summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/fm10k/fm10k_main.c
blob: 1f48298f01e6584b3b19cb71d6be7675391e5edd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2018 Intel Corporation. */

#include <linux/types.h>
#include <linux/module.h>
#include <net/ipv6.h>
#include <net/ip.h>
#include <net/tcp.h>
#include <linux/if_macvlan.h>
#include <linux/prefetch.h>

#include "fm10k.h"

#define DRV_VERSION	"0.26.1-k"
#define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
const char fm10k_driver_version[] = DRV_VERSION;
char fm10k_driver_name[] = "fm10k";
static const char fm10k_driver_string[] = DRV_SUMMARY;
static const char fm10k_copyright[] =
	"Copyright(c) 2013 - 2018 Intel Corporation.";

MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION(DRV_SUMMARY);
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);

/* single workqueue for entire fm10k driver */
struct workqueue_struct *fm10k_workqueue;

/**
 * fm10k_init_module - Driver Registration Routine
 *
 * fm10k_init_module is the first routine called when the driver is
 * loaded.  All it does is register with the PCI subsystem.
 **/
static int __init fm10k_init_module(void)
{
	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
	pr_info("%s\n", fm10k_copyright);

	/* create driver workqueue */
	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
					  fm10k_driver_name);

	fm10k_dbg_init();

	return fm10k_register_pci_driver();
}
module_init(fm10k_init_module);

/**
 * fm10k_exit_module - Driver Exit Cleanup Routine
 *
 * fm10k_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit fm10k_exit_module(void)
{
	fm10k_unregister_pci_driver();

	fm10k_dbg_exit();

	/* destroy driver workqueue */
	destroy_workqueue(fm10k_workqueue);
}
module_exit(fm10k_exit_module);

static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
				    struct fm10k_rx_buffer *bi)
{
	struct page *page = bi->page;
	dma_addr_t dma;

	/* Only page will be NULL if buffer was consumed */
	if (likely(page))
		return true;

	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);

	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_page(page);

		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;

	return true;
}

/**
 * fm10k_alloc_rx_buffers - Replace used receive buffers
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
 **/
void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
{
	union fm10k_rx_desc *rx_desc;
	struct fm10k_rx_buffer *bi;
	u16 i = rx_ring->next_to_use;

	/* nothing to do */
	if (!cleaned_count)
		return;

	rx_desc = FM10K_RX_DESC(rx_ring, i);
	bi = &rx_ring->rx_buffer[i];
	i -= rx_ring->count;

	do {
		if (!fm10k_alloc_mapped_page(rx_ring, bi))
			break;

		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);

		rx_desc++;
		bi++;
		i++;
		if (unlikely(!i)) {
			rx_desc = FM10K_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_buffer;
			i -= rx_ring->count;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->d.staterr = 0;

		cleaned_count--;
	} while (cleaned_count);

	i += rx_ring->count;

	if (rx_ring->next_to_use != i) {
		/* record the next descriptor to use */
		rx_ring->next_to_use = i;

		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		wmb();

		/* notify hardware of new descriptors */
		writel(i, rx_ring->tail);
	}
}

/**
 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the interface
 **/
static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
				struct fm10k_rx_buffer *old_buff)
{
	struct fm10k_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	*new_buff = *old_buff;

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
					 FM10K_RX_BUFSZ,
					 DMA_FROM_DEVICE);
}

static inline bool fm10k_page_is_reserved(struct page *page)
{
	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}

static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
				    struct page *page,
				    unsigned int __maybe_unused truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(fm10k_page_is_reserved(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
		return false;
#endif

	/* Even if we own the page, we are not allowed to use atomic_set()
	 * This would break get_page_unless_zero() users.
	 */
	page_ref_inc(page);

	return true;
}

/**
 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_buffer: buffer containing page to add
 * @size: packet size from rx_desc
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the interface.
 **/
static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
			      unsigned int size,
			      union fm10k_rx_desc *rx_desc,
			      struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned char *va = page_address(page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = FM10K_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, 512);
#endif
	unsigned int pull_len;

	if (unlikely(skb_is_nonlinear(skb)))
		goto add_tail_frag;

	if (likely(size <= FM10K_RX_HDR_LEN)) {
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* page is not reserved, we can reuse buffer as-is */
		if (likely(!fm10k_page_is_reserved(page)))
			return true;

		/* this page cannot be reused so discard it */
		__free_page(page);
		return false;
	}

	/* we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	va += pull_len;
	size -= pull_len;

add_tail_frag:
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			(unsigned long)va & ~PAGE_MASK, size, truesize);

	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
}

static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
					     union fm10k_rx_desc *rx_desc,
					     struct sk_buff *skb)
{
	unsigned int size = le16_to_cpu(rx_desc->w.length);
	struct fm10k_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
				     FM10K_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		fm10k_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
				     union fm10k_rx_desc *rx_desc,
				     struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
		return;

