1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
|
/* Intel(R) Gigabit Ethernet Linux driver
* Copyright(c) 2007-2014 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, see <http://www.gnu.org/licenses/>.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*/
#include <linux/if_ether.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include "e1000_mac.h"
#include "igb.h"
static s32 igb_set_default_fc(struct e1000_hw *hw);
static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
/**
* igb_get_bus_info_pcie - Get PCIe bus information
* @hw: pointer to the HW structure
*
* Determines and stores the system bus information for a particular
* network interface. The following bus information is determined and stored:
* bus speed, bus width, type (PCIe), and PCIe function.
**/
s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
s32 ret_val;
u32 reg;
u16 pcie_link_status;
bus->type = e1000_bus_type_pci_express;
ret_val = igb_read_pcie_cap_reg(hw,
PCI_EXP_LNKSTA,
&pcie_link_status);
if (ret_val) {
bus->width = e1000_bus_width_unknown;
bus->speed = e1000_bus_speed_unknown;
} else {
switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
case PCI_EXP_LNKSTA_CLS_2_5GB:
bus->speed = e1000_bus_speed_2500;
break;
case PCI_EXP_LNKSTA_CLS_5_0GB:
bus->speed = e1000_bus_speed_5000;
break;
default:
bus->speed = e1000_bus_speed_unknown;
break;
}
bus->width = (enum e1000_bus_width)((pcie_link_status &
PCI_EXP_LNKSTA_NLW) >>
PCI_EXP_LNKSTA_NLW_SHIFT);
}
reg = rd32(E1000_STATUS);
bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
return 0;
}
/**
* igb_clear_vfta - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* Clears the register array which contains the VLAN filter table by
* setting all the values to 0.
**/
void igb_clear_vfta(struct e1000_hw *hw)
{
u32 offset;
for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
hw->mac.ops.write_vfta(hw, offset, 0);
}
/**
* igb_write_vfta - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: register offset in VLAN filter table
* @value: register value written to VLAN filter table
*
* Writes value at the given offset in the register array which stores
* the VLAN filter table.
**/
void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
{
struct igb_adapter *adapter = hw->back;
array_wr32(E1000_VFTA, offset, value);
wrfl();
adapter->shadow_vfta[offset] = value;
}
/**
* igb_init_rx_addrs - Initialize receive address's
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
* Setups the receive address registers by setting the base receive address
* register to the devices MAC address and clearing all the other receive
* address registers to 0.
**/
void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
{
u32 i;
u8 mac_addr[ETH_ALEN] = {0};
/* Setup the receive address */
hw_dbg("Programming MAC Address into RAR[0]\n");
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
/* Zero out the other (rar_entry_count - 1) receive addresses */
hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
for (i = 1; i < rar_count; i++)
hw->mac.ops.rar_set(hw, mac_addr, i);
}
/**
* igb_find_vlvf_slot - find the VLAN id or the first empty slot
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vlvf_bypass: skip VLVF if no match is found
*
* return the VLVF index where this VLAN id should be placed
*
**/
static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
{
s32 regindex, first_empty_slot;
u32 bits;
/* short cut the special case */
if (vlan == 0)
return 0;
/* if vlvf_bypass is set we don't want to use an empty slot, we
* will simply bypass the VLVF if there are no entries present in the
* VLVF that contain our VLAN
*/
first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
/* Search for the VLAN id in the VLVF entries. Save off the first empty
* slot found along the way.
*
* pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
*/
for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
if (bits == vlan)
return regindex;
if (!first_empty_slot && !bits)
first_empty_slot = regindex;
}
return first_empty_slot ? : -E1000_ERR_NO_SPACE;
}
/**
* igb_vfta_set - enable or disable vlan in VLAN filter table
* @hw: pointer to the HW structure
* @vlan: VLAN id to add or remove
* @vind: VMDq output index that maps queue to VLAN id
* @vlan_on: if true add filter, if false remove
*
* Sets or clears a bit in the VLAN filter table array based on VLAN id
* and if we are adding or removing the filter
**/
s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
bool vlan_on, bool vlvf_bypass)
{
struct igb_adapter *adapter = hw->back;
u32 regidx, vfta_delta, vfta, bits;
s32 vlvf_index;
if ((vlan > 4095) || (vind > 7))
return -E1000_ERR_PARAM;
/* this is a 2 part operation - first the VFTA, then the
* VLVF and VLVFB if VT Mode is set
* We don't write the VFTA until we know the VLVF part succeeded.
