summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/dlink/dl2k.c
blob: ec0eb7ff1146779ccfea16a1253258cc26581762 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
/*
    Copyright (c) 2001, 2002 by D-Link Corporation
    Written by Edward Peng.<edward_peng@dlink.com.tw>
    Created 03-May-2001, base on Linux' sundance.c.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.
*/

#define DRV_NAME	"DL2000/TC902x-based linux driver"
#define DRV_VERSION	"v1.19"
#define DRV_RELDATE	"2007/08/12"
#include "dl2k.h"
#include <linux/dma-mapping.h>

#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
#define dr32(reg)	ioread32(ioaddr + (reg))
#define dr16(reg)	ioread16(ioaddr + (reg))
#define dr8(reg)	ioread8(ioaddr + (reg))

static char version[] =
      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
#define MAX_UNITS 8
static int mtu[MAX_UNITS];
static int vlan[MAX_UNITS];
static int jumbo[MAX_UNITS];
static char *media[MAX_UNITS];
static int tx_flow=-1;
static int rx_flow=-1;
static int copy_thresh;
static int rx_coalesce=10;	/* Rx frame count each interrupt */
static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */


MODULE_AUTHOR ("Edward Peng");
MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
MODULE_LICENSE("GPL");
module_param_array(mtu, int, NULL, 0);
module_param_array(media, charp, NULL, 0);
module_param_array(vlan, int, NULL, 0);
module_param_array(jumbo, int, NULL, 0);
module_param(tx_flow, int, 0);
module_param(rx_flow, int, 0);
module_param(copy_thresh, int, 0);
module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */


/* Enable the default interrupts */
#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
       UpdateStats | LinkEvent)

static void dl2k_enable_int(struct netdev_private *np)
{
	void __iomem *ioaddr = np->ioaddr;

	dw16(IntEnable, DEFAULT_INTR);
}

static const int max_intrloop = 50;
static const int multicast_filter_limit = 0x40;

static int rio_open (struct net_device *dev);
static void rio_timer (unsigned long data);
static void rio_tx_timeout (struct net_device *dev);
static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
static irqreturn_t rio_interrupt (int irq, void *dev_instance);
static void rio_free_tx (struct net_device *dev, int irq);
static void tx_error (struct net_device *dev, int tx_status);
static int receive_packet (struct net_device *dev);
static void rio_error (struct net_device *dev, int int_status);
static int change_mtu (struct net_device *dev, int new_mtu);
static void set_multicast (struct net_device *dev);
static struct net_device_stats *get_stats (struct net_device *dev);
static int clear_stats (struct net_device *dev);
static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
static int rio_close (struct net_device *dev);
static int find_miiphy (struct net_device *dev);
static int parse_eeprom (struct net_device *dev);
static int read_eeprom (struct netdev_private *, int eep_addr);
static int mii_wait_link (struct net_device *dev, int wait);
static int mii_set_media (struct net_device *dev);
static int mii_get_media (struct net_device *dev);
static int mii_set_media_pcs (struct net_device *dev);
static int mii_get_media_pcs (struct net_device *dev);
static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
		      u16 data);

static const struct ethtool_ops ethtool_ops;

static const struct net_device_ops netdev_ops = {
	.ndo_open		= rio_open,
	.ndo_start_xmit	= start_xmit,
	.ndo_stop		= rio_close,
	.ndo_get_stats		= get_stats,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address 	= eth_mac_addr,
	.ndo_set_rx_mode	= set_multicast,
	.ndo_do_ioctl		= rio_ioctl,
	.ndo_tx_timeout		= rio_tx_timeout,
	.ndo_change_mtu		= change_mtu,
};

static int
rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct netdev_private *np;
	static int card_idx;
	int chip_idx = ent->driver_data;
	int err, irq;
	void __iomem *ioaddr;
	static int version_printed;
	void *ring_space;
	dma_addr_t ring_dma;

	if (!version_printed++)
		printk ("%s", version);

	err = pci_enable_device (pdev);
	if (err)
		return err;

	irq = pdev->irq;
	err = pci_request_regions (pdev, "dl2k");
	if (err)
		goto err_out_disable;

	pci_set_master (pdev);

	err = -ENOMEM;

	dev = alloc_etherdev (sizeof (*np));
	if (!dev)
		goto err_out_res;
	SET_NETDEV_DEV(dev, &pdev->dev);

	np = netdev_priv(dev);

	/* IO registers range. */
	ioaddr = pci_iomap(pdev, 0, 0);
	if (!ioaddr)
		goto err_out_dev;
	np->eeprom_addr = ioaddr;

#ifdef MEM_MAPPING
	/* MM registers range. */
	ioaddr = pci_iomap(pdev, 1, 0);
	if (!ioaddr)
		goto err_out_iounmap;
#endif
	np->ioaddr = ioaddr;
	np->chip_id = chip_idx;
	np->pdev = pdev;
	spin_lock_init (&np->tx_lock);
	spin_lock_init (&np->rx_lock);

	/* Parse manual configuration */
	np->an_enable = 1;
	np->tx_coalesce = 1;
	if (card_idx < MAX_UNITS) {
		if (media[card_idx] != NULL) {
			np->an_enable = 0;
			if (strcmp (media[card_idx], "auto") == 0 ||
			    strcmp (media[card_idx], "autosense") == 0 ||
			    strcmp (media[card_idx], "0") == 0 ) {
				np->an_enable = 2;
			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
			    strcmp (media[card_idx], "4") == 0) {
				np->speed = 100;
				np->full_duplex = 1;
			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
				   strcmp (media[card_idx], "3") == 0) {
				np->speed = 100;
				np->full_duplex = 0;
			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
				   strcmp (media[card_idx], "2") == 0) {
				np->speed = 10;
				np->full_duplex = 1;
			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
				   strcmp (media[card_idx], "1") == 0) {
				np->speed = 10;
				np->full_duplex = 0;
			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
				 strcmp (media[card_idx], "6") == 0) {
				np->speed=1000;
				np->full_duplex=1;
			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
				 strcmp (media[card_idx], "5") == 0) {
				np->speed = 1000;
				np->full_duplex = 0;
			} else {
				np->an_enable = 1;
			}
		}
		if (jumbo[card_idx] != 0) {
			np->jumbo = 1;
			dev->mtu = MAX_JUMBO;
		} else {
			np->jumbo = 0;
			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
				dev->mtu = mtu[card_idx];
		}
		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
		    vlan[card_idx] : 0;
		if (rx_coalesce > 0 && rx_timeout > 0) {
			np->rx_coalesce = rx_coalesce;
			np->rx_timeout = rx_timeout;
			np->coalesce = 1;
		}
		np->tx_flow = (tx_flow == 0) ? 0 : 1;
		np->rx_flow = (rx_flow == 0) ? 0 : 1;

