summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/google/gve/gve_rx.c
blob: 94941d4e47449244a3c4f5fe2c8248cab24300ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Google virtual Ethernet (gve) driver
 *
 * Copyright (C) 2015-2021 Google, Inc.
 */

#include "gve.h"
#include "gve_adminq.h"
#include "gve_utils.h"
#include <linux/etherdevice.h>

static void gve_rx_free_buffer(struct device *dev,
			       struct gve_rx_slot_page_info *page_info,
			       union gve_rx_data_slot *data_slot)
{
	dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) &
				      GVE_DATA_SLOT_ADDR_PAGE_MASK);

	gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE);
}

static void gve_rx_unfill_pages(struct gve_priv *priv, struct gve_rx_ring *rx)
{
	if (rx->data.raw_addressing) {
		u32 slots = rx->mask + 1;
		int i;

		for (i = 0; i < slots; i++)
			gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i],
					   &rx->data.data_ring[i]);
	} else {
		gve_unassign_qpl(priv, rx->data.qpl->id);
		rx->data.qpl = NULL;
	}
	kvfree(rx->data.page_info);
	rx->data.page_info = NULL;
}

static void gve_rx_free_ring(struct gve_priv *priv, int idx)
{
	struct gve_rx_ring *rx = &priv->rx[idx];
	struct device *dev = &priv->pdev->dev;
	u32 slots = rx->mask + 1;
	size_t bytes;

	gve_rx_remove_from_block(priv, idx);

	bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
	dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
	rx->desc.desc_ring = NULL;

	dma_free_coherent(dev, sizeof(*rx->q_resources),
			  rx->q_resources, rx->q_resources_bus);
	rx->q_resources = NULL;

	gve_rx_unfill_pages(priv, rx);

	bytes = sizeof(*rx->data.data_ring) * slots;
	dma_free_coherent(dev, bytes, rx->data.data_ring,
			  rx->data.data_bus);
	rx->data.data_ring = NULL;
	netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
}

static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
			     dma_addr_t addr, struct page *page, __be64 *slot_addr)
{
	page_info->page = page;
	page_info->page_offset = 0;
	page_info->page_address = page_address(page);
	*slot_addr = cpu_to_be64(addr);
}

static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev,
			       struct gve_rx_slot_page_info *page_info,
			       union gve_rx_data_slot *data_slot)
{
	struct page *page;
	dma_addr_t dma;
	int err;

	err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE);
	if (err)
		return err;

	gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr);
	return 0;
}

static int gve_prefill_rx_pages(struct gve_rx_ring *rx)
{
	struct gve_priv *priv = rx->gve;
	u32 slots;
	int err;
	int i;

	/* Allocate one page per Rx queue slot. Each page is split into two
	 * packet buffers, when possible we "page flip" between the two.
	 */
	slots = rx->mask + 1;

	rx->data.page_info = kvzalloc(slots *
				      sizeof(*rx->data.page_info), GFP_KERNEL);
	if (!rx->data.page_info)
		return -ENOMEM;

	if (!rx->data.raw_addressing) {
		rx->data.qpl = gve_assign_rx_qpl(priv);
		if (!rx->data.qpl) {
			kvfree(rx->data.page_info);
			rx->data.page_info = NULL;
			return -ENOMEM;
		}
	}
	for (i = 0; i < slots; i++) {
		if (!rx->data.raw_addressing) {
			struct page *page = rx->data.qpl->pages[i];
			dma_addr_t addr = i * PAGE_SIZE;

			gve_setup_rx_buffer(&rx->data.page_info[i], addr, page,
					    &rx->data.data_ring[i].qpl_offset);
			continue;
		}
		err = gve_rx_alloc_buffer(priv, &priv->pdev->dev, &rx->data.page_info[i],
					  &rx->data.data_ring[i]);
		if (err)
			goto alloc_err;
	}

	return slots;
alloc_err:
	while (i--)
		gve_rx_free_buffer(&priv->pdev->dev,
				   &rx->data.page_info[i],
				   &rx->data.data_ring[i]);
	return err;
}

static int gve_rx_alloc_ring(struct gve_priv *priv, int idx)
{
	struct gve_rx_ring *rx = &priv->rx[idx];
	struct device *hdev = &priv->pdev->dev;
	u32 slots, npages;
	int filled_pages;
	size_t bytes;
	int err;

	netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
	/* Make sure everything is zeroed to start with */
	memset(rx, 0, sizeof(*rx));

	rx->gve = priv;
	rx->q_num = idx;

	slots = priv->rx_data_slot_cnt;
	rx->mask = slots - 1;
	rx->data.raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT;