	/* TCP/UDP checksum error bit is set */
	if (fm10k_test_staterr(rx_desc,
			       FM10K_RXD_STATUS_L4E |
			       FM10K_RXD_STATUS_L4E2 |
			       FM10K_RXD_STATUS_IPE |
			       FM10K_RXD_STATUS_IPE2)) {
		ring->rx_stats.csum_err++;
		return;
	}

	/* It must be a TCP or UDP packet with a valid checksum */
	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
		skb->encapsulation = true;
	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
		return;

	skb->ip_summed = CHECKSUM_UNNECESSARY;

	ring->rx_stats.csum_good++;
}

#define FM10K_RSS_L4_TYPES_MASK \
	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
	 BIT(FM10K_RSSTYPE_IPV6_UDP))

static inline void fm10k_rx_hash(struct fm10k_ring *ring,
				 union fm10k_rx_desc *rx_desc,
				 struct sk_buff *skb)
{
	u16 rss_type;

	if (!(ring->netdev->features & NETIF_F_RXHASH))
		return;

	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
	if (!rss_type)
		return;

	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
}

static void fm10k_type_trans(struct fm10k_ring *rx_ring,
			     union fm10k_rx_desc __maybe_unused *rx_desc,
			     struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;
	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);

	/* check to see if DGLORT belongs to a MACVLAN */
	if (l2_accel) {
		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;

		idx -= l2_accel->dglort;
		if (idx < l2_accel->size && l2_accel->macvlan[idx])
			dev = l2_accel->macvlan[idx];
		else
			l2_accel = NULL;
	}

	/* Record Rx queue, or update macvlan statistics */
	if (!l2_accel)
		skb_record_rx_queue(skb, rx_ring->queue_index);
	else
		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
				 false);

	skb->protocol = eth_type_trans(skb, dev);
}

/**
 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 * other fields within the skb.
 **/
static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
					     union fm10k_rx_desc *rx_desc,
					     struct sk_buff *skb)
{
	unsigned int len = skb->len;

	fm10k_rx_hash(rx_ring, rx_desc, skb);

	fm10k_rx_checksum(rx_ring, rx_desc, skb);

	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;

	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;

	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;

	if (rx_desc->w.vlan) {
		u16 vid = le16_to_cpu(rx_desc->w.vlan);

		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
		else if (vid & VLAN_PRIO_MASK)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       vid & VLAN_PRIO_MASK);
	}

	fm10k_type_trans(rx_ring, rx_desc, skb);

	return len;
}

/**
 * fm10k_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
			     union fm10k_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(FM10K_RX_DESC(rx_ring, ntc));

	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
		return false;

	return true;
}

/**
 * fm10k_cleanup_headers - Correct corrupted or empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being fixed
 *
 * Address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
				  union fm10k_rx_desc *rx_desc,
				  struct sk_buff *skb)
{
	if (unlikely((fm10k_test_staterr(rx_desc,
					 FM10K_RXD_STATUS_RXE)))) {
#define FM10K_TEST_RXD_BIT(rxd, bit) \
	((rxd)->w.csum_err & cpu_to_le16(bit))
		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
			rx_ring->rx_stats.switch_errors++;
		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
			rx_ring->rx_stats.drops++;
		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
			rx_ring->rx_stats.pp_errors++;
		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
			rx_ring->rx_stats.link_errors++;
		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
			rx_ring->rx_stats.length_errors++;
		dev_kfree_skb_any(skb);
		rx_ring->rx_stats.errors++;
		return true;
	}

	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * fm10k_receive_skb - helper function to handle rx indications
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 **/
static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
			      struct sk_buff *skb)
{
	napi_gro_receive(&q_vector->napi, skb);
}

static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
			      struct fm10k_ring *rx_ring,
			      int budget)
{
	struct sk_buff *skb = rx_ring->skb;
	unsigned int total_bytes = 0, total_packets = 0;
	u16 cleaned_count = fm10k_desc_unused(rx_ring);

	while (likely(total_packets < budget)) {
		union fm10k_rx_desc *rx_desc;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}

		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);

		if (!rx_desc->d.staterr)
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * descriptor has been written back
		 */
		dma_rmb();

		/* retrieve a buffer from the ring */
		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);

		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;

		cleaned_count++;

		/* fetch next buffer in frame if non-eop */
		if (fm10k_is_non_eop(rx_ring, rx_desc))
			continue;

		/* verify the packet layout is correct */
		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
		}

		/* populate checksum, timestamp, VLAN, and protocol */
		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);

		fm10k_receive_skb(q_vector, skb);

		/* reset skb pointer */
		skb = NULL;

		/* update budget accounting */
		total_packets++;
	}

	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_packets;
	rx_ring->stats.bytes += total_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;

	return total_packets;
}

#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
{
	struct fm10k_intfc *interface = netdev_priv(skb->dev);
	struct fm10k_udp_port *vxlan_port;