		if (tx_coalesce < 1)
			tx_coalesce = 1;
		else if (tx_coalesce > TX_RING_SIZE-1)
			tx_coalesce = TX_RING_SIZE - 1;
	}
	dev->netdev_ops = &netdev_ops;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->ethtool_ops = &ethtool_ops;
#if 0
	dev->features = NETIF_F_IP_CSUM;
#endif
	pci_set_drvdata (pdev, dev);

	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
	if (!ring_space)
		goto err_out_iounmap;
	np->tx_ring = ring_space;
	np->tx_ring_dma = ring_dma;

	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
	if (!ring_space)
		goto err_out_unmap_tx;
	np->rx_ring = ring_space;
	np->rx_ring_dma = ring_dma;

	/* Parse eeprom data */
	parse_eeprom (dev);

	/* Find PHY address */
	err = find_miiphy (dev);
	if (err)
		goto err_out_unmap_rx;

	if (np->chip_id == CHIP_IP1000A &&
	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
		/* PHY magic taken from ipg driver, undocumented registers */
		mii_write(dev, np->phy_addr, 31, 0x0001);
		mii_write(dev, np->phy_addr, 27, 0x01e0);
		mii_write(dev, np->phy_addr, 31, 0x0002);
		mii_write(dev, np->phy_addr, 27, 0xeb8e);
		mii_write(dev, np->phy_addr, 31, 0x0000);
		mii_write(dev, np->phy_addr, 30, 0x005e);
		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
	}

	/* Fiber device? */
	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
	np->link_status = 0;
	/* Set media and reset PHY */
	if (np->phy_media) {
		/* default Auto-Negotiation for fiber deivices */
	 	if (np->an_enable == 2) {
			np->an_enable = 1;
		}
		mii_set_media_pcs (dev);
	} else {
		/* Auto-Negotiation is mandatory for 1000BASE-T,
		   IEEE 802.3ab Annex 28D page 14 */
		if (np->speed == 1000)
			np->an_enable = 1;
		mii_set_media (dev);
	}

	err = register_netdev (dev);
	if (err)
		goto err_out_unmap_rx;

	card_idx++;

	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
		dev->name, np->name, dev->dev_addr, irq);
	if (tx_coalesce > 1)
		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
				tx_coalesce);
	if (np->coalesce)
		printk(KERN_INFO
		       "rx_coalesce:\t%d packets\n"
		       "rx_timeout: \t%d ns\n",
				np->rx_coalesce, np->rx_timeout*640);
	if (np->vlan)
		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
	return 0;

err_out_unmap_rx:
	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
err_out_unmap_tx:
	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
err_out_iounmap:
#ifdef MEM_MAPPING
	pci_iounmap(pdev, np->ioaddr);
#endif
	pci_iounmap(pdev, np->eeprom_addr);
err_out_dev:
	free_netdev (dev);
err_out_res:
	pci_release_regions (pdev);
err_out_disable:
	pci_disable_device (pdev);
	return err;
}

static int
find_miiphy (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int i, phy_found = 0;
	np = netdev_priv(dev);
	np->phy_addr = 1;

	for (i = 31; i >= 0; i--) {
		int mii_status = mii_read (dev, i, 1);
		if (mii_status != 0xffff && mii_status != 0x0000) {
			np->phy_addr = i;
			phy_found++;
		}
	}
	if (!phy_found) {
		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
		return -ENODEV;
	}
	return 0;
}

static int
parse_eeprom (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
	int i, j;
	u8 sromdata[256];
	u8 *psib;
	u32 crc;
	PSROM_t psrom = (PSROM_t) sromdata;

	int cid, next;

	for (i = 0; i < 128; i++)
		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));

	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
		/* Check CRC */
		crc = ~ether_crc_le (256 - 4, sromdata);
		if (psrom->crc != cpu_to_le32(crc)) {
			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
					dev->name);
			return -1;
		}
	}

	/* Set MAC address */
	for (i = 0; i < 6; i++)
		dev->dev_addr[i] = psrom->mac_addr[i];

	if (np->chip_id == CHIP_IP1000A) {
		np->led_mode = psrom->led_mode;
		return 0;
	}

	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
		return 0;
	}

	/* Parse Software Information Block */
	i = 0x30;
	psib = (u8 *) sromdata;
	do {
		cid = psib[i++];
		next = psib[i++];
		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
			printk (KERN_ERR "Cell data error\n");
			return -1;
		}
		switch (cid) {
		case 0:	/* Format version */
			break;
		case 1:	/* End of cell */
			return 0;
		case 2:	/* Duplex Polarity */
			np->duplex_polarity = psib[i];
			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
			break;
		case 3:	/* Wake Polarity */
			np->wake_polarity = psib[i];
			break;
		case 9:	/* Adapter description */
			j = (next - i > 255) ? 255 : next - i;
			memcpy (np->name, &(psib[i]), j);
			break;
		case 4:
		case 5:
		case 6:
		case 7:
		case 8:	/* Reversed */
			break;
		default:	/* Unknown cell */
			return -1;
		}
		i = next;
	} while (1);

	return 0;
}

static void rio_set_led_mode(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
	u32 mode;

	if (np->chip_id != CHIP_IP1000A)
		return;

	mode = dr32(ASICCtrl);
	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);

	if (np->led_mode & 0x01)
		mode |= IPG_AC_LED_MODE;
	if (np->led_mode & 0x02)
		mode |= IPG_AC_LED_MODE_BIT_1;
	if (np->led_mode & 0x08)
		mode |= IPG_AC_LED_SPEED;

	dw32(ASICCtrl, mode);
}

static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
{
	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
}

static void free_list(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	struct sk_buff *skb;
	int i;