	/* alloc rx data ring */
	bytes = sizeof(*rx->data.data_ring) * slots;
	rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
						&rx->data.data_bus,
						GFP_KERNEL);
	if (!rx->data.data_ring)
		return -ENOMEM;
	filled_pages = gve_prefill_rx_pages(rx);
	if (filled_pages < 0) {
		err = -ENOMEM;
		goto abort_with_slots;
	}
	rx->fill_cnt = filled_pages;
	/* Ensure data ring slots (packet buffers) are visible. */
	dma_wmb();

	/* Alloc gve_queue_resources */
	rx->q_resources =
		dma_alloc_coherent(hdev,
				   sizeof(*rx->q_resources),
				   &rx->q_resources_bus,
				   GFP_KERNEL);
	if (!rx->q_resources) {
		err = -ENOMEM;
		goto abort_filled;
	}
	netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
		  (unsigned long)rx->data.data_bus);

	/* alloc rx desc ring */
	bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
	npages = bytes / PAGE_SIZE;
	if (npages * PAGE_SIZE != bytes) {
		err = -EIO;
		goto abort_with_q_resources;
	}

	rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
						GFP_KERNEL);
	if (!rx->desc.desc_ring) {
		err = -ENOMEM;
		goto abort_with_q_resources;
	}
	rx->cnt = 0;
	rx->db_threshold = priv->rx_desc_cnt / 2;
	rx->desc.seqno = 1;
	gve_rx_add_to_block(priv, idx);

	return 0;

abort_with_q_resources:
	dma_free_coherent(hdev, sizeof(*rx->q_resources),
			  rx->q_resources, rx->q_resources_bus);
	rx->q_resources = NULL;
abort_filled:
	gve_rx_unfill_pages(priv, rx);
abort_with_slots:
	bytes = sizeof(*rx->data.data_ring) * slots;
	dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
	rx->data.data_ring = NULL;

	return err;
}

int gve_rx_alloc_rings(struct gve_priv *priv)
{
	int err = 0;
	int i;

	for (i = 0; i < priv->rx_cfg.num_queues; i++) {
		err = gve_rx_alloc_ring(priv, i);
		if (err) {
			netif_err(priv, drv, priv->dev,
				  "Failed to alloc rx ring=%d: err=%d\n",
				  i, err);
			break;
		}
	}
	/* Unallocate if there was an error */
	if (err) {
		int j;

		for (j = 0; j < i; j++)
			gve_rx_free_ring(priv, j);
	}
	return err;
}

void gve_rx_free_rings_gqi(struct gve_priv *priv)
{
	int i;

	for (i = 0; i < priv->rx_cfg.num_queues; i++)
		gve_rx_free_ring(priv, i);
}

void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
{
	u32 db_idx = be32_to_cpu(rx->q_resources->db_index);

	iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
}

static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
{
	if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
		return PKT_HASH_TYPE_L4;
	if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
		return PKT_HASH_TYPE_L3;
	return PKT_HASH_TYPE_L2;
}

static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi,
					struct gve_rx_slot_page_info *page_info,
					u16 len)
{
	struct sk_buff *skb = napi_get_frags(napi);

	if (unlikely(!skb))
		return NULL;

	skb_add_rx_frag(skb, 0, page_info->page,
			page_info->page_offset +
			GVE_RX_PAD, len, PAGE_SIZE / 2);

	return skb;
}

static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
{
	const __be64 offset = cpu_to_be64(PAGE_SIZE / 2);

	/* "flip" to other packet buffer on this page */
	page_info->page_offset ^= PAGE_SIZE / 2;
	*(slot_addr) ^= offset;
}

static bool gve_rx_can_flip_buffers(struct net_device *netdev)
{
	return PAGE_SIZE == 4096
		? netdev->mtu + GVE_RX_PAD + ETH_HLEN <= PAGE_SIZE / 2 : false;
}

static int gve_rx_can_recycle_buffer(struct page *page)
{
	int pagecount = page_count(page);

	/* This page is not being used by any SKBs - reuse */
	if (pagecount == 1)
		return 1;
	/* This page is still being used by an SKB - we can't reuse */
	else if (pagecount >= 2)
		return 0;
	WARN(pagecount < 1, "Pagecount should never be < 1");
	return -1;
}

static struct sk_buff *
gve_rx_raw_addressing(struct device *dev, struct net_device *netdev,
		      struct gve_rx_slot_page_info *page_info, u16 len,
		      struct napi_struct *napi,
		      union gve_rx_data_slot *data_slot)
{
	struct sk_buff *skb;

	skb = gve_rx_add_frags(napi, page_info, len);
	if (!skb)
		return NULL;

