summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/igb/igb_ptp.c
blob: 2cca8fd5e574feb779be5cbc05f0e176574267da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/ptp_classify.h>

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

/* The 82580 timesync updates the system timer every 8ns by 8ns,
 * and this update value cannot be reprogrammed.
 *
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
 * counts nanoseconds, but the upper 24 bits are not availible. The
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580			40

static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);

/* SYSTIM read access for the 82576 */
static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
	u64 val;
	u32 lo, hi;

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

/* SYSTIM read access for the 82580 */
static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
	u32 lo, hi;
	u64 val;

	/* The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
	rd32(E1000_SYSTIMR);
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

/* SYSTIM read access for I210/I211 */
static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 sec, nsec;

	/* The timestamp latches on lowest register read. For I210/I211, the
	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
	 * resolution, we can ignore it.
	 */
	rd32(E1000_SYSTIMR);
	nsec = rd32(E1000_SYSTIML);
	sec = rd32(E1000_SYSTIMH);

	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}

static void igb_ptp_write_i210(struct igb_adapter *adapter,
			       const struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;

	/* Writing the SYSTIMR register is not necessary as it only provides
	 * sub-nanosecond resolution.
	 */
	wr32(E1000_SYSTIML, ts->tv_nsec);
	wr32(E1000_SYSTIMH, ts->tv_sec);
}

/**
 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
				       struct skb_shared_hwtstamps *hwtstamps,
				       u64 systim)
{
	unsigned long flags;
	u64 ns;

	switch (adapter->hw.mac.type) {
	case e1000_82576:
	case e1000_82580:
	case e1000_i354:
	case e1000_i350:
		spin_lock_irqsave(&adapter->tmreg_lock, flags);

		ns = timecounter_cyc2time(&adapter->tc, systim);

		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

		memset(hwtstamps, 0, sizeof(*hwtstamps));
		hwtstamps->hwtstamp = ns_to_ktime(ns);
		break;
	case e1000_i210:
	case e1000_i211:
		memset(hwtstamps, 0, sizeof(*hwtstamps));
		/* Upper 32 bits contain s, lower 32 bits contain ns. */
		hwtstamps->hwtstamp = ktime_set(systim >> 32,
						systim & 0xFFFFFFFF);
		break;
	default:
		break;
	}
}

/* PTP clock operations */
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
	u64 rate;
	u32 incvalue;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
	u64 rate;
	u32 inca;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
	s64 now;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	now = timecounter_read(&igb->tc);
	now += delta;
	timecounter_init(&igb->tc, &igb->cc, now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
	struct timespec now, then = ns_to_timespec(delta);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, &now);
	now = timespec_add(now, then);
	igb_ptp_write_i210(igb, (const struct timespec *)&now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
				 struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
	u64 ns;
	u32 remainder;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
				struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
				 const struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
	u64 ns;

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
				const struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_write_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *rq, int on)
{
	return -EOPNOTSUPP;
}

/**
 * igb_ptp_tx_work
 * @work: pointer to work struct
 *
 * This work function polls the TSYNCTXCTL valid bit to determine when a
 * timestamp has been taken for the current stored skb.
 **/
static void igb_ptp_tx_work(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
						   ptp_tx_work);
	struct e1000_hw *hw = &adapter->hw;
	u32 tsynctxctl;

	if (!adapter->ptp_tx_skb)
		return;

	if (time_is_before_jiffies(adapter->ptp_tx_start +
				   IGB_PTP_TX_TIMEOUT)) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
		adapter->tx_hwtstamp_timeouts++;
		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
		return;
	}

	tsynctxctl = rd32(E1000_TSYNCTXCTL);
	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
		igb_ptp_tx_hwtstamp(adapter);
	else
		/* reschedule to check later */
		schedule_work(&adapter->ptp_tx_work);
}

static void igb_ptp_overflow_check(struct work_struct *work)
{
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, ptp_overflow_work.work);
	struct timespec ts;

	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);

	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);

	schedule_delayed_work(&igb->ptp_overflow_work,
			      IGB_SYSTIM_OVERFLOW_PERIOD);
}

/**
 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 * @adapter: private network adapter structure
 *
 * This watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
 **/
void igb_ptp_rx_hang(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct igb_ring *rx_ring;
	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
	unsigned long rx_event;
	int n;

	if (hw->mac.type != e1000_82576)
		return;

	/* If we don't have a valid timestamp in the registers, just update the
	 * timeout counter and exit
	 */
	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
		adapter->last_rx_ptp_check = jiffies;
		return;
	}

	/* Determine the most recent watchdog or rx_timestamp event */
	rx_event = adapter->last_rx_ptp_check;
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		if (time_after(rx_ring->last_rx_timestamp, rx_event))
			rx_event = rx_ring->last_rx_timestamp;
	}