	/* Free all the skbuffs in the queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		skb = np->rx_skbuff[i];
		if (skb) {
			pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
					 skb->len, PCI_DMA_FROMDEVICE);
			dev_kfree_skb(skb);
			np->rx_skbuff[i] = NULL;
		}
		np->rx_ring[i].status = 0;
		np->rx_ring[i].fraginfo = 0;
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		skb = np->tx_skbuff[i];
		if (skb) {
			pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
					 skb->len, PCI_DMA_TODEVICE);
			dev_kfree_skb(skb);
			np->tx_skbuff[i] = NULL;
		}
	}
}

 /* allocate and initialize Tx and Rx descriptors */
static int alloc_list(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int i;

	np->cur_rx = np->cur_tx = 0;
	np->old_rx = np->old_tx = 0;
	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);

	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
	for (i = 0; i < TX_RING_SIZE; i++) {
		np->tx_skbuff[i] = NULL;
		np->tx_ring[i].status = cpu_to_le64(TFDDone);
		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
					      ((i + 1) % TX_RING_SIZE) *
					      sizeof(struct netdev_desc));
	}

	/* Initialize Rx descriptors */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
						((i + 1) % RX_RING_SIZE) *
						sizeof(struct netdev_desc));
		np->rx_ring[i].status = 0;
		np->rx_ring[i].fraginfo = 0;
		np->rx_skbuff[i] = NULL;
	}

	/* Allocate the rx buffers */
	for (i = 0; i < RX_RING_SIZE; i++) {
		/* Allocated fixed size of skbuff */
		struct sk_buff *skb;

		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
		np->rx_skbuff[i] = skb;
		if (!skb) {
			free_list(dev);
			return -ENOMEM;
		}

		/* Rubicon now supports 40 bits of addressing space. */
		np->rx_ring[i].fraginfo =
		    cpu_to_le64(pci_map_single(
				  np->pdev, skb->data, np->rx_buf_sz,
				  PCI_DMA_FROMDEVICE));
		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
	}

	return 0;
}

static int
rio_open (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
	const int irq = np->pdev->irq;
	int i;
	u16 macctrl;

	i = alloc_list(dev);
	if (i)
		return i;

	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
	if (i) {
		free_list(dev);
		return i;
	}

	/* Reset all logic functions */
	dw16(ASICCtrl + 2,
	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
	mdelay(10);

	rio_set_led_mode(dev);

	/* DebugCtrl bit 4, 5, 9 must set */
	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);

	/* Jumbo frame */
	if (np->jumbo != 0)
		dw16(MaxFrameSize, MAX_JUMBO+14);

	/* Set RFDListPtr */
	dw32(RFDListPtr0, np->rx_ring_dma);
	dw32(RFDListPtr1, 0);

	/* Set station address */
	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
	 */
	for (i = 0; i < 3; i++)
		dw16(StationAddr0 + 2 * i,
		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));

	set_multicast (dev);
	if (np->coalesce) {
		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
	}
	/* Set RIO to poll every N*320nsec. */
	dw8(RxDMAPollPeriod, 0x20);
	dw8(TxDMAPollPeriod, 0xff);
	dw8(RxDMABurstThresh, 0x30);
	dw8(RxDMAUrgentThresh, 0x30);
	dw32(RmonStatMask, 0x0007ffff);
	/* clear statistics */
	clear_stats (dev);

	/* VLAN supported */
	if (np->vlan) {
		/* priority field in RxDMAIntCtrl  */
		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
		/* VLANId */
		dw16(VLANId, np->vlan);
		/* Length/Type should be 0x8100 */
		dw32(VLANTag, 0x8100 << 16 | np->vlan);
		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
		   VLAN information tagged by TFC' VID, CFI fields. */
		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
	}

	setup_timer(&np->timer, rio_timer, (unsigned long)dev);
	np->timer.expires = jiffies + 1*HZ;
	add_timer (&np->timer);

	/* Start Tx/Rx */
	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);

	macctrl = 0;
	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
	dw16(MACCtrl, macctrl);

	netif_start_queue (dev);

	dl2k_enable_int(np);
	return 0;
}

static void
rio_timer (unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netdev_private *np = netdev_priv(dev);
	unsigned int entry;
	int next_tick = 1*HZ;
	unsigned long flags;

	spin_lock_irqsave(&np->rx_lock, flags);
	/* Recover rx ring exhausted error */
	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
		/* Re-allocate skbuffs to fill the descriptor ring */
		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
			struct sk_buff *skb;
			entry = np->old_rx % RX_RING_SIZE;
			/* Dropped packets don't need to re-allocate */
			if (np->rx_skbuff[entry] == NULL) {
				skb = netdev_alloc_skb_ip_align(dev,
								np->rx_buf_sz);
				if (skb == NULL) {
					np->rx_ring[entry].fraginfo = 0;
					printk (KERN_INFO
						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
						dev->name, entry);
					break;
				}
				np->rx_skbuff[entry] = skb;
				np->rx_ring[entry].fraginfo =
				    cpu_to_le64 (pci_map_single
					 (np->pdev, skb->data, np->rx_buf_sz,
					  PCI_DMA_FROMDEVICE));
			}
			np->rx_ring[entry].fraginfo |=
			    cpu_to_le64((u64)np->rx_buf_sz << 48);
			np->rx_ring[entry].status = 0;
		} /* end for */
	} /* end if */
	spin_unlock_irqrestore (&np->rx_lock, flags);
	np->timer.expires = jiffies + next_tick;
	add_timer(&np->timer);
}

static void
rio_tx_timeout (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;

	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
		dev->name, dr32(TxStatus));
	rio_free_tx(dev, 0);
	dev->if_port = 0;
	dev->trans_start = jiffies; /* prevent tx timeout */
}

static netdev_tx_t
start_xmit (struct sk_buff *skb, struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
	struct netdev_desc *txdesc;
	unsigned entry;
	u64 tfc_vlan_tag = 0;

	if (np->link_status == 0) {	/* Link Down */
		dev_kfree_skb(skb);
		return NETDEV_TX_OK;
	}
	entry = np->cur_tx % TX_RING_SIZE;
	np->tx_skbuff[entry] = skb;
	txdesc = &np->tx_ring[entry];