	/* we can only offload a vxlan if we recognize it as such */
	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
					      struct fm10k_udp_port, list);

	if (!vxlan_port)
		return NULL;
	if (vxlan_port->port != udp_hdr(skb)->dest)
		return NULL;

	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
}

#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
#define NVGRE_TNI htons(0x2000)
struct fm10k_nvgre_hdr {
	__be16 flags;
	__be16 proto;
	__be32 tni;
};

static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
{
	struct fm10k_nvgre_hdr *nvgre_hdr;
	int hlen = ip_hdrlen(skb);

	/* currently only IPv4 is supported due to hlen above */
	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
		return NULL;

	/* our transport header should be NVGRE */
	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);

	/* verify all reserved flags are 0 */
	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
		return NULL;

	/* report start of ethernet header */
	if (nvgre_hdr->flags & NVGRE_TNI)
		return (struct ethhdr *)(nvgre_hdr + 1);

	return (struct ethhdr *)(&nvgre_hdr->tni);
}

__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
{
	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
	struct ethhdr *eth_hdr;

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB))
		return 0;

	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
		return 0;
	}

	switch (l4_hdr) {
	case IPPROTO_UDP:
		eth_hdr = fm10k_port_is_vxlan(skb);
		break;
	case IPPROTO_GRE:
		eth_hdr = fm10k_gre_is_nvgre(skb);
		break;
	default:
		return 0;
	}

	if (!eth_hdr)
		return 0;

	switch (eth_hdr->h_proto) {
	case htons(ETH_P_IP):
		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
		break;
	default:
		return 0;
	}

	switch (inner_l4_hdr) {
	case IPPROTO_TCP:
		inner_l4_hlen = inner_tcp_hdrlen(skb);
		break;
	case IPPROTO_UDP:
		inner_l4_hlen = 8;
		break;
	default:
		return 0;
	}

	/* The hardware allows tunnel offloads only if the combined inner and
	 * outer header is 184 bytes or less
	 */
	if (skb_inner_transport_header(skb) + inner_l4_hlen -
	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
		return 0;

	return eth_hdr->h_proto;
}

static int fm10k_tso(struct fm10k_ring *tx_ring,
		     struct fm10k_tx_buffer *first)
{
	struct sk_buff *skb = first->skb;
	struct fm10k_tx_desc *tx_desc;
	unsigned char *th;
	u8 hdrlen;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	if (!skb_is_gso(skb))
		return 0;

	/* compute header lengths */
	if (skb->encapsulation) {
		if (!fm10k_tx_encap_offload(skb))
			goto err_vxlan;
		th = skb_inner_transport_header(skb);
	} else {
		th = skb_transport_header(skb);
	}

	/* compute offset from SOF to transport header and add header len */
	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);

	first->tx_flags |= FM10K_TX_FLAGS_CSUM;

	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * hdrlen;

	/* populate Tx descriptor header size and mss */
	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
	tx_desc->hdrlen = hdrlen;
	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);

	return 1;

err_vxlan:
	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
	if (net_ratelimit())
		netdev_err(tx_ring->netdev,
			   "TSO requested for unsupported tunnel, disabling offload\n");
	return -1;
}

static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
			  struct fm10k_tx_buffer *first)
{
	struct sk_buff *skb = first->skb;
	struct fm10k_tx_desc *tx_desc;
	union {
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
		u8 *raw;
	} network_hdr;
	u8 *transport_hdr;
	__be16 frag_off;
	__be16 protocol;
	u8 l4_hdr = 0;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		goto no_csum;

	if (skb->encapsulation) {
		protocol = fm10k_tx_encap_offload(skb);
		if (!protocol) {
			if (skb_checksum_help(skb)) {
				dev_warn(tx_ring->dev,
					 "failed to offload encap csum!\n");
				tx_ring->tx_stats.csum_err++;
			}
			goto no_csum;
		}
		network_hdr.raw = skb_inner_network_header(skb);
		transport_hdr = skb_inner_transport_header(skb);
	} else {
		protocol = vlan_get_protocol(skb);
		network_hdr.raw = skb_network_header(skb);
		transport_hdr = skb_transport_header(skb);
	}

	switch (protocol) {
	case htons(ETH_P_IP):
		l4_hdr = network_hdr.ipv4->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = network_hdr.ipv6->nexthdr;
		if (likely((transport_hdr - network_hdr.raw) ==
			   sizeof(struct ipv6hdr)))
			break;
		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
				      sizeof(struct ipv6hdr),
				 &l4_hdr, &frag_off);
		if (unlikely(frag_off))
			l4_hdr = NEXTHDR_FRAGMENT;
		break;
	default:
		break;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
	case IPPROTO_UDP:
		break;
	case IPPROTO_GRE:
		if (skb->encapsulation)
			break;
		/* fall through */
	default:
		if (unlikely(net_ratelimit())) {
			dev_warn(tx_ring->dev,
				 "partial checksum, version=%d l4 proto=%x\n",
				 protocol, l4_hdr);
		}
		skb_checksum_help(skb);
		tx_ring->tx_stats.csum_err++;
		goto no_csum;
	}