	/* Optimistically stop the kernel from freeing the page by increasing
	 * the page bias. We will check the refcount in refill to determine if
	 * we need to alloc a new page.
	 */
	get_page(page_info->page);

	return skb;
}

static struct sk_buff *
gve_rx_qpl(struct device *dev, struct net_device *netdev,
	   struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info,
	   u16 len, struct napi_struct *napi,
	   union gve_rx_data_slot *data_slot)
{
	struct sk_buff *skb;

	/* if raw_addressing mode is not enabled gvnic can only receive into
	 * registered segments. If the buffer can't be recycled, our only
	 * choice is to copy the data out of it so that we can return it to the
	 * device.
	 */
	if (page_info->can_flip) {
		skb = gve_rx_add_frags(napi, page_info, len);
		/* No point in recycling if we didn't get the skb */
		if (skb) {
			/* Make sure that the page isn't freed. */
			get_page(page_info->page);
			gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
		}
	} else {
		skb = gve_rx_copy(netdev, napi, page_info, len, GVE_RX_PAD);
		if (skb) {
			u64_stats_update_begin(&rx->statss);
			rx->rx_copied_pkt++;
			u64_stats_update_end(&rx->statss);
		}
	}
	return skb;
}

static bool gve_rx(struct gve_rx_ring *rx, struct gve_rx_desc *rx_desc,
		   netdev_features_t feat, u32 idx)
{
	struct gve_rx_slot_page_info *page_info;
	struct gve_priv *priv = rx->gve;
	struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
	struct net_device *dev = priv->dev;
	union gve_rx_data_slot *data_slot;
	struct sk_buff *skb = NULL;
	dma_addr_t page_bus;
	u16 len;

	/* drop this packet */
	if (unlikely(rx_desc->flags_seq & GVE_RXF_ERR)) {
		u64_stats_update_begin(&rx->statss);
		rx->rx_desc_err_dropped_pkt++;
		u64_stats_update_end(&rx->statss);
		return false;
	}

	len = be16_to_cpu(rx_desc->len) - GVE_RX_PAD;
	page_info = &rx->data.page_info[idx];

	data_slot = &rx->data.data_ring[idx];
	page_bus = (rx->data.raw_addressing) ?
			be64_to_cpu(data_slot->addr) & GVE_DATA_SLOT_ADDR_PAGE_MASK :
			rx->data.qpl->page_buses[idx];
	dma_sync_single_for_cpu(&priv->pdev->dev, page_bus,
				PAGE_SIZE, DMA_FROM_DEVICE);

	if (len <= priv->rx_copybreak) {
		/* Just copy small packets */
		skb = gve_rx_copy(dev, napi, page_info, len, GVE_RX_PAD);
		u64_stats_update_begin(&rx->statss);
		rx->rx_copied_pkt++;
		rx->rx_copybreak_pkt++;
		u64_stats_update_end(&rx->statss);
	} else {
		u8 can_flip = gve_rx_can_flip_buffers(dev);
		int recycle = 0;

		if (can_flip) {
			recycle = gve_rx_can_recycle_buffer(page_info->page);
			if (recycle < 0) {
				if (!rx->data.raw_addressing)
					gve_schedule_reset(priv);
				return false;
			}
		}

		page_info->can_flip = can_flip && recycle;
		if (rx->data.raw_addressing) {
			skb = gve_rx_raw_addressing(&priv->pdev->dev, dev,
						    page_info, len, napi,
						    data_slot);
		} else {
			skb = gve_rx_qpl(&priv->pdev->dev, dev, rx,
					 page_info, len, napi, data_slot);
		}
	}

	if (!skb) {
		u64_stats_update_begin(&rx->statss);
		rx->rx_skb_alloc_fail++;
		u64_stats_update_end(&rx->statss);
		return false;
	}

	if (likely(feat & NETIF_F_RXCSUM)) {
		/* NIC passes up the partial sum */
		if (rx_desc->csum)
			skb->ip_summed = CHECKSUM_COMPLETE;
		else
			skb->ip_summed = CHECKSUM_NONE;
		skb->csum = csum_unfold(rx_desc->csum);
	}