#if 0
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		txdesc->status |=
		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
				 IPChecksumEnable);
	}
#endif
	if (np->vlan) {
		tfc_vlan_tag = VLANTagInsert |
		    ((u64)np->vlan << 32) |
		    ((u64)skb->priority << 45);
	}
	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
							skb->len,
							PCI_DMA_TODEVICE));
	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);

	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
	 * Work around: Always use 1 descriptor in 10Mbps mode */
	if (entry % np->tx_coalesce == 0 || np->speed == 10)
		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
					      WordAlignDisable |
					      TxDMAIndicate |
					      (1 << FragCountShift));
	else
		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
					      WordAlignDisable |
					      (1 << FragCountShift));

	/* TxDMAPollNow */
	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
	/* Schedule ISR */
	dw32(CountDown, 10000);
	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
			< TX_QUEUE_LEN - 1 && np->speed != 10) {
		/* do nothing */
	} else if (!netif_queue_stopped(dev)) {
		netif_stop_queue (dev);
	}

	/* The first TFDListPtr */
	if (!dr32(TFDListPtr0)) {
		dw32(TFDListPtr0, np->tx_ring_dma +
		     entry * sizeof (struct netdev_desc));
		dw32(TFDListPtr1, 0);
	}

	return NETDEV_TX_OK;
}

static irqreturn_t
rio_interrupt (int irq, void *dev_instance)
{
	struct net_device *dev = dev_instance;
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
	unsigned int_status;
	int cnt = max_intrloop;
	int handled = 0;

	while (1) {
		int_status = dr16(IntStatus);
		dw16(IntStatus, int_status);
		int_status &= DEFAULT_INTR;
		if (int_status == 0 || --cnt < 0)
			break;
		handled = 1;
		/* Processing received packets */
		if (int_status & RxDMAComplete)
			receive_packet (dev);
		/* TxDMAComplete interrupt */
		if ((int_status & (TxDMAComplete|IntRequested))) {
			int tx_status;
			tx_status = dr32(TxStatus);
			if (tx_status & 0x01)
				tx_error (dev, tx_status);
			/* Free used tx skbuffs */
			rio_free_tx (dev, 1);
		}

		/* Handle uncommon events */
		if (int_status &
		    (HostError | LinkEvent | UpdateStats))
			rio_error (dev, int_status);
	}
	if (np->cur_tx != np->old_tx)
		dw32(CountDown, 100);
	return IRQ_RETVAL(handled);
}

static void
rio_free_tx (struct net_device *dev, int irq)
{
	struct netdev_private *np = netdev_priv(dev);
	int entry = np->old_tx % TX_RING_SIZE;
	int tx_use = 0;
	unsigned long flag = 0;

	if (irq)
		spin_lock(&np->tx_lock);
	else
		spin_lock_irqsave(&np->tx_lock, flag);

	/* Free used tx skbuffs */
	while (entry != np->cur_tx) {
		struct sk_buff *skb;

		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
			break;
		skb = np->tx_skbuff[entry];
		pci_unmap_single (np->pdev,
				  desc_to_dma(&np->tx_ring[entry]),
				  skb->len, PCI_DMA_TODEVICE);
		if (irq)
			dev_kfree_skb_irq (skb);
		else
			dev_kfree_skb (skb);

		np->tx_skbuff[entry] = NULL;
		entry = (entry + 1) % TX_RING_SIZE;
		tx_use++;
	}
	if (irq)
		spin_unlock(&np->tx_lock);
	else
		spin_unlock_irqrestore(&np->tx_lock, flag);
	np->old_tx = entry;

	/* If the ring is no longer full, clear tx_full and
	   call netif_wake_queue() */

	if (netif_queue_stopped(dev) &&
	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
		netif_wake_queue (dev);
	}
}

static void
tx_error (struct net_device *dev, int tx_status)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
	int frame_id;
	int i;

	frame_id = (tx_status & 0xffff0000);
	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
		dev->name, tx_status, frame_id);
	np->stats.tx_errors++;
	/* Ttransmit Underrun */
	if (tx_status & 0x10) {
		np->stats.tx_fifo_errors++;
		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
		dw16(ASICCtrl + 2,
		     TxReset | DMAReset | FIFOReset | NetworkReset);
		/* Wait for ResetBusy bit clear */
		for (i = 50; i > 0; i--) {
			if (!(dr16(ASICCtrl + 2) & ResetBusy))
				break;
			mdelay (1);
		}
		rio_set_led_mode(dev);
		rio_free_tx (dev, 1);
		/* Reset TFDListPtr */
		dw32(TFDListPtr0, np->tx_ring_dma +
		     np->old_tx * sizeof (struct netdev_desc));
		dw32(TFDListPtr1, 0);

		/* Let TxStartThresh stay default value */
	}
	/* Late Collision */
	if (tx_status & 0x04) {
		np->stats.tx_fifo_errors++;
		/* TxReset and clear FIFO */
		dw16(ASICCtrl + 2, TxReset | FIFOReset);
		/* Wait reset done */
		for (i = 50; i > 0; i--) {
			if (!(dr16(ASICCtrl + 2) & ResetBusy))
				break;
			mdelay (1);
		}
		rio_set_led_mode(dev);
		/* Let TxStartThresh stay default value */
	}
	/* Maximum Collisions */
#ifdef ETHER_STATS
	if (tx_status & 0x08)
		np->stats.collisions16++;
#else
	if (tx_status & 0x08)
		np->stats.collisions++;
#endif
	/* Restart the Tx */
	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
}

static int
receive_packet (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int entry = np->cur_rx % RX_RING_SIZE;
	int cnt = 30;

	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
	while (1) {
		struct netdev_desc *desc = &np->rx_ring[entry];
		int pkt_len;
		u64 frame_status;

		if (!(desc->status & cpu_to_le64(RFDDone)) ||
		    !(desc->status & cpu_to_le64(FrameStart)) ||
		    !(desc->status & cpu_to_le64(FrameEnd)))
			break;