	/* update TX checksum flag */
	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
	tx_ring->tx_stats.csum_good++;

no_csum:
	/* populate Tx descriptor header size and mss */
	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
	tx_desc->hdrlen = 0;
	tx_desc->mss = 0;
}

#define FM10K_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	u32 desc_flags = 0;

	/* set checksum offload bits */
	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
				     FM10K_TXD_FLAG_CSUM);

	return desc_flags;
}

static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
			       struct fm10k_tx_desc *tx_desc, u16 i,
			       dma_addr_t dma, unsigned int size, u8 desc_flags)
{
	/* set RS and INT for last frame in a cache line */
	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;

	/* record values to descriptor */
	tx_desc->buffer_addr = cpu_to_le64(dma);
	tx_desc->flags = desc_flags;
	tx_desc->buflen = cpu_to_le16(size);

	/* return true if we just wrapped the ring */
	return i == tx_ring->count;
}

static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);

	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available */
	if (likely(fm10k_desc_unused(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
{
	if (likely(fm10k_desc_unused(tx_ring) >= size))
		return 0;
	return __fm10k_maybe_stop_tx(tx_ring, size);
}

static void fm10k_tx_map(struct fm10k_ring *tx_ring,
			 struct fm10k_tx_buffer *first)
{
	struct sk_buff *skb = first->skb;
	struct fm10k_tx_buffer *tx_buffer;
	struct fm10k_tx_desc *tx_desc;
	struct skb_frag_struct *frag;
	unsigned char *data;
	dma_addr_t dma;
	unsigned int data_len, size;
	u32 tx_flags = first->tx_flags;
	u16 i = tx_ring->next_to_use;
	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);

	tx_desc = FM10K_TX_DESC(tx_ring, i);

	/* add HW VLAN tag */
	if (skb_vlan_tag_present(skb))
		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	else
		tx_desc->vlan = 0;

	size = skb_headlen(skb);
	data = skb->data;

	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);

	data_len = skb->data_len;
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
					       FM10K_MAX_DATA_PER_TXD, flags)) {
				tx_desc = FM10K_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += FM10K_MAX_DATA_PER_TXD;
			size -= FM10K_MAX_DATA_PER_TXD;
		}

		if (likely(!data_len))
			break;

		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
				       dma, size, flags)) {
			tx_desc = FM10K_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_buffer = &tx_ring->tx_buffer[i];
	}

	/* write last descriptor with LAST bit set */
	flags |= FM10K_TXD_FLAG_LAST;

	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
		i = 0;

	/* record bytecount for BQL */
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

	/* record SW timestamp if HW timestamp is not available */
	skb_tx_timestamp(first->skb);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	tx_ring->next_to_use = i;

	/* Make sure there is space in the ring for the next send. */
	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);

	/* notify HW of packet */
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
		writel(i, tx_ring->tail);
	}

	return;
dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer map */
	for (;;) {
		tx_buffer = &tx_ring->tx_buffer[i];
		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
				  struct fm10k_ring *tx_ring)
{
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
	struct fm10k_tx_buffer *first;
	unsigned short f;
	u32 tx_flags = 0;
	int tso;

	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
	 *       + 2 desc gap to keep tail from touching head
	 * otherwise try next time
	 */
	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);

	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
		tx_ring->tx_stats.tx_busy++;
		return NETDEV_TX_BUSY;
	}

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
	first->gso_segs = 1;

	/* record initial flags and protocol */
	first->tx_flags = tx_flags;

	tso = fm10k_tso(tx_ring, first);
	if (tso < 0)
		goto out_drop;
	else if (!tso)
		fm10k_tx_csum(tx_ring, first);

	fm10k_tx_map(tx_ring, first);

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;

	return NETDEV_TX_OK;
}

static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
{
	return ring->stats.packets;
}

/**
 * fm10k_get_tx_pending - how many Tx descriptors not processed
 * @ring: the ring structure
 * @in_sw: is tx_pending being checked in SW or in HW?
 */
u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
{
	struct fm10k_intfc *interface = ring->q_vector->interface;
	struct fm10k_hw *hw = &interface->hw;
	u32 head, tail;

	if (likely(in_sw)) {
		head = ring->next_to_clean;
		tail = ring->next_to_use;
	} else {
		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
	}

	return ((head <= tail) ? tail : tail + ring->count) - head;
}

bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
{
	u32 tx_done = fm10k_get_tx_completed(tx_ring);
	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);

	clear_check_for_tx_hang(tx_ring);