*/
/* Part 1
* The VFTA is a bitstring made up of 128 32-bit registers
* that enable the particular VLAN id, much like the MTA:
* bits[11-5]: which register
* bits[4-0]: which bit in the register
*/
regidx = vlan / 32;
vfta_delta = 1 << (vlan % 32);
vfta = adapter->shadow_vfta[regidx];
/* vfta_delta represents the difference between the current value
* of vfta and the value we want in the register. Since the diff
* is an XOR mask we can just update vfta using an XOR.
*/
vfta_delta &= vlan_on ? ~vfta : vfta;
vfta ^= vfta_delta;
/* Part 2
* If VT Mode is set
* Either vlan_on
* make sure the VLAN is in VLVF
* set the vind bit in the matching VLVFB
* Or !vlan_on
* clear the pool bit and possibly the vind
*/
if (!adapter->vfs_allocated_count)
goto vfta_update;
vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
if (vlvf_index < 0) {
if (vlvf_bypass)
goto vfta_update;
return vlvf_index;
}
bits = rd32(E1000_VLVF(vlvf_index));
/* set the pool bit */
bits |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vind);
if (vlan_on)
goto vlvf_update;
/* clear the pool bit */
bits ^= 1 << (E1000_VLVF_POOLSEL_SHIFT + vind);
if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
/* Clear VFTA first, then disable VLVF. Otherwise
* we run the risk of stray packets leaking into
* the PF via the default pool
*/
if (vfta_delta)
hw->mac.ops.write_vfta(hw, regidx, vfta);
/* disable VLVF and clear remaining bit from pool */
wr32(E1000_VLVF(vlvf_index), 0);
return 0;
}
/* If there are still bits set in the VLVFB registers
* for the VLAN ID indicated we need to see if the
* caller is requesting that we clear the VFTA entry bit.
* If the caller has requested that we clear the VFTA
* entry bit but there are still pools/VFs using this VLAN
* ID entry then ignore the request. We're not worried
* about the case where we're turning the VFTA VLAN ID
* entry bit on, only when requested to turn it off as
* there may be multiple pools and/or VFs using the
* VLAN ID entry. In that case we cannot clear the
* VFTA bit until all pools/VFs using that VLAN ID have also
* been cleared. This will be indicated by "bits" being
* zero.
*/
vfta_delta = 0;
vlvf_update:
/* record pool change and enable VLAN ID if not already enabled */
wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
vfta_update:
/* bit was set/cleared before we started */
if (vfta_delta)
hw->mac.ops.write_vfta(hw, regidx, vfta);
return 0;
}
/**
* igb_check_alt_mac_addr - Check for alternate MAC addr
* @hw: pointer to the HW structure
*
* Checks the nvm for an alternate MAC address. An alternate MAC address
* can be setup by pre-boot software and must be treated like a permanent
* address and must override the actual permanent MAC address. If an
* alternate MAC address is found it is saved in the hw struct and
* programmed into RAR0 and the function returns success, otherwise the
* function returns an error.
**/
s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
{
u32 i;
s32 ret_val = 0;
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
u8 alt_mac_addr[ETH_ALEN];
/* Alternate MAC address is handled by the option ROM for 82580
* and newer. SW support not required.
*/
if (hw->mac.type >= e1000_82580)
goto out;
ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
&nvm_alt_mac_addr_offset);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
(nvm_alt_mac_addr_offset == 0x0000))
/* There is no Alternate MAC Address */
goto out;
if (hw->bus.func == E1000_FUNC_1)
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
if (hw->bus.func == E1000_FUNC_2)
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
if (hw->bus.func == E1000_FUNC_3)
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
for (i = 0; i < ETH_ALEN; i += 2) {
offset = nvm_alt_mac_addr_offset + (i >> 1);
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
}
/* if multicast bit is set, the alternate address will not be used */
if (is_multicast_ether_addr(alt_mac_addr)) {
hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
goto out;
}
/* We have a valid alternate MAC address, and we want to treat it the
* same as the normal permanent MAC address stored by the HW into the
* RAR. Do this by mapping this address into RAR0.
*/
hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
out:
return ret_val;
}
/**
* igb_rar_set - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr.