		/* Chip omits the CRC. */
		frame_status = le64_to_cpu(desc->status);
		pkt_len = frame_status & 0xffff;
		if (--cnt < 0)
			break;
		/* Update rx error statistics, drop packet. */
		if (frame_status & RFS_Errors) {
			np->stats.rx_errors++;
			if (frame_status & (RxRuntFrame | RxLengthError))
				np->stats.rx_length_errors++;
			if (frame_status & RxFCSError)
				np->stats.rx_crc_errors++;
			if (frame_status & RxAlignmentError && np->speed != 1000)
				np->stats.rx_frame_errors++;
			if (frame_status & RxFIFOOverrun)
	 			np->stats.rx_fifo_errors++;
		} else {
			struct sk_buff *skb;

			/* Small skbuffs for short packets */
			if (pkt_len > copy_thresh) {
				pci_unmap_single (np->pdev,
						  desc_to_dma(desc),
						  np->rx_buf_sz,
						  PCI_DMA_FROMDEVICE);
				skb_put (skb = np->rx_skbuff[entry], pkt_len);
				np->rx_skbuff[entry] = NULL;
			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
				pci_dma_sync_single_for_cpu(np->pdev,
							    desc_to_dma(desc),
							    np->rx_buf_sz,
							    PCI_DMA_FROMDEVICE);
				skb_copy_to_linear_data (skb,
						  np->rx_skbuff[entry]->data,
						  pkt_len);
				skb_put (skb, pkt_len);
				pci_dma_sync_single_for_device(np->pdev,
							       desc_to_dma(desc),
							       np->rx_buf_sz,
							       PCI_DMA_FROMDEVICE);
			}
			skb->protocol = eth_type_trans (skb, dev);
#if 0
			/* Checksum done by hw, but csum value unavailable. */
			if (np->pdev->pci_rev_id >= 0x0c &&
				!(frame_status & (TCPError | UDPError | IPError))) {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
			}
#endif
			netif_rx (skb);
		}
		entry = (entry + 1) % RX_RING_SIZE;
	}
	spin_lock(&np->rx_lock);
	np->cur_rx = entry;
	/* Re-allocate skbuffs to fill the descriptor ring */
	entry = np->old_rx;
	while (entry != np->cur_rx) {
		struct sk_buff *skb;
		/* Dropped packets don't need to re-allocate */
		if (np->rx_skbuff[entry] == NULL) {
			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
			if (skb == NULL) {
				np->rx_ring[entry].fraginfo = 0;
				printk (KERN_INFO
					"%s: receive_packet: "
					"Unable to re-allocate Rx skbuff.#%d\n",
					dev->name, entry);
				break;
			}
			np->rx_skbuff[entry] = skb;
			np->rx_ring[entry].fraginfo =
			    cpu_to_le64 (pci_map_single
					 (np->pdev, skb->data, np->rx_buf_sz,
					  PCI_DMA_FROMDEVICE));
		}
		np->rx_ring[entry].fraginfo |=
		    cpu_to_le64((u64)np->rx_buf_sz << 48);
		np->rx_ring[entry].status = 0;
		entry = (entry + 1) % RX_RING_SIZE;
	}
	np->old_rx = entry;
	spin_unlock(&np->rx_lock);
	return 0;
}

static void
rio_error (struct net_device *dev, int int_status)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
	u16 macctrl;

	/* Link change event */
	if (int_status & LinkEvent) {
		if (mii_wait_link (dev, 10) == 0) {
			printk (KERN_INFO "%s: Link up\n", dev->name);
			if (np->phy_media)
				mii_get_media_pcs (dev);
			else
				mii_get_media (dev);
			if (np->speed == 1000)
				np->tx_coalesce = tx_coalesce;
			else
				np->tx_coalesce = 1;
			macctrl = 0;
			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
			macctrl |= (np->tx_flow) ?
				TxFlowControlEnable : 0;
			macctrl |= (np->rx_flow) ?
				RxFlowControlEnable : 0;
			dw16(MACCtrl, macctrl);
			np->link_status = 1;
			netif_carrier_on(dev);
		} else {
			printk (KERN_INFO "%s: Link off\n", dev->name);
			np->link_status = 0;
			netif_carrier_off(dev);
		}
	}

	/* UpdateStats statistics registers */
	if (int_status & UpdateStats) {
		get_stats (dev);
	}

	/* PCI Error, a catastronphic error related to the bus interface
	   occurs, set GlobalReset and HostReset to reset. */
	if (int_status & HostError) {
		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
			dev->name, int_status);
		dw16(ASICCtrl + 2, GlobalReset | HostReset);
		mdelay (500);
		rio_set_led_mode(dev);
	}
}

static struct net_device_stats *
get_stats (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
#ifdef MEM_MAPPING
	int i;
#endif
	unsigned int stat_reg;

	/* All statistics registers need to be acknowledged,
	   else statistic overflow could cause problems */

	np->stats.rx_packets += dr32(FramesRcvOk);
	np->stats.tx_packets += dr32(FramesXmtOk);
	np->stats.rx_bytes += dr32(OctetRcvOk);
	np->stats.tx_bytes += dr32(OctetXmtOk);

	np->stats.multicast = dr32(McstFramesRcvdOk);
	np->stats.collisions += dr32(SingleColFrames)
			     +  dr32(MultiColFrames);

	/* detailed tx errors */
	stat_reg = dr16(FramesAbortXSColls);
	np->stats.tx_aborted_errors += stat_reg;
	np->stats.tx_errors += stat_reg;

	stat_reg = dr16(CarrierSenseErrors);
	np->stats.tx_carrier_errors += stat_reg;
	np->stats.tx_errors += stat_reg;

	/* Clear all other statistic register. */
	dr32(McstOctetXmtOk);
	dr16(BcstFramesXmtdOk);
	dr32(McstFramesXmtdOk);
	dr16(BcstFramesRcvdOk);
	dr16(MacControlFramesRcvd);
	dr16(FrameTooLongErrors);
	dr16(InRangeLengthErrors);
	dr16(FramesCheckSeqErrors);
	dr16(FramesLostRxErrors);
	dr32(McstOctetXmtOk);
	dr32(BcstOctetXmtOk);
	dr32(McstFramesXmtdOk);
	dr32(FramesWDeferredXmt);
	dr32(LateCollisions);
	dr16(BcstFramesXmtdOk);
	dr16(MacControlFramesXmtd);
	dr16(FramesWEXDeferal);