	/* parse flags & pass relevant info up */
	if (likely(feat & NETIF_F_RXHASH) &&
	    gve_needs_rss(rx_desc->flags_seq))
		skb_set_hash(skb, be32_to_cpu(rx_desc->rss_hash),
			     gve_rss_type(rx_desc->flags_seq));

	if (skb_is_nonlinear(skb))
		napi_gro_frags(napi);
	else
		napi_gro_receive(napi, skb);
	return true;
}

static bool gve_rx_work_pending(struct gve_rx_ring *rx)
{
	struct gve_rx_desc *desc;
	__be16 flags_seq;
	u32 next_idx;

	next_idx = rx->cnt & rx->mask;
	desc = rx->desc.desc_ring + next_idx;

	flags_seq = desc->flags_seq;
	/* Make sure we have synchronized the seq no with the device */
	smp_rmb();

	return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
}

static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx)
{
	int refill_target = rx->mask + 1;
	u32 fill_cnt = rx->fill_cnt;

	while (fill_cnt - rx->cnt < refill_target) {
		struct gve_rx_slot_page_info *page_info;
		u32 idx = fill_cnt & rx->mask;

		page_info = &rx->data.page_info[idx];
		if (page_info->can_flip) {
			/* The other half of the page is free because it was
			 * free when we processed the descriptor. Flip to it.
			 */
			union gve_rx_data_slot *data_slot =
						&rx->data.data_ring[idx];

			gve_rx_flip_buff(page_info, &data_slot->addr);
			page_info->can_flip = 0;
		} else {
			/* It is possible that the networking stack has already
			 * finished processing all outstanding packets in the buffer
			 * and it can be reused.
			 * Flipping is unnecessary here - if the networking stack still
			 * owns half the page it is impossible to tell which half. Either
			 * the whole page is free or it needs to be replaced.
			 */
			int recycle = gve_rx_can_recycle_buffer(page_info->page);

			if (recycle < 0) {
				if (!rx->data.raw_addressing)
					gve_schedule_reset(priv);
				return false;
			}
			if (!recycle) {
				/* We can't reuse the buffer - alloc a new one*/
				union gve_rx_data_slot *data_slot =
						&rx->data.data_ring[idx];
				struct device *dev = &priv->pdev->dev;

				gve_rx_free_buffer(dev, page_info, data_slot);
				page_info->page = NULL;
				if (gve_rx_alloc_buffer(priv, dev, page_info, data_slot))
					break;
			}
		}
		fill_cnt++;
	}
	rx->fill_cnt = fill_cnt;
	return true;
}

bool gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
		       netdev_features_t feat)
{
	struct gve_priv *priv = rx->gve;
	u32 work_done = 0, packets = 0;
	struct gve_rx_desc *desc;
	u32 cnt = rx->cnt;
	u32 idx = cnt & rx->mask;
	u64 bytes = 0;

	desc = rx->desc.desc_ring + idx;
	while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
	       work_done < budget) {
		bool dropped;

		netif_info(priv, rx_status, priv->dev,
			   "[%d] idx=%d desc=%p desc->flags_seq=0x%x\n",
			   rx->q_num, idx, desc, desc->flags_seq);
		netif_info(priv, rx_status, priv->dev,
			   "[%d] seqno=%d rx->desc.seqno=%d\n",
			   rx->q_num, GVE_SEQNO(desc->flags_seq),
			   rx->desc.seqno);
		dropped = !gve_rx(rx, desc, feat, idx);
		if (!dropped) {
			bytes += be16_to_cpu(desc->len) - GVE_RX_PAD;
			packets++;
		}
		cnt++;
		idx = cnt & rx->mask;
		desc = rx->desc.desc_ring + idx;
		rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
		work_done++;
	}

	if (!work_done && rx->fill_cnt - cnt > rx->db_threshold)
		return false;

	u64_stats_update_begin(&rx->statss);
	rx->rpackets += packets;
	rx->rbytes += bytes;
	u64_stats_update_end(&rx->statss);
	rx->cnt = cnt;

	/* restock ring slots */
	if (!rx->data.raw_addressing) {
		/* In QPL mode buffs are refilled as the desc are processed */
		rx->fill_cnt += work_done;
	} else if (rx->fill_cnt - cnt <= rx->db_threshold) {
		/* In raw addressing mode buffs are only refilled if the avail
		 * falls below a threshold.
		 */
		if (!gve_rx_refill_buffers(priv, rx))
			return false;

		/* If we were not able to completely refill buffers, we'll want
		 * to schedule this queue for work again to refill buffers.
		 */
		if (rx->fill_cnt - cnt <= rx->db_threshold) {
			gve_rx_write_doorbell(priv, rx);
			return true;
		}
	}

	gve_rx_write_doorbell(priv, rx);
	return gve_rx_work_pending(rx);
}

bool gve_rx_poll(struct gve_notify_block *block, int budget)
{
	struct gve_rx_ring *rx = block->rx;
	netdev_features_t feat;
	bool repoll = false;

	feat = block->napi.dev->features;

	/* If budget is 0, do all the work */
	if (budget == 0)
		budget = INT_MAX;

	if (budget > 0)
		repoll |= gve_clean_rx_done(rx, budget, feat);
	else
		repoll |= gve_rx_work_pending(rx);
	return repoll;
}