**/
void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32) addr[0] |
((u32) addr[1] << 8) |
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= E1000_RAH_AV;
/* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
wr32(E1000_RAL(index), rar_low);
wrfl();
wr32(E1000_RAH(index), rar_high);
wrfl();
}
/**
* igb_mta_set - Set multicast filter table address
* @hw: pointer to the HW structure
* @hash_value: determines the MTA register and bit to set
*
* The multicast table address is a register array of 32-bit registers.
* The hash_value is used to determine what register the bit is in, the
* current value is read, the new bit is OR'd in and the new value is
* written back into the register.
**/
void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg, mta;
/* The MTA is a register array of 32-bit registers. It is
* treated like an array of (32*mta_reg_count) bits. We want to
* set bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The (hw->mac.mta_reg_count - 1) serves as a
* mask to bits 31:5 of the hash value which gives us the
* register we're modifying. The hash bit within that register
* is determined by the lower 5 bits of the hash value.
*/
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
mta = array_rd32(E1000_MTA, hash_reg);
mta |= (1 << hash_bit);
array_wr32(E1000_MTA, hash_reg, mta);
wrfl();
}
/**
* igb_hash_mc_addr - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value. See
* igb_mta_set()
**/
static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
u32 hash_value, hash_mask;
u8 bit_shift = 0;
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
/* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
* left-shifts where the MSB of mc_addr[5] would still fall within
* the hash_mask. Case 0 does this exactly. Since there are a total
* of 8 bits of shifting, then mc_addr[4] will shift right the
* remaining number of bits. Thus 8 - bit_shift. The rest of the
* cases are a variation of this algorithm...essentially raising the
* number of bits to shift mc_addr[5] left, while still keeping the
* 8-bit shifting total.
*
* For example, given the following Destination MAC Address and an
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
* we can see that the bit_shift for case 0 is 4. These are the hash
* values resulting from each mc_filter_type...
* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
*/
switch (hw->mac.mc_filter_type) {
default:
case 0:
break;
case 1:
bit_shift += 1;
break;
case 2:
bit_shift += 2;
break;
case 3:
bit_shift += 4;
break;
}
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((u16) mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
* igb_update_mc_addr_list - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates entire Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void igb_update_mc_addr_list(struct e1000_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count)
{
u32 hash_value, hash_bit, hash_reg;
int i;
/* clear mta_shadow */
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
/* update mta_shadow from mc_addr_list */
for (i = 0; (u32) i < mc_addr_count; i++) {
hash_value = igb_hash_mc_addr(hw, mc_addr_list);
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
mc_addr_list += (ETH_ALEN);
}
/* replace the entire MTA table */
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
wrfl();
}
/**
* igb_clear_hw_cntrs_base - Clear base hardware counters
* @hw: pointer to the HW structure
*
* Clears the base hardware counters by reading the counter registers.
**/
void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
{
rd32(E1000_CRCERRS);
rd32(E1000_SYMERRS);
rd32(E1000_MPC);
rd32(E1000_SCC);
rd32(E1000_ECOL);
rd32(E1000_MCC);
rd32(E1000_LATECOL);
rd32(E1000_COLC);
rd32(E1000_DC);
rd32(E1000_SEC);
rd32(E1000_RLEC);
rd32(E1000_XONRXC);
rd32(E1000_XONTXC);
rd32(E1000_XOFFRXC);
rd32(E1000_XOFFTXC);
rd32(E1000_FCRUC);
rd32(E1000_GPRC);
rd32(E1000_BPRC);
rd32(E1000_MPRC);
rd32(E1000_GPTC);
rd32(E1000_GORCL);
rd32(E1000_GORCH);
rd32(E1000_GOTCL);
rd32(E1000_GOTCH);
rd32(E1000_RNBC);
rd32(E1000_RUC);
rd32(E1000_RFC);
rd32(E1000_ROC);
rd32(E1000_RJC);
rd32(E1000_TORL);
rd32(E1000_TORH);
rd32(E1000_TOTL);
rd32(E1000_TOTH);
rd32(E1000_TPR);
rd32(E1000_TPT);
rd32(E1000_MPTC);
rd32(E1000_BPTC);
}
/**
* igb_check_for_copper_link - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
**/
s32 igb_check_for_copper_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
bool link;
/* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status) {
ret_val = 0;
goto out;
}
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = igb_phy_has_link(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link)
goto out; /* No link detected */
mac->get_link_status = false;
/* Check if there was DownShift, must be checked
* immediately after link-up
*/
igb_check_downshift(hw);
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg) {
ret_val = -E1000_ERR_CONFIG;
goto out;
}
/* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
igb_config_collision_dist(hw);
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = igb_config_fc_after_link_up(hw);
if (ret_val)
hw_dbg("Error configuring flow control\n");
out:
return ret_val;
}
/**
* igb_setup_link - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
s32 igb_setup_link(struct e1000_hw *hw)
{
s32 ret_val = 0;
/* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
if (igb_check_reset_block(hw))
goto out;
/* If requested flow control is set to default, set flow control
* based on the EEPROM flow control settings.