#ifdef MEM_MAPPING
	for (i = 0x100; i <= 0x150; i += 4)
		dr32(i);
#endif
	dr16(TxJumboFrames);
	dr16(RxJumboFrames);
	dr16(TCPCheckSumErrors);
	dr16(UDPCheckSumErrors);
	dr16(IPCheckSumErrors);
	return &np->stats;
}

static int
clear_stats (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
#ifdef MEM_MAPPING
	int i;
#endif

	/* All statistics registers need to be acknowledged,
	   else statistic overflow could cause problems */
	dr32(FramesRcvOk);
	dr32(FramesXmtOk);
	dr32(OctetRcvOk);
	dr32(OctetXmtOk);

	dr32(McstFramesRcvdOk);
	dr32(SingleColFrames);
	dr32(MultiColFrames);
	dr32(LateCollisions);
	/* detailed rx errors */
	dr16(FrameTooLongErrors);
	dr16(InRangeLengthErrors);
	dr16(FramesCheckSeqErrors);
	dr16(FramesLostRxErrors);

	/* detailed tx errors */
	dr16(FramesAbortXSColls);
	dr16(CarrierSenseErrors);

	/* Clear all other statistic register. */
	dr32(McstOctetXmtOk);
	dr16(BcstFramesXmtdOk);
	dr32(McstFramesXmtdOk);
	dr16(BcstFramesRcvdOk);
	dr16(MacControlFramesRcvd);
	dr32(McstOctetXmtOk);
	dr32(BcstOctetXmtOk);
	dr32(McstFramesXmtdOk);
	dr32(FramesWDeferredXmt);
	dr16(BcstFramesXmtdOk);
	dr16(MacControlFramesXmtd);
	dr16(FramesWEXDeferal);
#ifdef MEM_MAPPING
	for (i = 0x100; i <= 0x150; i += 4)
		dr32(i);
#endif
	dr16(TxJumboFrames);
	dr16(RxJumboFrames);
	dr16(TCPCheckSumErrors);
	dr16(UDPCheckSumErrors);
	dr16(IPCheckSumErrors);
	return 0;
}


static int
change_mtu (struct net_device *dev, int new_mtu)
{
	struct netdev_private *np = netdev_priv(dev);
	int max = (np->jumbo) ? MAX_JUMBO : 1536;

	if ((new_mtu < 68) || (new_mtu > max)) {
		return -EINVAL;
	}

	dev->mtu = new_mtu;

	return 0;
}

static void
set_multicast (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
	u32 hash_table[2];
	u16 rx_mode = 0;

	hash_table[0] = hash_table[1] = 0;
	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
	hash_table[1] |= 0x02000000;
	if (dev->flags & IFF_PROMISC) {
		/* Receive all frames promiscuously. */
		rx_mode = ReceiveAllFrames;
	} else if ((dev->flags & IFF_ALLMULTI) ||
			(netdev_mc_count(dev) > multicast_filter_limit)) {
		/* Receive broadcast and multicast frames */
		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
	} else if (!netdev_mc_empty(dev)) {
		struct netdev_hw_addr *ha;
		/* Receive broadcast frames and multicast frames filtering
		   by Hashtable */
		rx_mode =
		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
		netdev_for_each_mc_addr(ha, dev) {
			int bit, index = 0;
			int crc = ether_crc_le(ETH_ALEN, ha->addr);
			/* The inverted high significant 6 bits of CRC are
			   used as an index to hashtable */
			for (bit = 0; bit < 6; bit++)
				if (crc & (1 << (31 - bit)))
					index |= (1 << bit);
			hash_table[index / 32] |= (1 << (index % 32));
		}
	} else {
		rx_mode = ReceiveBroadcast | ReceiveUnicast;
	}
	if (np->vlan) {
		/* ReceiveVLANMatch field in ReceiveMode */
		rx_mode |= ReceiveVLANMatch;
	}

	dw32(HashTable0, hash_table[0]);
	dw32(HashTable1, hash_table[1]);
	dw16(ReceiveMode, rx_mode);
}

static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct netdev_private *np = netdev_priv(dev);

	strlcpy(info->driver, "dl2k", sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
}

static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct netdev_private *np = netdev_priv(dev);
	if (np->phy_media) {
		/* fiber device */
		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
		cmd->port = PORT_FIBRE;
		cmd->transceiver = XCVR_INTERNAL;
	} else {
		/* copper device */
		cmd->supported = SUPPORTED_10baseT_Half |
			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
			SUPPORTED_Autoneg | SUPPORTED_MII;
		cmd->advertising = ADVERTISED_10baseT_Half |
			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
			ADVERTISED_Autoneg | ADVERTISED_MII;
		cmd->port = PORT_MII;
		cmd->transceiver = XCVR_INTERNAL;
	}
	if ( np->link_status ) {
		ethtool_cmd_speed_set(cmd, np->speed);
		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
	} else {
		ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
		cmd->duplex = DUPLEX_UNKNOWN;
	}
	if ( np->an_enable)
		cmd->autoneg = AUTONEG_ENABLE;
	else
		cmd->autoneg = AUTONEG_DISABLE;

	cmd->phy_address = np->phy_addr;
	return 0;
}

static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct netdev_private *np = netdev_priv(dev);
	netif_carrier_off(dev);
	if (cmd->autoneg == AUTONEG_ENABLE) {
		if (np->an_enable)
			return 0;
		else {
			np->an_enable = 1;
			mii_set_media(dev);
			return 0;
		}
	} else {
		np->an_enable = 0;
		if (np->speed == 1000) {
			ethtool_cmd_speed_set(cmd, SPEED_100);
			cmd->duplex = DUPLEX_FULL;
			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
		}
		switch (ethtool_cmd_speed(cmd)) {
		case SPEED_10:
			np->speed = 10;
			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
			break;
		case SPEED_100:
			np->speed = 100;
			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
			break;
		case SPEED_1000: /* not supported */
		default:
			return -EINVAL;
		}
		mii_set_media(dev);
	}
	return 0;
}

static u32 rio_get_link(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	return np->link_status;
}

static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo = rio_get_drvinfo,
	.get_settings = rio_get_settings,
	.set_settings = rio_set_settings,
	.get_link = rio_get_link,
};

static int
rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
{
	int phy_addr;
	struct netdev_private *np = netdev_priv(dev);
	struct mii_ioctl_data *miidata = if_mii(rq);

	phy_addr = np->phy_addr;
	switch (cmd) {
	case SIOCGMIIPHY:
		miidata->phy_id = phy_addr;
		break;
	case SIOCGMIIREG:
		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
		break;
	case SIOCSMIIREG:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
		break;
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