	/* Check for a hung queue, but be thorough. This verifies
	 * that a transmit has been completed since the previous
	 * check AND there is at least one packet pending. By
	 * requiring this to fail twice we avoid races with
	 * clearing the ARMED bit and conditions where we
	 * run the check_tx_hang logic with a transmit completion
	 * pending but without time to complete it yet.
	 */
	if (!tx_pending || (tx_done_old != tx_done)) {
		/* update completed stats and continue */
		tx_ring->tx_stats.tx_done_old = tx_done;
		/* reset the countdown */
		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);

		return false;
	}

	/* make sure it is true for two checks in a row */
	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
}

/**
 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
 * @interface: driver private struct
 **/
void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
{
	/* Do the reset outside of interrupt context */
	if (!test_bit(__FM10K_DOWN, interface->state)) {
		interface->tx_timeout_count++;
		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
		fm10k_service_event_schedule(interface);
	}
}

/**
 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
 * @q_vector: structure containing interrupt and ring information
 * @tx_ring: tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
 **/
static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
			       struct fm10k_ring *tx_ring, int napi_budget)
{
	struct fm10k_intfc *interface = q_vector->interface;
	struct fm10k_tx_buffer *tx_buffer;
	struct fm10k_tx_desc *tx_desc;
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = q_vector->tx.work_limit;
	unsigned int i = tx_ring->next_to_clean;

	if (test_bit(__FM10K_DOWN, interface->state))
		return true;

	tx_buffer = &tx_ring->tx_buffer[i];
	tx_desc = FM10K_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		smp_rmb();

		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;

		/* free the skb */
		napi_consume_skb(tx_buffer->skb, napi_budget);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buffer = tx_ring->tx_buffer;
				tx_desc = FM10K_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buffer, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buffer, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer;
			tx_desc = FM10K_TX_DESC(tx_ring, 0);
		}

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;

	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
		/* schedule immediate reset if we believe we hung */
		struct fm10k_hw *hw = &interface->hw;

		netif_err(interface, drv, tx_ring->netdev,
			  "Detected Tx Unit Hang\n"
			  "  Tx Queue             <%d>\n"
			  "  TDH, TDT             <%x>, <%x>\n"
			  "  next_to_use          <%x>\n"
			  "  next_to_clean        <%x>\n",
			  tx_ring->queue_index,
			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
			  tx_ring->next_to_use, i);

		netif_stop_subqueue(tx_ring->netdev,
				    tx_ring->queue_index);

		netif_info(interface, probe, tx_ring->netdev,
			   "tx hang %d detected on queue %d, resetting interface\n",
			   interface->tx_timeout_count + 1,
			   tx_ring->queue_index);

		fm10k_tx_timeout_reset(interface);

		/* the netdev is about to reset, no point in enabling stuff */
		return true;
	}

	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !test_bit(__FM10K_DOWN, interface->state)) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

	return !!budget;
}

/**
 * fm10k_update_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  The
 *      divisors and thresholds used by this function were determined based
 *      on theoretical maximum wire speed and testing data, in order to
 *      minimize response time while increasing bulk throughput.
 *
 * @ring_container: Container for rings to have ITR updated
 **/
static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
{
	unsigned int avg_wire_size, packets, itr_round;

	/* Only update ITR if we are using adaptive setting */
	if (!ITR_IS_ADAPTIVE(ring_container->itr))
		goto clear_counts;

	packets = ring_container->total_packets;
	if (!packets)
		goto clear_counts;

	avg_wire_size = ring_container->total_bytes / packets;

	/* The following is a crude approximation of:
	 *  wmem_default / (size + overhead) = desired_pkts_per_int
	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
	 *
	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
	 * formula down to
	 *
	 *  (34 * (size + 24)) / (size + 640) = ITR
	 *
	 * We first do some math on the packet size and then finally bitshift
	 * by 8 after rounding up. We also have to account for PCIe link speed
	 * difference as ITR scales based on this.
	 */
	if (avg_wire_size <= 360) {
		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
		avg_wire_size *= 8;
		avg_wire_size += 376;
	} else if (avg_wire_size <= 1152) {
		/* 77K ints/sec to 45K ints/sec */
		avg_wire_size *= 3;
		avg_wire_size += 2176;
	} else if (avg_wire_size <= 1920) {
		/* 45K ints/sec to 38K ints/sec */
		avg_wire_size += 4480;
	} else {
		/* plateau at a limit of 38K ints/sec */
		avg_wire_size = 6656;
	}

	/* Perform final bitshift for division after rounding up to ensure
	 * that the calculation will never get below a 1. The bit shift
	 * accounts for changes in the ITR due to PCIe link speed.
	 */
	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
	avg_wire_size += BIT(itr_round) - 1;
	avg_wire_size >>= itr_round;

