summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/microchip/sparx5/sparx5_fdma.c
blob: 141897dfe38819b0d6e9fce8a45ad15f4afd1935 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
// SPDX-License-Identifier: GPL-2.0+
/* Microchip Sparx5 Switch driver
 *
 * Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries.
 *
 * The Sparx5 Chip Register Model can be browsed at this location:
 * https://github.com/microchip-ung/sparx-5_reginfo
 */

#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/dma-mapping.h>

#include "sparx5_main_regs.h"
#include "sparx5_main.h"
#include "sparx5_port.h"

#define FDMA_XTR_CHANNEL		6
#define FDMA_INJ_CHANNEL		0

#define FDMA_DCB_INFO_DATAL(x)		((x) & GENMASK(15, 0))
#define FDMA_DCB_INFO_TOKEN		BIT(17)
#define FDMA_DCB_INFO_INTR		BIT(18)
#define FDMA_DCB_INFO_SW(x)		(((x) << 24) & GENMASK(31, 24))

#define FDMA_DCB_STATUS_BLOCKL(x)	((x) & GENMASK(15, 0))
#define FDMA_DCB_STATUS_SOF		BIT(16)
#define FDMA_DCB_STATUS_EOF		BIT(17)
#define FDMA_DCB_STATUS_INTR		BIT(18)
#define FDMA_DCB_STATUS_DONE		BIT(19)
#define FDMA_DCB_STATUS_BLOCKO(x)	(((x) << 20) & GENMASK(31, 20))
#define FDMA_DCB_INVALID_DATA		0x1

#define FDMA_XTR_BUFFER_SIZE		2048
#define FDMA_WEIGHT			4

/* Frame DMA DCB format
 *
 * +---------------------------+
 * |         Next Ptr          |
 * +---------------------------+
 * |   Reserved  |    Info     |
 * +---------------------------+
 * |         Data0 Ptr         |
 * +---------------------------+
 * |   Reserved  |    Status0  |
 * +---------------------------+
 * |         Data1 Ptr         |
 * +---------------------------+
 * |   Reserved  |    Status1  |
 * +---------------------------+
 * |         Data2 Ptr         |
 * +---------------------------+
 * |   Reserved  |    Status2  |
 * |-------------|-------------|
 * |                           |
 * |                           |
 * |                           |
 * |                           |
 * |                           |
 * |---------------------------|
 * |         Data14 Ptr        |
 * +-------------|-------------+
 * |   Reserved  |    Status14 |
 * +-------------|-------------+
 */

/* For each hardware DB there is an entry in this list and when the HW DB
 * entry is used, this SW DB entry is moved to the back of the list
 */
struct sparx5_db {
	struct list_head list;
	void *cpu_addr;
};

static void sparx5_fdma_rx_add_dcb(struct sparx5_rx *rx,
				   struct sparx5_rx_dcb_hw *dcb,
				   u64 nextptr)
{
	int idx = 0;

	/* Reset the status of the DB */
	for (idx = 0; idx < FDMA_RX_DCB_MAX_DBS; ++idx) {
		struct sparx5_db_hw *db = &dcb->db[idx];

		db->status = FDMA_DCB_STATUS_INTR;
	}
	dcb->nextptr = FDMA_DCB_INVALID_DATA;
	dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE);
	rx->last_entry->nextptr = nextptr;
	rx->last_entry = dcb;
}

static void sparx5_fdma_tx_add_dcb(struct sparx5_tx *tx,
				   struct sparx5_tx_dcb_hw *dcb,
				   u64 nextptr)
{
	int idx = 0;

	/* Reset the status of the DB */
	for (idx = 0; idx < FDMA_TX_DCB_MAX_DBS; ++idx) {
		struct sparx5_db_hw *db = &dcb->db[idx];

		db->status = FDMA_DCB_STATUS_DONE;
	}
	dcb->nextptr = FDMA_DCB_INVALID_DATA;
	dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE);
}

static void sparx5_fdma_rx_activate(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
	/* Write the buffer address in the LLP and LLP1 regs */
	spx5_wr(((u64)rx->dma) & GENMASK(31, 0), sparx5,
		FDMA_DCB_LLP(rx->channel_id));
	spx5_wr(((u64)rx->dma) >> 32, sparx5, FDMA_DCB_LLP1(rx->channel_id));