#define EEP_READ 0x0200
#define EEP_BUSY 0x8000
/* Read the EEPROM word */
/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
static int read_eeprom(struct netdev_private *np, int eep_addr)
{
	void __iomem *ioaddr = np->eeprom_addr;
	int i = 1000;

	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
	while (i-- > 0) {
		if (!(dr16(EepromCtrl) & EEP_BUSY))
			return dr16(EepromData);
	}
	return 0;
}

enum phy_ctrl_bits {
	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
	MII_DUPLEX = 0x08,
};

#define mii_delay() dr8(PhyCtrl)
static void
mii_sendbit (struct net_device *dev, u32 data)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;

	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
	dw8(PhyCtrl, data);
	mii_delay ();
	dw8(PhyCtrl, data | MII_CLK);
	mii_delay ();
}

static int
mii_getbit (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;
	u8 data;

	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
	dw8(PhyCtrl, data);
	mii_delay ();
	dw8(PhyCtrl, data | MII_CLK);
	mii_delay ();
	return (dr8(PhyCtrl) >> 1) & 1;
}

static void
mii_send_bits (struct net_device *dev, u32 data, int len)
{
	int i;

	for (i = len - 1; i >= 0; i--) {
		mii_sendbit (dev, data & (1 << i));
	}
}

static int
mii_read (struct net_device *dev, int phy_addr, int reg_num)
{
	u32 cmd;
	int i;
	u32 retval = 0;

	/* Preamble */
	mii_send_bits (dev, 0xffffffff, 32);
	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
	/* ST,OP = 0110'b for read operation */
	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
	mii_send_bits (dev, cmd, 14);
	/* Turnaround */
	if (mii_getbit (dev))
		goto err_out;
	/* Read data */
	for (i = 0; i < 16; i++) {
		retval |= mii_getbit (dev);
		retval <<= 1;
	}
	/* End cycle */
	mii_getbit (dev);
	return (retval >> 1) & 0xffff;

      err_out:
	return 0;
}
static int
mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
{
	u32 cmd;

	/* Preamble */
	mii_send_bits (dev, 0xffffffff, 32);
	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
	mii_send_bits (dev, cmd, 32);
	/* End cycle */
	mii_getbit (dev);
	return 0;
}
static int
mii_wait_link (struct net_device *dev, int wait)
{
	__u16 bmsr;
	int phy_addr;
	struct netdev_private *np;

	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	do {
		bmsr = mii_read (dev, phy_addr, MII_BMSR);
		if (bmsr & BMSR_LSTATUS)
			return 0;
		mdelay (1);
	} while (--wait > 0);
	return -1;
}
static int
mii_get_media (struct net_device *dev)
{
	__u16 negotiate;
	__u16 bmsr;
	__u16 mscr;
	__u16 mssr;
	int phy_addr;
	struct netdev_private *np;

	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	bmsr = mii_read (dev, phy_addr, MII_BMSR);
	if (np->an_enable) {
		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
			/* Auto-Negotiation not completed */
			return -1;
		}
		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
			mii_read (dev, phy_addr, MII_LPA);
		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
		mssr = mii_read (dev, phy_addr, MII_STAT1000);
		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
			np->speed = 1000;
			np->full_duplex = 1;
			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
			np->speed = 1000;
			np->full_duplex = 0;
			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
		} else if (negotiate & ADVERTISE_100FULL) {
			np->speed = 100;
			np->full_duplex = 1;
			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
		} else if (negotiate & ADVERTISE_100HALF) {
			np->speed = 100;
			np->full_duplex = 0;
			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
		} else if (negotiate & ADVERTISE_10FULL) {
			np->speed = 10;
			np->full_duplex = 1;
			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
		} else if (negotiate & ADVERTISE_10HALF) {
			np->speed = 10;
			np->full_duplex = 0;
			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
		}
		if (negotiate & ADVERTISE_PAUSE_CAP) {
			np->tx_flow &= 1;
			np->rx_flow &= 1;
		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
			np->tx_flow = 0;
			np->rx_flow &= 1;
		}
		/* else tx_flow, rx_flow = user select  */
	} else {
		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
		case BMCR_SPEED1000:
			printk (KERN_INFO "Operating at 1000 Mbps, ");
			break;
		case BMCR_SPEED100:
			printk (KERN_INFO "Operating at 100 Mbps, ");
			break;
		case 0:
			printk (KERN_INFO "Operating at 10 Mbps, ");
		}
		if (bmcr & BMCR_FULLDPLX) {
			printk (KERN_CONT "Full duplex\n");
		} else {
			printk (KERN_CONT "Half duplex\n");
		}
	}
	if (np->tx_flow)
		printk(KERN_INFO "Enable Tx Flow Control\n");
	else
		printk(KERN_INFO "Disable Tx Flow Control\n");
	if (np->rx_flow)
		printk(KERN_INFO "Enable Rx Flow Control\n");
	else
		printk(KERN_INFO "Disable Rx Flow Control\n");

	return 0;
}

static int
mii_set_media (struct net_device *dev)
{
	__u16 pscr;
	__u16 bmcr;
	__u16 bmsr;
	__u16 anar;
	int phy_addr;
	struct netdev_private *np;
	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	/* Does user set speed? */
	if (np->an_enable) {
		/* Advertise capabilities */
		bmsr = mii_read (dev, phy_addr, MII_BMSR);
		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
			  ADVERTISE_100HALF | ADVERTISE_10HALF |
			  ADVERTISE_100BASE4);
		if (bmsr & BMSR_100FULL)
			anar |= ADVERTISE_100FULL;
		if (bmsr & BMSR_100HALF)
			anar |= ADVERTISE_100HALF;
		if (bmsr & BMSR_100BASE4)
			anar |= ADVERTISE_100BASE4;
		if (bmsr & BMSR_10FULL)
			anar |= ADVERTISE_10FULL;
		if (bmsr & BMSR_10HALF)
			anar |= ADVERTISE_10HALF;
		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
		mii_write (dev, phy_addr, MII_ADVERTISE, anar);