	/* Only need to read the high RXSTMP register to clear the lock */
	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
		rd32(E1000_RXSTMPH);
		adapter->last_rx_ptp_check = jiffies;
		adapter->rx_hwtstamp_cleared++;
		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
	}
}

/**
 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 * @adapter: Board private structure.
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 **/
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
	dev_kfree_skb_any(adapter->ptp_tx_skb);
	adapter->ptp_tx_skb = NULL;
	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
}

/**
 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 * @q_vector: Pointer to interrupt specific structure
 * @va: Pointer to address containing Rx buffer
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the first buffer of an
 * incoming frame.  The value is stored in little endian format starting on
 * byte 8.
 **/
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
			 unsigned char *va,
			 struct sk_buff *skb)
{
	__le64 *regval = (__le64 *)va;

	/* The timestamp is recorded in little endian format.
	 * DWORD: 0        1        2        3
	 * Field: Reserved Reserved SYSTIML  SYSTIMH
	 */
	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
				   le64_to_cpu(regval[1]));
}

/**
 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 * @q_vector: Pointer to interrupt specific structure
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the internal registers
 * of the adapter and store it in the skb.
 **/
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
			 struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/* If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a shared tx_flags that we
	 * can turn into a skb_shared_hwtstamps.
	 */
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;

	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}

/**
 * igb_ptp_get_ts_config - get hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 * to deconstruct the settings from the registers, just return a shadow copy
 * of the last known settings.
 **/
int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config *config = &adapter->tstamp_config;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}
/**
 * igb_ptp_set_ts_config - control hardware time stamping
 * @netdev:
 * @ifreq:
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 **/
int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct hwtstamp_config *config = &adapter->tstamp_config;
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_cfg = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	if (copy_from_user(config, ifr->ifr_data, sizeof(*config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config->flags)
		return -EINVAL;

	switch (config->tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		is_l2 = true;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/* 82576 cannot timestamp all packets, which it needs to do to
		 * support both V1 Sync and Delay_Req messages
		 */
		if (hw->mac.type != e1000_82576) {
			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
			config->rx_filter = HWTSTAMP_FILTER_ALL;
			break;
		}
		/* fall through */
	default:
		config->rx_filter = HWTSTAMP_FILTER_NONE;
		return -ERANGE;
	}

	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

	/* Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one Rx filter was configured.
	 */
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
		config->rx_filter = HWTSTAMP_FILTER_ALL;
		is_l2 = true;
		is_l4 = true;

		if ((hw->mac.type == e1000_i210) ||
		    (hw->mac.type == e1000_i211)) {
			regval = rd32(E1000_RXPBS);
			regval |= E1000_RXPBS_CFG_TS_EN;
			wr32(E1000_RXPBS, regval);
		}
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = rd32(E1000_TSYNCRXCTL);
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	wr32(E1000_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		      E1000_ETQF_1588 | /* enable timestamping */
		      ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
	wrfl();

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPL);
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPL);
	regval = rd32(E1000_RXSTMPH);

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}

void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;

	switch (hw->mac.type) {
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 999999881;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
		adapter->ptp_caps.enable = igb_ptp_enable;
		adapter->cc.read = igb_ptp_read_82576;
		adapter->cc.mask = CLOCKSOURCE_MASK(64);
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
	case e1000_i354:
	case e1000_i350:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
		adapter->ptp_caps.enable = igb_ptp_enable;
		adapter->cc.read = igb_ptp_read_82580;
		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;
	case e1000_i210:
	case e1000_i211:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime = igb_ptp_settime_i210;
		adapter->ptp_caps.enable = igb_ptp_enable;
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	wrfl();

	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);

	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());

		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));

		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check);

		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}

	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
		wr32(E1000_IMS, E1000_IMS_TS);
	}

	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
	} else {
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
		adapter->flags |= IGB_FLAG_PTP;
	}
}

/**
 * igb_ptp_stop - Disable PTP device and stop the overflow check.
 * @adapter: Board private structure.
 *
 * This function stops the PTP support and cancels the delayed work.
 **/
void igb_ptp_stop(struct igb_adapter *adapter)
{
	switch (adapter->hw.mac.type) {
	case e1000_82576:
	case e1000_82580:
	case e1000_i354:
	case e1000_i350:
		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
		break;
	case e1000_i210:
	case e1000_i211:
		/* No delayed work to cancel. */
		break;
	default:
		return;
	}

	cancel_work_sync(&adapter->ptp_tx_work);
	if (adapter->ptp_tx_skb) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
	}

	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
		adapter->flags &= ~IGB_FLAG_PTP;
	}
}

/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags & IGB_FLAG_PTP))
		return;

	/* reset the tstamp_config */
	memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
	case e1000_i354:
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		/* Enable the timer functions and interrupts. */
		wr32(E1000_TSAUXC, 0x0);
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
		wr32(E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
		return;
	}

	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());

		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
}