	/* Set the number of RX DBs to be used, and DB end-of-frame interrupt */
	spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_RX_DCB_MAX_DBS) |
		FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
		FDMA_CH_CFG_CH_INJ_PORT_SET(XTR_QUEUE),
		sparx5, FDMA_CH_CFG(rx->channel_id));

	/* Set the RX Watermark to max */
	spx5_rmw(FDMA_XTR_CFG_XTR_FIFO_WM_SET(31), FDMA_XTR_CFG_XTR_FIFO_WM,
		 sparx5,
		 FDMA_XTR_CFG);

	/* Start RX fdma */
	spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP,
		 sparx5, FDMA_PORT_CTRL(0));

	/* Enable RX channel DB interrupt */
	spx5_rmw(BIT(rx->channel_id),
		 BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
		 sparx5, FDMA_INTR_DB_ENA);

	/* Activate the RX channel */
	spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_ACTIVATE);
}

static void sparx5_fdma_rx_deactivate(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
	/* Dectivate the RX channel */
	spx5_rmw(0, BIT(rx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
		 sparx5, FDMA_CH_ACTIVATE);

	/* Disable RX channel DB interrupt */
	spx5_rmw(0, BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
		 sparx5, FDMA_INTR_DB_ENA);

	/* Stop RX fdma */
	spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(1), FDMA_PORT_CTRL_XTR_STOP,
		 sparx5, FDMA_PORT_CTRL(0));
}

static void sparx5_fdma_tx_activate(struct sparx5 *sparx5, struct sparx5_tx *tx)
{
	/* Write the buffer address in the LLP and LLP1 regs */
	spx5_wr(((u64)tx->dma) & GENMASK(31, 0), sparx5,
		FDMA_DCB_LLP(tx->channel_id));
	spx5_wr(((u64)tx->dma) >> 32, sparx5, FDMA_DCB_LLP1(tx->channel_id));

	/* Set the number of TX DBs to be used, and DB end-of-frame interrupt */
	spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_TX_DCB_MAX_DBS) |
		FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
		FDMA_CH_CFG_CH_INJ_PORT_SET(INJ_QUEUE),
		sparx5, FDMA_CH_CFG(tx->channel_id));

	/* Start TX fdma */
	spx5_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP,
		 sparx5, FDMA_PORT_CTRL(0));

	/* Activate the channel */
	spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_ACTIVATE);
}

static void sparx5_fdma_tx_deactivate(struct sparx5 *sparx5, struct sparx5_tx *tx)
{
	/* Disable the channel */
	spx5_rmw(0, BIT(tx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
		 sparx5, FDMA_CH_ACTIVATE);
}

static void sparx5_fdma_rx_reload(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
	/* Reload the RX channel */
	spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_RELOAD);
}

static void sparx5_fdma_tx_reload(struct sparx5 *sparx5, struct sparx5_tx *tx)
{
	/* Reload the TX channel */
	spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_RELOAD);
}

static struct sk_buff *sparx5_fdma_rx_alloc_skb(struct sparx5_rx *rx)
{
	return __netdev_alloc_skb(rx->ndev, FDMA_XTR_BUFFER_SIZE,
				  GFP_ATOMIC);
}

static bool sparx5_fdma_rx_get_frame(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
	struct sparx5_db_hw *db_hw;
	unsigned int packet_size;
	struct sparx5_port *port;
	struct sk_buff *new_skb;
	struct frame_info fi;
	struct sk_buff *skb;
	dma_addr_t dma_addr;