	/* write back value and retain adaptive flag */
	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;

clear_counts:
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;
}

static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
{
	/* Enable auto-mask and clear the current mask */
	u32 itr = FM10K_ITR_ENABLE;

	/* Update Tx ITR */
	fm10k_update_itr(&q_vector->tx);

	/* Update Rx ITR */
	fm10k_update_itr(&q_vector->rx);

	/* Store Tx itr in timer slot 0 */
	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);

	/* Shift Rx itr to timer slot 1 */
	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;

	/* Write the final value to the ITR register */
	writel(itr, q_vector->itr);
}

static int fm10k_poll(struct napi_struct *napi, int budget)
{
	struct fm10k_q_vector *q_vector =
			       container_of(napi, struct fm10k_q_vector, napi);
	struct fm10k_ring *ring;
	int per_ring_budget, work_done = 0;
	bool clean_complete = true;

	fm10k_for_each_ring(ring, q_vector->tx) {
		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
			clean_complete = false;
	}

	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		return budget;

	/* attempt to distribute budget to each queue fairly, but don't
	 * allow the budget to go below 1 because we'll exit polling
	 */
	if (q_vector->rx.count > 1)
		per_ring_budget = max(budget / q_vector->rx.count, 1);
	else
		per_ring_budget = budget;

	fm10k_for_each_ring(ring, q_vector->rx) {
		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);

		work_done += work;
		if (work >= per_ring_budget)
			clean_complete = false;
	}

	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;

	/* Exit the polling mode, but don't re-enable interrupts if stack might
	 * poll us due to busy-polling
	 */
	if (likely(napi_complete_done(napi, work_done)))
		fm10k_qv_enable(q_vector);

	return min(work_done, budget - 1);
}

/**
 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
 * @interface: board private structure to initialize
 *
 * When QoS (Quality of Service) is enabled, allocate queues for
 * each traffic class.  If multiqueue isn't available,then abort QoS
 * initialization.
 *
 * This function handles all combinations of Qos and RSS.
 *
 **/
static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
{
	struct net_device *dev = interface->netdev;
	struct fm10k_ring_feature *f;
	int rss_i, i;
	int pcs;

	/* Map queue offset and counts onto allocated tx queues */
	pcs = netdev_get_num_tc(dev);

	if (pcs <= 1)
		return false;

	/* set QoS mask and indices */
	f = &interface->ring_feature[RING_F_QOS];
	f->indices = pcs;
	f->mask = BIT(fls(pcs - 1)) - 1;

	/* determine the upper limit for our current DCB mode */
	rss_i = interface->hw.mac.max_queues / pcs;
	rss_i = BIT(fls(rss_i) - 1);

	/* set RSS mask and indices */
	f = &interface->ring_feature[RING_F_RSS];
	rss_i = min_t(u16, rss_i, f->limit);
	f->indices = rss_i;
	f->mask = BIT(fls(rss_i - 1)) - 1;

	/* configure pause class to queue mapping */
	for (i = 0; i < pcs; i++)
		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);

	interface->num_rx_queues = rss_i * pcs;
	interface->num_tx_queues = rss_i * pcs;

	return true;
}

/**
 * fm10k_set_rss_queues: Allocate queues for RSS
 * @interface: board private structure to initialize
 *
 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
 *
 **/
static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
{
	struct fm10k_ring_feature *f;
	u16 rss_i;

	f = &interface->ring_feature[RING_F_RSS];
	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);

	/* record indices and power of 2 mask for RSS */
	f->indices = rss_i;
	f->mask = BIT(fls(rss_i - 1)) - 1;

	interface->num_rx_queues = rss_i;
	interface->num_tx_queues = rss_i;

	return true;
}

/**
 * fm10k_set_num_queues: Allocate queues for device, feature dependent
 * @interface: board private structure to initialize
 *
 * This is the top level queue allocation routine.  The order here is very
 * important, starting with the "most" number of features turned on at once,
 * and ending with the smallest set of features.  This way large combinations
 * can be allocated if they're turned on, and smaller combinations are the
 * fallthrough conditions.
 *
 **/
static void fm10k_set_num_queues(struct fm10k_intfc *interface)
{
	/* Attempt to setup QoS and RSS first */
	if (fm10k_set_qos_queues(interface))
		return;

	/* If we don't have QoS, just fallback to only RSS. */
	fm10k_set_rss_queues(interface);
}

/**
 * fm10k_reset_num_queues - Reset the number of queues to zero
 * @interface: board private structure
 *
 * This function should be called whenever we need to reset the number of
 * queues after an error condition.
 */
static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
{
	interface->num_tx_queues = 0;
	interface->num_rx_queues = 0;
	interface->num_q_vectors = 0;
}