*/
if (hw->fc.requested_mode == e1000_fc_default) {
ret_val = igb_set_default_fc(hw);
if (ret_val)
goto out;
}
/* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
hw->fc.current_mode = hw->fc.requested_mode;
hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
/* Call the necessary media_type subroutine to configure the link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
if (ret_val)
goto out;
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
hw_dbg("Initializing the Flow Control address, type and timer regs\n");
wr32(E1000_FCT, FLOW_CONTROL_TYPE);
wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
wr32(E1000_FCTTV, hw->fc.pause_time);
ret_val = igb_set_fc_watermarks(hw);
out:
return ret_val;
}
/**
* igb_config_collision_dist - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
**/
void igb_config_collision_dist(struct e1000_hw *hw)
{
u32 tctl;
tctl = rd32(E1000_TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
wr32(E1000_TCTL, tctl);
wrfl();
}
/**
* igb_set_fc_watermarks - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
* Sets the flow control high/low threshold (watermark) registers. If
* flow control XON frame transmission is enabled, then set XON frame
* tansmission as well.
**/
static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
{
s32 ret_val = 0;
u32 fcrtl = 0, fcrth = 0;
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & e1000_fc_tx_pause) {
/* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
fcrtl = hw->fc.low_water;
if (hw->fc.send_xon)
fcrtl |= E1000_FCRTL_XONE;
fcrth = hw->fc.high_water;
}
wr32(E1000_FCRTL, fcrtl);
wr32(E1000_FCRTH, fcrth);
return ret_val;
}
/**
* igb_set_default_fc - Set flow control default values
* @hw: pointer to the HW structure
*
* Read the EEPROM for the default values for flow control and store the
* values.
**/
static s32 igb_set_default_fc(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 lan_offset;
u16 nvm_data;
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if (hw->mac.type == e1000_i350) {
lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
+ lan_offset, 1, &nvm_data);
} else {
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
1, &nvm_data);
}
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
hw->fc.requested_mode = e1000_fc_none;
else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
NVM_WORD0F_ASM_DIR)
hw->fc.requested_mode = e1000_fc_tx_pause;
else
hw->fc.requested_mode = e1000_fc_full;
out:
return ret_val;
}
/**
* igb_force_mac_fc - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
* device control register to reflect the adapter settings. TFCE and RFCE
* need to be explicitly set by software when a copper PHY is used because
* autonegotiation is managed by the PHY rather than the MAC. Software must
* also configure these bits when link is forced on a fiber connection.
**/
s32 igb_force_mac_fc(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val = 0;
ctrl = rd32(E1000_CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc.current_mode" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
switch (hw->fc.current_mode) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
hw_dbg("Flow control param set incorrectly\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
wr32(E1000_CTRL, ctrl);
out:
return ret_val;
}
/**
* igb_config_fc_after_link_up - Configures flow control after link
* @hw: pointer to the HW structure
*
* Checks the status of auto-negotiation after link up to ensure that the
* speed and duplex were not forced. If the link needed to be forced, then
* flow control needs to be forced also. If auto-negotiation is enabled
* and did not fail, then we configure flow control based on our link
* partner.