	/* Check if the DCB is done */
	db_hw = &rx->dcb_entries[rx->dcb_index].db[rx->db_index];
	if (unlikely(!(db_hw->status & FDMA_DCB_STATUS_DONE)))
		return false;
	skb = rx->skb[rx->dcb_index][rx->db_index];
	/* Replace the DB entry with a new SKB */
	new_skb = sparx5_fdma_rx_alloc_skb(rx);
	if (unlikely(!new_skb))
		return false;
	/* Map the new skb data and set the new skb */
	dma_addr = virt_to_phys(new_skb->data);
	rx->skb[rx->dcb_index][rx->db_index] = new_skb;
	db_hw->dataptr = dma_addr;
	packet_size = FDMA_DCB_STATUS_BLOCKL(db_hw->status);
	skb_put(skb, packet_size);
	/* Now do the normal processing of the skb */
	sparx5_ifh_parse((u32 *)skb->data, &fi);
	/* Map to port netdev */
	port = fi.src_port < SPX5_PORTS ?  sparx5->ports[fi.src_port] : NULL;
	if (!port || !port->ndev) {
		dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port);
		sparx5_xtr_flush(sparx5, XTR_QUEUE);
		return false;
	}
	skb->dev = port->ndev;
	skb_pull(skb, IFH_LEN * sizeof(u32));
	if (likely(!(skb->dev->features & NETIF_F_RXFCS)))
		skb_trim(skb, skb->len - ETH_FCS_LEN);

	sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp);
	skb->protocol = eth_type_trans(skb, skb->dev);
	/* Everything we see on an interface that is in the HW bridge
	 * has already been forwarded
	 */
	if (test_bit(port->portno, sparx5->bridge_mask))
		skb->offload_fwd_mark = 1;
	skb->dev->stats.rx_bytes += skb->len;
	skb->dev->stats.rx_packets++;
	rx->packets++;
	netif_receive_skb(skb);
	return true;
}

static int sparx5_fdma_napi_callback(struct napi_struct *napi, int weight)
{
	struct sparx5_rx *rx = container_of(napi, struct sparx5_rx, napi);
	struct sparx5 *sparx5 = container_of(rx, struct sparx5, rx);
	int counter = 0;

	while (counter < weight && sparx5_fdma_rx_get_frame(sparx5, rx)) {
		struct sparx5_rx_dcb_hw *old_dcb;

		rx->db_index++;
		counter++;
		/* Check if the DCB can be reused */
		if (rx->db_index != FDMA_RX_DCB_MAX_DBS)
			continue;
		/* As the DCB  can be reused, just advance the dcb_index
		 * pointer and set the nextptr in the DCB
		 */
		rx->db_index = 0;
		old_dcb = &rx->dcb_entries[rx->dcb_index];
		rx->dcb_index++;
		rx->dcb_index &= FDMA_DCB_MAX - 1;
		sparx5_fdma_rx_add_dcb(rx, old_dcb,
				       rx->dma +
				       ((unsigned long)old_dcb -
					(unsigned long)rx->dcb_entries));
	}
	if (counter < weight) {
		napi_complete_done(&rx->napi, counter);
		spx5_rmw(BIT(rx->channel_id),
			 BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
			 sparx5, FDMA_INTR_DB_ENA);
	}
	if (counter)
		sparx5_fdma_rx_reload(sparx5, rx);
	return counter;
}

static struct sparx5_tx_dcb_hw *sparx5_fdma_next_dcb(struct sparx5_tx *tx,
						     struct sparx5_tx_dcb_hw *dcb)
{
	struct sparx5_tx_dcb_hw *next_dcb;

	next_dcb = dcb;
	next_dcb++;
	/* Handle wrap-around */
	if ((unsigned long)next_dcb >=
	    ((unsigned long)tx->first_entry + FDMA_DCB_MAX * sizeof(*dcb)))
		next_dcb = tx->first_entry;
	return next_dcb;
}

int sparx5_fdma_xmit(struct sparx5 *sparx5, u32 *ifh, struct sk_buff *skb)
{
	struct sparx5_tx_dcb_hw *next_dcb_hw;
	struct sparx5_tx *tx = &sparx5->tx;
	static bool first_time = true;
	struct sparx5_db_hw *db_hw;
	struct sparx5_db *db;