/**
 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
 * @interface: board private structure to initialize
 * @v_count: q_vectors allocated on interface, used for ring interleaving
 * @v_idx: index of vector in interface struct
 * @txr_count: total number of Tx rings to allocate
 * @txr_idx: index of first Tx ring to allocate
 * @rxr_count: total number of Rx rings to allocate
 * @rxr_idx: index of first Rx ring to allocate
 *
 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
 **/
static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
				unsigned int v_count, unsigned int v_idx,
				unsigned int txr_count, unsigned int txr_idx,
				unsigned int rxr_count, unsigned int rxr_idx)
{
	struct fm10k_q_vector *q_vector;
	struct fm10k_ring *ring;
	int ring_count;

	ring_count = txr_count + rxr_count;

	/* allocate q_vector and rings */
	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(interface->netdev, &q_vector->napi,
		       fm10k_poll, NAPI_POLL_WEIGHT);

	/* tie q_vector and interface together */
	interface->q_vector[v_idx] = q_vector;
	q_vector->interface = interface;
	q_vector->v_idx = v_idx;

	/* initialize pointer to rings */
	ring = q_vector->ring;

	/* save Tx ring container info */
	q_vector->tx.ring = ring;
	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
	q_vector->tx.itr = interface->tx_itr;
	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
	q_vector->tx.count = txr_count;

	while (txr_count) {
		/* assign generic ring traits */
		ring->dev = &interface->pdev->dev;
		ring->netdev = interface->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* apply Tx specific ring traits */
		ring->count = interface->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to interface */
		interface->tx_ring[txr_idx] = ring;

		/* update count and index */
		txr_count--;
		txr_idx += v_count;

		/* push pointer to next ring */
		ring++;
	}

	/* save Rx ring container info */
	q_vector->rx.ring = ring;
	q_vector->rx.itr = interface->rx_itr;
	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
	q_vector->rx.count = rxr_count;

	while (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &interface->pdev->dev;
		ring->netdev = interface->netdev;
		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* apply Rx specific ring traits */
		ring->count = interface->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to interface */
		interface->rx_ring[rxr_idx] = ring;

		/* update count and index */
		rxr_count--;
		rxr_idx += v_count;

		/* push pointer to next ring */
		ring++;
	}

	fm10k_dbg_q_vector_init(q_vector);

	return 0;
}

/**
 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
 * @interface: board private structure to initialize
 * @v_idx: Index of vector to be freed
 *
 * This function frees the memory allocated to the q_vector.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
{
	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
	struct fm10k_ring *ring;

	fm10k_dbg_q_vector_exit(q_vector);

	fm10k_for_each_ring(ring, q_vector->tx)
		interface->tx_ring[ring->queue_index] = NULL;

	fm10k_for_each_ring(ring, q_vector->rx)
		interface->rx_ring[ring->queue_index] = NULL;

	interface->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);
	kfree_rcu(q_vector, rcu);
}

/**
 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
 * @interface: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
{
	unsigned int q_vectors = interface->num_q_vectors;
	unsigned int rxr_remaining = interface->num_rx_queues;
	unsigned int txr_remaining = interface->num_tx_queues;
	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;

	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
						   0, 0, 1, rxr_idx);
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
		}
	}

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);

		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
					   tqpv, txr_idx,
					   rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

	return 0;

err_out:
	fm10k_reset_num_queues(interface);

	while (v_idx--)
		fm10k_free_q_vector(interface, v_idx);

	return -ENOMEM;
}

/**
 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
 * @interface: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
{
	int v_idx = interface->num_q_vectors;

	fm10k_reset_num_queues(interface);

	while (v_idx--)
		fm10k_free_q_vector(interface, v_idx);
}

/**
 * f10k_reset_msix_capability - reset MSI-X capability
 * @interface: board private structure to initialize
 *
 * Reset the MSI-X capability back to its starting state
 **/
static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
{
	pci_disable_msix(interface->pdev);
	kfree(interface->msix_entries);
	interface->msix_entries = NULL;
}

/**
 * f10k_init_msix_capability - configure MSI-X capability
 * @interface: board private structure to initialize
 *
 * Attempt to configure the interrupts using the best available
 * capabilities of the hardware and the kernel.
 **/
static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
{
	struct fm10k_hw *hw = &interface->hw;
	int v_budget, vector;

	/* It's easy to be greedy for MSI-X vectors, but it really
	 * doesn't do us much good if we have a lot more vectors
	 * than CPU's.  So let's be conservative and only ask for
	 * (roughly) the same number of vectors as there are CPU's.
	 * the default is to use pairs of vectors
	 */
	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
	v_budget = min_t(u16, v_budget, num_online_cpus());

	/* account for vectors not related to queues */
	v_budget += NON_Q_VECTORS(hw);

	/* At the same time, hardware can only support a maximum of
	 * hw.mac->max_msix_vectors vectors.  With features
	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
	 * descriptor queues supported by our device.  Thus, we cap it off in
	 * those rare cases where the cpu count also exceeds our vector limit.
	 */
	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);