**/
s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val = 0;
u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
u16 speed, duplex;
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if (mac->autoneg_failed) {
if (hw->phy.media_type == e1000_media_type_internal_serdes)
ret_val = igb_force_mac_fc(hw);
} else {
if (hw->phy.media_type == e1000_media_type_copper)
ret_val = igb_force_mac_fc(hw);
}
if (ret_val) {
hw_dbg("Error forcing flow control settings\n");
goto out;
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
&mii_status_reg);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
&mii_status_reg);
if (ret_val)
goto out;
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
hw_dbg("Copper PHY and Auto Neg has not completed.\n");
goto out;
}
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
* flow control was negotiated.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
if (ret_val)
goto out;
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | E1000_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == e1000_fc_full) {
hw->fc.current_mode = e1000_fc_full;
hw_dbg("Flow Control = FULL.\n");
} else {
hw->fc.current_mode = e1000_fc_rx_pause;
hw_dbg("Flow Control = RX PAUSE frames only.\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_tx_pause;
hw_dbg("Flow Control = TX PAUSE frames only.\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_rx_pause;
hw_dbg("Flow Control = RX PAUSE frames only.\n");
}
/* Per the IEEE spec, at this point flow control should be
* disabled. However, we want to consider that we could
* be connected to a legacy switch that doesn't advertise
* desired flow control, but can be forced on the link
* partner. So if we advertised no flow control, that is
* what we will resolve to. If we advertised some kind of
* receive capability (Rx Pause Only or Full Flow Control)
* and the link partner advertised none, we will configure
* ourselves to enable Rx Flow Control only. We can do
* this safely for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx, no
* harm done since we won't be receiving any PAUSE frames
* anyway. If the intent on the link partner was to have
* flow control enabled, then by us enabling RX only, we
* can at least receive pause frames and process them.
* This is a good idea because in most cases, since we are
* predominantly a server NIC, more times than not we will
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
else if ((hw->fc.requested_mode == e1000_fc_none) ||
(hw->fc.requested_mode == e1000_fc_tx_pause) ||
(hw->fc.strict_ieee)) {
hw->fc.current_mode = e1000_fc_none;
hw_dbg("Flow Control = NONE.\n");
} else {
hw->fc.current_mode = e1000_fc_rx_pause;
hw_dbg("Flow Control = RX PAUSE frames only.\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
hw_dbg("Error getting link speed and duplex\n");
goto out;
}
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = igb_force_mac_fc(hw);
if (ret_val) {
hw_dbg("Error forcing flow control settings\n");
goto out;
}
}
/* Check for the case where we have SerDes media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if ((hw->phy.media_type == e1000_media_type_internal_serdes)
&& mac->autoneg) {
/* Read the PCS_LSTS and check to see if AutoNeg
* has completed.
*/
pcs_status_reg = rd32(E1000_PCS_LSTAT);
if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
hw_dbg("PCS Auto Neg has not completed.\n");
return ret_val;
}
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (PCS_ANADV) and the Auto_Negotiation Base
* Page Ability Register (PCS_LPAB) to determine how
* flow control was negotiated.
*/
pcs_adv_reg = rd32(E1000_PCS_ANADV);
pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
/* Two bits in the Auto Negotiation Advertisement Register
* (PCS_ANADV) and two bits in the Auto Negotiation Base
* Page Ability Register (PCS_LPAB) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | e1000_fc_full
*
*/
if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
(pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
/* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == e1000_fc_full) {
hw->fc.current_mode = e1000_fc_full;
hw_dbg("Flow Control = FULL.\n");
} else {
hw->fc.current_mode = e1000_fc_rx_pause;
hw_dbg("Flow Control = Rx PAUSE frames only.\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*/
else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
(pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
(pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_tx_pause;
hw_dbg("Flow Control = Tx PAUSE frames only.\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*/
else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
(pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
!(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
(pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_rx_pause;
hw_dbg("Flow Control = Rx PAUSE frames only.\n");
} else {
/* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = e1000_fc_none;
hw_dbg("Flow Control = NONE.\n");
}
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
ret_val = igb_force_mac_fc(hw);
if (ret_val) {
hw_dbg("Error forcing flow control settings\n");
return ret_val;
}
}
out:
return ret_val;
}
/**
* igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Read the status register for the current speed/duplex and store the current
* speed and duplex for copper connections.