	next_dcb_hw = sparx5_fdma_next_dcb(tx, tx->curr_entry);
	db_hw = &next_dcb_hw->db[0];
	if (!(db_hw->status & FDMA_DCB_STATUS_DONE))
		return -EINVAL;
	db = list_first_entry(&tx->db_list, struct sparx5_db, list);
	list_move_tail(&db->list, &tx->db_list);
	next_dcb_hw->nextptr = FDMA_DCB_INVALID_DATA;
	tx->curr_entry->nextptr = tx->dma +
		((unsigned long)next_dcb_hw -
		 (unsigned long)tx->first_entry);
	tx->curr_entry = next_dcb_hw;
	memset(db->cpu_addr, 0, FDMA_XTR_BUFFER_SIZE);
	memcpy(db->cpu_addr, ifh, IFH_LEN * 4);
	memcpy(db->cpu_addr + IFH_LEN * 4, skb->data, skb->len);
	db_hw->status = FDMA_DCB_STATUS_SOF |
			FDMA_DCB_STATUS_EOF |
			FDMA_DCB_STATUS_BLOCKO(0) |
			FDMA_DCB_STATUS_BLOCKL(skb->len + IFH_LEN * 4 + 4);
	if (first_time) {
		sparx5_fdma_tx_activate(sparx5, tx);
		first_time = false;
	} else {
		sparx5_fdma_tx_reload(sparx5, tx);
	}
	return NETDEV_TX_OK;
}

static int sparx5_fdma_rx_alloc(struct sparx5 *sparx5)
{
	struct sparx5_rx *rx = &sparx5->rx;
	struct sparx5_rx_dcb_hw *dcb;
	int idx, jdx;
	int size;

	size = sizeof(struct sparx5_rx_dcb_hw) * FDMA_DCB_MAX;
	size = ALIGN(size, PAGE_SIZE);
	rx->dcb_entries = devm_kzalloc(sparx5->dev, size, GFP_KERNEL);
	if (!rx->dcb_entries)
		return -ENOMEM;
	rx->dma = virt_to_phys(rx->dcb_entries);
	rx->last_entry = rx->dcb_entries;
	rx->db_index = 0;
	rx->dcb_index = 0;
	/* Now for each dcb allocate the db */
	for (idx = 0; idx < FDMA_DCB_MAX; ++idx) {
		dcb = &rx->dcb_entries[idx];
		dcb->info = 0;
		/* For each db allocate an skb and map skb data pointer to the DB
		 * dataptr. In this way when the frame is received the skb->data
		 * will contain the frame, so no memcpy is needed
		 */
		for (jdx = 0; jdx < FDMA_RX_DCB_MAX_DBS; ++jdx) {
			struct sparx5_db_hw *db_hw = &dcb->db[jdx];
			dma_addr_t dma_addr;
			struct sk_buff *skb;

			skb = sparx5_fdma_rx_alloc_skb(rx);
			if (!skb)
				return -ENOMEM;

			dma_addr = virt_to_phys(skb->data);
			db_hw->dataptr = dma_addr;
			db_hw->status = 0;
			rx->skb[idx][jdx] = skb;
		}
		sparx5_fdma_rx_add_dcb(rx, dcb, rx->dma + sizeof(*dcb) * idx);
	}
	netif_napi_add_weight(rx->ndev, &rx->napi, sparx5_fdma_napi_callback,
			      FDMA_WEIGHT);
	napi_enable(&rx->napi);
	sparx5_fdma_rx_activate(sparx5, rx);
	return 0;
}

static int sparx5_fdma_tx_alloc(struct sparx5 *sparx5)
{
	struct sparx5_tx *tx = &sparx5->tx;
	struct sparx5_tx_dcb_hw *dcb;
	int idx, jdx;
	int size;