	/* A failure in MSI-X entry allocation is fatal. */
	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
					  GFP_KERNEL);
	if (!interface->msix_entries)
		return -ENOMEM;

	/* populate entry values */
	for (vector = 0; vector < v_budget; vector++)
		interface->msix_entries[vector].entry = vector;

	/* Attempt to enable MSI-X with requested value */
	v_budget = pci_enable_msix_range(interface->pdev,
					 interface->msix_entries,
					 MIN_MSIX_COUNT(hw),
					 v_budget);
	if (v_budget < 0) {
		kfree(interface->msix_entries);
		interface->msix_entries = NULL;
		return v_budget;
	}

	/* record the number of queues available for q_vectors */
	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);

	return 0;
}

/**
 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
 * @interface: Interface structure continaining rings and devices
 *
 * Cache the descriptor ring offsets for Qos
 **/
static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
{
	struct net_device *dev = interface->netdev;
	int pc, offset, rss_i, i, q_idx;
	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
	u8 num_pcs = netdev_get_num_tc(dev);

	if (num_pcs <= 1)
		return false;

	rss_i = interface->ring_feature[RING_F_RSS].indices;

	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
		q_idx = pc;
		for (i = 0; i < rss_i; i++) {
			interface->tx_ring[offset + i]->reg_idx = q_idx;
			interface->tx_ring[offset + i]->qos_pc = pc;
			interface->rx_ring[offset + i]->reg_idx = q_idx;
			interface->rx_ring[offset + i]->qos_pc = pc;
			q_idx += pc_stride;
		}
	}

	return true;
}

/**
 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
 * @interface: Interface structure continaining rings and devices
 *
 * Cache the descriptor ring offsets for RSS
 **/
static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
{
	int i;

	for (i = 0; i < interface->num_rx_queues; i++)
		interface->rx_ring[i]->reg_idx = i;

	for (i = 0; i < interface->num_tx_queues; i++)
		interface->tx_ring[i]->reg_idx = i;
}

/**
 * fm10k_assign_rings - Map rings to network devices
 * @interface: Interface structure containing rings and devices
 *
 * This function is meant to go though and configure both the network
 * devices so that they contain rings, and configure the rings so that
 * they function with their network devices.
 **/
static void fm10k_assign_rings(struct fm10k_intfc *interface)
{
	if (fm10k_cache_ring_qos(interface))
		return;

	fm10k_cache_ring_rss(interface);
}

static void fm10k_init_reta(struct fm10k_intfc *interface)
{
	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
	u32 reta;

	/* If the Rx flow indirection table has been configured manually, we
	 * need to maintain it when possible.
	 */
	if (netif_is_rxfh_configured(interface->netdev)) {
		for (i = FM10K_RETA_SIZE; i--;) {
			reta = interface->reta[i];
			if ((((reta << 24) >> 24) < rss_i) &&
			    (((reta << 16) >> 24) < rss_i) &&
			    (((reta <<  8) >> 24) < rss_i) &&
			    (((reta)       >> 24) < rss_i))
				continue;

			/* this should never happen */
			dev_err(&interface->pdev->dev,
				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
			goto repopulate_reta;
		}

		/* do nothing if all of the elements are in bounds */
		return;
	}

repopulate_reta:
	fm10k_write_reta(interface, NULL);
}

/**
 * fm10k_init_queueing_scheme - Determine proper queueing scheme
 * @interface: board private structure to initialize
 *
 * We determine which queueing scheme to use based on...
 * - Hardware queue count (num_*_queues)
 *   - defined by miscellaneous hardware support/features (RSS, etc.)
 **/
int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
{
	int err;

	/* Number of supported queues */
	fm10k_set_num_queues(interface);

	/* Configure MSI-X capability */
	err = fm10k_init_msix_capability(interface);
	if (err) {
		dev_err(&interface->pdev->dev,
			"Unable to initialize MSI-X capability\n");
		goto err_init_msix;
	}

	/* Allocate memory for queues */
	err = fm10k_alloc_q_vectors(interface);
	if (err) {
		dev_err(&interface->pdev->dev,
			"Unable to allocate queue vectors\n");
		goto err_alloc_q_vectors;
	}

	/* Map rings to devices, and map devices to physical queues */
	fm10k_assign_rings(interface);

	/* Initialize RSS redirection table */
	fm10k_init_reta(interface);

	return 0;

err_alloc_q_vectors:
	fm10k_reset_msix_capability(interface);
err_init_msix:
	fm10k_reset_num_queues(interface);
	return err;
}

/**
 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
 * @interface: board private structure to clear queueing scheme on
 *
 * We go through and clear queueing specific resources and reset the structure
 * to pre-load conditions
 **/
void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
{
	fm10k_free_q_vectors(interface);
	fm10k_reset_msix_capability(interface);
}