**/
s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
u32 status;
status = rd32(E1000_STATUS);
if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
hw_dbg("1000 Mbs, ");
} else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
hw_dbg("100 Mbs, ");
} else {
*speed = SPEED_10;
hw_dbg("10 Mbs, ");
}
if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
hw_dbg("Full Duplex\n");
} else {
*duplex = HALF_DUPLEX;
hw_dbg("Half Duplex\n");
}
return 0;
}
/**
* igb_get_hw_semaphore - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
**/
s32 igb_get_hw_semaphore(struct e1000_hw *hw)
{
u32 swsm;
s32 ret_val = 0;
s32 timeout = hw->nvm.word_size + 1;
s32 i = 0;
/* Get the SW semaphore */
while (i < timeout) {
swsm = rd32(E1000_SWSM);
if (!(swsm & E1000_SWSM_SMBI))
break;
udelay(50);
i++;
}
if (i == timeout) {
hw_dbg("Driver can't access device - SMBI bit is set.\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
/* Get the FW semaphore. */
for (i = 0; i < timeout; i++) {
swsm = rd32(E1000_SWSM);
wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
break;
udelay(50);
}
if (i == timeout) {
/* Release semaphores */
igb_put_hw_semaphore(hw);
hw_dbg("Driver can't access the NVM\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
out:
return ret_val;
}
/**
* igb_put_hw_semaphore - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
**/
void igb_put_hw_semaphore(struct e1000_hw *hw)
{
u32 swsm;
swsm = rd32(E1000_SWSM);
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
wr32(E1000_SWSM, swsm);
}
/**
* igb_get_auto_rd_done - Check for auto read completion
* @hw: pointer to the HW structure
*
* Check EEPROM for Auto Read done bit.
**/
s32 igb_get_auto_rd_done(struct e1000_hw *hw)
{
s32 i = 0;
s32 ret_val = 0;
while (i < AUTO_READ_DONE_TIMEOUT) {
if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
break;
usleep_range(1000, 2000);
i++;
}
if (i == AUTO_READ_DONE_TIMEOUT) {
hw_dbg("Auto read by HW from NVM has not completed.\n");
ret_val = -E1000_ERR_RESET;
goto out;
}
out:
return ret_val;
}
/**
* igb_valid_led_default - Verify a valid default LED config
* @hw: pointer to the HW structure
* @data: pointer to the NVM (EEPROM)
*
* Read the EEPROM for the current default LED configuration. If the
* LED configuration is not valid, set to a valid LED configuration.
**/
static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
{
s32 ret_val;
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
switch (hw->phy.media_type) {
case e1000_media_type_internal_serdes:
*data = ID_LED_DEFAULT_82575_SERDES;
break;
case e1000_media_type_copper:
default:
*data = ID_LED_DEFAULT;
break;
}
}
out:
return ret_val;
}
/**
* igb_id_led_init -
* @hw: pointer to the HW structure
*
**/
s32 igb_id_led_init(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
const u32 ledctl_mask = 0x000000FF;
const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
u16 data, i, temp;
const u16 led_mask = 0x0F;
/* i210 and i211 devices have different LED mechanism */
if ((hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211))
ret_val = igb_valid_led_default_i210(hw, &data);
else
ret_val = igb_valid_led_default(hw, &data);
if (ret_val)
goto out;
mac->ledctl_default = rd32(E1000_LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
mac->ledctl_mode2 = mac->ledctl_default;
for (i = 0; i < 4; i++) {
temp = (data >> (i << 2)) & led_mask;
switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_on << (i << 3);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_on << (i << 3);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
}
out:
return ret_val;
}
/**
* igb_cleanup_led - Set LED config to default operation
* @hw: pointer to the HW structure
*
* Remove the current LED configuration and set the LED configuration
* to the default value, saved from the EEPROM.
**/
s32 igb_cleanup_led(struct e1000_hw *hw)
{
wr32(E1000_LEDCTL, hw->mac.ledctl_default);
return 0;
}
/**
* igb_blink_led - Blink LED
* @hw: pointer to the HW structure
*
* Blink the led's which are set to be on.
**/
s32 igb_blink_led(struct e1000_hw *hw)
{
u32 ledctl_blink = 0;
u32 i;
if (hw->phy.media_type == e1000_media_type_fiber) {
/* always blink LED0 for PCI-E fiber */
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
} else {
/* Set the blink bit for each LED that's "on" (0x0E)
* (or "off" if inverted) in ledctl_mode2. The blink
* logic in hardware only works when mode is set to "on"
* so it must be changed accordingly when the mode is
* "off" and inverted.