	size = sizeof(struct sparx5_tx_dcb_hw) * FDMA_DCB_MAX;
	size = ALIGN(size, PAGE_SIZE);
	tx->curr_entry = devm_kzalloc(sparx5->dev, size, GFP_KERNEL);
	if (!tx->curr_entry)
		return -ENOMEM;
	tx->dma = virt_to_phys(tx->curr_entry);
	tx->first_entry = tx->curr_entry;
	INIT_LIST_HEAD(&tx->db_list);
	/* Now for each dcb allocate the db */
	for (idx = 0; idx < FDMA_DCB_MAX; ++idx) {
		dcb = &tx->curr_entry[idx];
		dcb->info = 0;
		/* TX databuffers must be 16byte aligned */
		for (jdx = 0; jdx < FDMA_TX_DCB_MAX_DBS; ++jdx) {
			struct sparx5_db_hw *db_hw = &dcb->db[jdx];
			struct sparx5_db *db;
			dma_addr_t phys;
			void *cpu_addr;

			cpu_addr = devm_kzalloc(sparx5->dev,
						FDMA_XTR_BUFFER_SIZE,
						GFP_KERNEL);
			if (!cpu_addr)
				return -ENOMEM;
			phys = virt_to_phys(cpu_addr);
			db_hw->dataptr = phys;
			db_hw->status = 0;
			db = devm_kzalloc(sparx5->dev, sizeof(*db), GFP_KERNEL);
			if (!db)
				return -ENOMEM;
			db->cpu_addr = cpu_addr;
			list_add_tail(&db->list, &tx->db_list);
		}
		sparx5_fdma_tx_add_dcb(tx, dcb, tx->dma + sizeof(*dcb) * idx);
		/* Let the curr_entry to point to the last allocated entry */
		if (idx == FDMA_DCB_MAX - 1)
			tx->curr_entry = dcb;
	}
	return 0;
}

static void sparx5_fdma_rx_init(struct sparx5 *sparx5,
				struct sparx5_rx *rx, int channel)
{
	int idx;

	rx->channel_id = channel;
	/* Fetch a netdev for SKB and NAPI use, any will do */
	for (idx = 0; idx < SPX5_PORTS; ++idx) {
		struct sparx5_port *port = sparx5->ports[idx];

		if (port && port->ndev) {
			rx->ndev = port->ndev;
			break;
		}
	}
}

static void sparx5_fdma_tx_init(struct sparx5 *sparx5,
				struct sparx5_tx *tx, int channel)
{
	tx->channel_id = channel;
}

irqreturn_t sparx5_fdma_handler(int irq, void *args)
{
	struct sparx5 *sparx5 = args;
	u32 db = 0, err = 0;

	db = spx5_rd(sparx5, FDMA_INTR_DB);
	err = spx5_rd(sparx5, FDMA_INTR_ERR);
	/* Clear interrupt */
	if (db) {
		spx5_wr(0, sparx5, FDMA_INTR_DB_ENA);
		spx5_wr(db, sparx5, FDMA_INTR_DB);
		napi_schedule(&sparx5->rx.napi);
	}
	if (err) {
		u32 err_type = spx5_rd(sparx5, FDMA_ERRORS);

		dev_err_ratelimited(sparx5->dev,
				    "ERR: int: %#x, type: %#x\n",
				    err, err_type);
		spx5_wr(err, sparx5, FDMA_INTR_ERR);
		spx5_wr(err_type, sparx5, FDMA_ERRORS);
	}
	return IRQ_HANDLED;
}

static void sparx5_fdma_injection_mode(struct sparx5 *sparx5)
{
	const int byte_swap = 1;
	int portno;
	int urgency;

	/* Change mode to fdma extraction and injection */
	spx5_wr(QS_XTR_GRP_CFG_MODE_SET(2) |
		QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) |
		QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap),
		sparx5, QS_XTR_GRP_CFG(XTR_QUEUE));
	spx5_wr(QS_INJ_GRP_CFG_MODE_SET(2) |
		QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap),
		sparx5, QS_INJ_GRP_CFG(INJ_QUEUE));

