct qed_igu_block *p_block;

	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];

	/* Fill the block information */
	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
	p_block->igu_sb_id = igu_sb_id;
}

int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	struct qed_igu_info *p_igu_info;
	struct qed_igu_block *p_block;
	u32 min_vf = 0, max_vf = 0;
	u16 igu_sb_id;

	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
	if (!p_hwfn->hw_info.p_igu_info)
		return -ENOMEM;

	p_igu_info = p_hwfn->hw_info.p_igu_info;

	/* Distinguish between existent and non-existent default SB */
	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;

	/* Find the range of VF ids whose SB belong to this PF */
	if (p_hwfn->cdev->p_iov_info) {
		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;

		min_vf	= p_iov->first_vf_in_pf;
		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
	}

	for (igu_sb_id = 0;
	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
		/* Read current entry; Notice it might not belong to this PF */
		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
		p_block = &p_igu_info->entry[igu_sb_id];

		if ((p_block->is_pf) &&
		    (p_block->function_id == p_hwfn->rel_pf_id)) {
			p_block->status = QED_IGU_STATUS_PF |
					  QED_IGU_STATUS_VALID |
					  QED_IGU_STATUS_FREE;

			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
				p_igu_info->usage.cnt++;
		} else if (!(p_block->is_pf) &&
			   (p_block->function_id >= min_vf) &&
			   (p_block->function_id < max_vf)) {
			/* Available for VFs of this PF */
			p_block->status = QED_IGU_STATUS_VALID |
					  QED_IGU_STATUS_FREE;

			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
				p_igu_info->usage.iov_cnt++;
		}

		/* Mark the First entry belonging to the PF or its VFs
		 * as the default SB [we'll reset IGU prior to first usage].
		 */
		if ((p_block->status & QED_IGU_STATUS_VALID) &&
		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
			p_igu_info->igu_dsb_id = igu_sb_id;
			p_block->status |= QED_IGU_STATUS_DSB;
		}

		/* limit number of prints by having each PF print only its
		 * entries with the exception of PF0 which would print
		 * everything.
		 */
		if ((p_block->status & QED_IGU_STATUS_VALID) ||
		    (p_hwfn->abs_pf_id == 0)) {
			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
				   igu_sb_id, p_block->function_id,
				   p_block->is_pf, p_block->vector_number);
		}
	}

	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
		DP_NOTICE(p_hwfn,
			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
			  p_igu_info->igu_dsb_id);
		return -EINVAL;
	}

	/* All non default SB are considered free at this point */
	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;

	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
		   p_igu_info->igu_dsb_id,
		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);

	return 0;
}

/**
 * @brief Initialize igu runtime registers
 *
 * @param p_hwfn
 */
void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
{
	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;

	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
}

u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
{
	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
			       IGU_CMD_INT_ACK_BASE;
	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
			       IGU_CMD_INT_ACK_BASE;
	u32 intr_status_hi = 0, intr_status_lo = 0;
	u64 intr_status = 0;

	intr_status_lo = REG_RD(p_hwfn,
				GTT_BAR0_MAP_REG_IGU_CMD +
				lsb_igu_cmd_addr * 8);
	intr_status_hi = REG_RD(p_hwfn,
				GTT_BAR0_MAP_REG_IGU_CMD +
				msb_igu_cmd_addr * 8);
	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;

	return intr_status;
}

static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
{
	tasklet_init(p_hwfn->sp_dpc,
		     qed_int_sp_dpc, (unsigned long)p_hwfn);
	p_hwfn->b_sp_dpc_enabled = true;
}

static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
{
	p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
	if (!p_hwfn->sp_dpc)
		return -ENOMEM;

	return 0;
}

static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
{
	kfree(p_hwfn->sp_dpc);
	p_hwfn->sp_dpc = NULL;
}

int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	int rc = 0;

	rc = qed_int_sp_dpc_alloc(p_hwfn);
	if (rc)
		return rc;

	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
	if (rc)
		return rc;

	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);

	return rc;
}

void qed_int_free(struct qed_hwfn *p_hwfn)
{
	qed_int_sp_sb_free(p_hwfn);
	qed_int_sb_attn_free(p_hwfn);
	qed_int_sp_dpc_free(p_hwfn);
}

void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
	qed_int_sb_attn_setup(p_hwfn, p_ptt);
	qed_int_sp_dpc_setup(p_hwfn);
}

void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
			 struct qed_sb_cnt_info *p_sb_cnt_info)
{
	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;

	if (!info || !p_sb_cnt_info)
		return;

	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
}

void qed_int_disable_post_isr_release(struct qed_dev *cdev)
{
	int i;

	for_each_hwfn(cdev, i)
		cdev->hwfns[i].b_int_requested = false;
}

int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
			  u8 timer_res, u16 sb_id, bool tx)
{
	struct cau_sb_entry sb_entry;
	int rc;

	if (!p_hwfn->hw_init_done) {
		DP_ERR(p_hwfn, "hardware not initialized yet\n");
		return -EINVAL;
	}

	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
			       sb_id * sizeof(u64),
			       (u64)(uintptr_t)&sb_entry, 2, 0);
	if (rc) {
		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
		return rc;
	}

	if (tx)
		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
	else
		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);

	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
			       (u64)(uintptr_t)&sb_entry,
			       CAU_REG_SB_VAR_MEMORY +
			       sb_id * sizeof(u64), 2, 0);
	if (rc) {
		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
		return rc;
	}

	return rc;
}