*/
ledctl_blink = hw->mac.ledctl_mode2;
for (i = 0; i < 32; i += 8) {
u32 mode = (hw->mac.ledctl_mode2 >> i) &
E1000_LEDCTL_LED0_MODE_MASK;
u32 led_default = hw->mac.ledctl_default >> i;
if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
(mode == E1000_LEDCTL_MODE_LED_ON)) ||
((led_default & E1000_LEDCTL_LED0_IVRT) &&
(mode == E1000_LEDCTL_MODE_LED_OFF))) {
ledctl_blink &=
~(E1000_LEDCTL_LED0_MODE_MASK << i);
ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
E1000_LEDCTL_MODE_LED_ON) << i;
}
}
}
wr32(E1000_LEDCTL, ledctl_blink);
return 0;
}
/**
* igb_led_off - Turn LED off
* @hw: pointer to the HW structure
*
* Turn LED off.
**/
s32 igb_led_off(struct e1000_hw *hw)
{
switch (hw->phy.media_type) {
case e1000_media_type_copper:
wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
break;
default:
break;
}
return 0;
}
/**
* igb_disable_pcie_master - Disables PCI-express master access
* @hw: pointer to the HW structure
*
* Returns 0 (0) if successful, else returns -10
* (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
* the master requests to be disabled.
*
* Disables PCI-Express master access and verifies there are no pending
* requests.
**/
s32 igb_disable_pcie_master(struct e1000_hw *hw)
{
u32 ctrl;
s32 timeout = MASTER_DISABLE_TIMEOUT;
s32 ret_val = 0;
if (hw->bus.type != e1000_bus_type_pci_express)
goto out;
ctrl = rd32(E1000_CTRL);
ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
wr32(E1000_CTRL, ctrl);
while (timeout) {
if (!(rd32(E1000_STATUS) &
E1000_STATUS_GIO_MASTER_ENABLE))
break;
udelay(100);
timeout--;
}
if (!timeout) {
hw_dbg("Master requests are pending.\n");
ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
goto out;
}
out:
return ret_val;
}
/**
* igb_validate_mdi_setting - Verify MDI/MDIx settings
* @hw: pointer to the HW structure
*
* Verify that when not using auto-negotitation that MDI/MDIx is correctly
* set, which is forced to MDI mode only.
**/
s32 igb_validate_mdi_setting(struct e1000_hw *hw)
{
s32 ret_val = 0;
/* All MDI settings are supported on 82580 and newer. */
if (hw->mac.type >= e1000_82580)
goto out;
if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
hw_dbg("Invalid MDI setting detected\n");
hw->phy.mdix = 1;
ret_val = -E1000_ERR_CONFIG;
goto out;
}
out:
return ret_val;
}
/**
* igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
* @hw: pointer to the HW structure
* @reg: 32bit register offset such as E1000_SCTL
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes an address/data control type register. There are several of these
* and they all have the format address << 8 | data and bit 31 is polled for
* completion.
**/
s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
u32 offset, u8 data)
{
u32 i, regvalue = 0;
s32 ret_val = 0;
/* Set up the address and data */
regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
wr32(reg, regvalue);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
udelay(5);
regvalue = rd32(reg);
if (regvalue & E1000_GEN_CTL_READY)
break;
}
if (!(regvalue & E1000_GEN_CTL_READY)) {
hw_dbg("Reg %08x did not indicate ready\n", reg);
ret_val = -E1000_ERR_PHY;
goto out;
}
out:
return ret_val;
}
/**
* igb_enable_mng_pass_thru - Enable processing of ARP's
* @hw: pointer to the HW structure
*
* Verifies the hardware needs to leave interface enabled so that frames can
* be directed to and from the management interface.
**/
bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
{
u32 manc;
u32 fwsm, factps;
bool ret_val = false;
if (!hw->mac.asf_firmware_present)
goto out;
manc = rd32(E1000_MANC);
if (!(manc & E1000_MANC_RCV_TCO_EN))
goto out;
if (hw->mac.arc_subsystem_valid) {
fwsm = rd32(E1000_FWSM);
factps = rd32(E1000_FACTPS);
if (!(factps & E1000_FACTPS_MNGCG) &&
((fwsm & E1000_FWSM_MODE_MASK) ==
(e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
ret_val = true;
goto out;
}
} else {
if ((manc & E1000_MANC_SMBUS_EN) &&
!(manc & E1000_MANC_ASF_EN)) {
ret_val = true;
goto out;
}
}
out:
return ret_val;
}
|