	/* CPU ports capture setup */
	for (portno = SPX5_PORT_CPU_0; portno <= SPX5_PORT_CPU_1; portno++) {
		/* ASM CPU port: No preamble, IFH, enable padding */
		spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) |
			ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) |
			ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1), /* 1 = IFH */
			sparx5, ASM_PORT_CFG(portno));

		/* Reset WM cnt to unclog queued frames */
		spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1),
			 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR,
			 sparx5,
			 DSM_DEV_TX_STOP_WM_CFG(portno));

		/* Set Disassembler Stop Watermark level */
		spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(100),
			 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM,
			 sparx5,
			 DSM_DEV_TX_STOP_WM_CFG(portno));

		/* Enable port in queue system */
		urgency = sparx5_port_fwd_urg(sparx5, SPEED_2500);
		spx5_rmw(QFWD_SWITCH_PORT_MODE_PORT_ENA_SET(1) |
			 QFWD_SWITCH_PORT_MODE_FWD_URGENCY_SET(urgency),
			 QFWD_SWITCH_PORT_MODE_PORT_ENA |
			 QFWD_SWITCH_PORT_MODE_FWD_URGENCY,
			 sparx5,
			 QFWD_SWITCH_PORT_MODE(portno));

		/* Disable Disassembler buffer underrun watchdog
		 * to avoid truncated packets in XTR
		 */
		spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(1),
			 DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS,
			 sparx5,
			 DSM_BUF_CFG(portno));

		/* Disabling frame aging */
		spx5_rmw(HSCH_PORT_MODE_AGE_DIS_SET(1),
			 HSCH_PORT_MODE_AGE_DIS,
			 sparx5,
			 HSCH_PORT_MODE(portno));
	}
}

int sparx5_fdma_start(struct sparx5 *sparx5)
{
	int err;

	/* Reset FDMA state */
	spx5_wr(FDMA_CTRL_NRESET_SET(0), sparx5, FDMA_CTRL);
	spx5_wr(FDMA_CTRL_NRESET_SET(1), sparx5, FDMA_CTRL);

	/* Force ACP caching but disable read/write allocation */
	spx5_rmw(CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA_SET(1) |
		 CPU_PROC_CTRL_ACP_AWCACHE_SET(0) |
		 CPU_PROC_CTRL_ACP_ARCACHE_SET(0),
		 CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA |
		 CPU_PROC_CTRL_ACP_AWCACHE |
		 CPU_PROC_CTRL_ACP_ARCACHE,
		 sparx5, CPU_PROC_CTRL);

	sparx5_fdma_injection_mode(sparx5);
	sparx5_fdma_rx_init(sparx5, &sparx5->rx, FDMA_XTR_CHANNEL);
	sparx5_fdma_tx_init(sparx5, &sparx5->tx, FDMA_INJ_CHANNEL);
	err = sparx5_fdma_rx_alloc(sparx5);
	if (err) {
		dev_err(sparx5->dev, "Could not allocate RX buffers: %d\n", err);
		return err;
	}
	err = sparx5_fdma_tx_alloc(sparx5);
	if (err) {
		dev_err(sparx5->dev, "Could not allocate TX buffers: %d\n", err);
		return err;
	}
	return err;
}

static u32 sparx5_fdma_port_ctrl(struct sparx5 *sparx5)
{
	return spx5_rd(sparx5, FDMA_PORT_CTRL(0));
}

int sparx5_fdma_stop(struct sparx5 *sparx5)
{
	u32 val;

	napi_disable(&sparx5->rx.napi);
	/* Stop the fdma and channel interrupts */
	sparx5_fdma_rx_deactivate(sparx5, &sparx5->rx);
	sparx5_fdma_tx_deactivate(sparx5, &sparx5->tx);
	/* Wait for the RX channel to stop */
	read_poll_timeout(sparx5_fdma_port_ctrl, val,
			  FDMA_PORT_CTRL_XTR_BUF_IS_EMPTY_GET(val) == 0,
			  500, 10000, 0, sparx5);
	return 0;
}