		/* Enable Auto crossover */
		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
		pscr |= 3 << 5;	/* 11'b */
		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);

		/* Soft reset PHY */
		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
		mii_write (dev, phy_addr, MII_BMCR, bmcr);
		mdelay(1);
	} else {
		/* Force speed setting */
		/* 1) Disable Auto crossover */
		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
		pscr &= ~(3 << 5);
		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);

		/* 2) PHY Reset */
		bmcr = mii_read (dev, phy_addr, MII_BMCR);
		bmcr |= BMCR_RESET;
		mii_write (dev, phy_addr, MII_BMCR, bmcr);

		/* 3) Power Down */
		bmcr = 0x1940;	/* must be 0x1940 */
		mii_write (dev, phy_addr, MII_BMCR, bmcr);
		mdelay (100);	/* wait a certain time */

		/* 4) Advertise nothing */
		mii_write (dev, phy_addr, MII_ADVERTISE, 0);

		/* 5) Set media and Power Up */
		bmcr = BMCR_PDOWN;
		if (np->speed == 100) {
			bmcr |= BMCR_SPEED100;
			printk (KERN_INFO "Manual 100 Mbps, ");
		} else if (np->speed == 10) {
			printk (KERN_INFO "Manual 10 Mbps, ");
		}
		if (np->full_duplex) {
			bmcr |= BMCR_FULLDPLX;
			printk (KERN_CONT "Full duplex\n");
		} else {
			printk (KERN_CONT "Half duplex\n");
		}
#if 0
		/* Set 1000BaseT Master/Slave setting */
		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
		mscr |= MII_MSCR_CFG_ENABLE;
		mscr &= ~MII_MSCR_CFG_VALUE = 0;
#endif
		mii_write (dev, phy_addr, MII_BMCR, bmcr);
		mdelay(10);
	}
	return 0;
}

static int
mii_get_media_pcs (struct net_device *dev)
{
	__u16 negotiate;
	__u16 bmsr;
	int phy_addr;
	struct netdev_private *np;

	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
	if (np->an_enable) {
		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
			/* Auto-Negotiation not completed */
			return -1;
		}
		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
			mii_read (dev, phy_addr, PCS_ANLPAR);
		np->speed = 1000;
		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
			np->full_duplex = 1;
		} else {
			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
			np->full_duplex = 0;
		}
		if (negotiate & PCS_ANAR_PAUSE) {
			np->tx_flow &= 1;
			np->rx_flow &= 1;
		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
			np->tx_flow = 0;
			np->rx_flow &= 1;
		}
		/* else tx_flow, rx_flow = user select  */
	} else {
		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
		printk (KERN_INFO "Operating at 1000 Mbps, ");
		if (bmcr & BMCR_FULLDPLX) {
			printk (KERN_CONT "Full duplex\n");
		} else {
			printk (KERN_CONT "Half duplex\n");
		}
	}
	if (np->tx_flow)
		printk(KERN_INFO "Enable Tx Flow Control\n");
	else
		printk(KERN_INFO "Disable Tx Flow Control\n");
	if (np->rx_flow)
		printk(KERN_INFO "Enable Rx Flow Control\n");
	else
		printk(KERN_INFO "Disable Rx Flow Control\n");

	return 0;
}

static int
mii_set_media_pcs (struct net_device *dev)
{
	__u16 bmcr;
	__u16 esr;
	__u16 anar;
	int phy_addr;
	struct netdev_private *np;
	np = netdev_priv(dev);
	phy_addr = np->phy_addr;

	/* Auto-Negotiation? */
	if (np->an_enable) {
		/* Advertise capabilities */
		esr = mii_read (dev, phy_addr, PCS_ESR);
		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
			~PCS_ANAR_HALF_DUPLEX &
			~PCS_ANAR_FULL_DUPLEX;
		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
			anar |= PCS_ANAR_HALF_DUPLEX;
		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
			anar |= PCS_ANAR_FULL_DUPLEX;
		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
		mii_write (dev, phy_addr, MII_ADVERTISE, anar);

		/* Soft reset PHY */
		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
		mii_write (dev, phy_addr, MII_BMCR, bmcr);
		mdelay(1);
	} else {
		/* Force speed setting */
		/* PHY Reset */
		bmcr = BMCR_RESET;
		mii_write (dev, phy_addr, MII_BMCR, bmcr);
		mdelay(10);
		if (np->full_duplex) {
			bmcr = BMCR_FULLDPLX;
			printk (KERN_INFO "Manual full duplex\n");
		} else {
			bmcr = 0;
			printk (KERN_INFO "Manual half duplex\n");
		}
		mii_write (dev, phy_addr, MII_BMCR, bmcr);
		mdelay(10);

		/*  Advertise nothing */
		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
	}
	return 0;
}


static int
rio_close (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->ioaddr;

	struct pci_dev *pdev = np->pdev;

	netif_stop_queue (dev);

	/* Disable interrupts */
	dw16(IntEnable, 0);

	/* Stop Tx and Rx logics */
	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);

	free_irq(pdev->irq, dev);
	del_timer_sync (&np->timer);

	free_list(dev);

	return 0;
}

static void
rio_remove1 (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata (pdev);

	if (dev) {
		struct netdev_private *np = netdev_priv(dev);

		unregister_netdev (dev);
		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
				     np->rx_ring_dma);
		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
				     np->tx_ring_dma);
#ifdef MEM_MAPPING
		pci_iounmap(pdev, np->ioaddr);
#endif
		pci_iounmap(pdev, np->eeprom_addr);
		free_netdev (dev);
		pci_release_regions (pdev);
		pci_disable_device (pdev);
	}
}

static struct pci_driver rio_driver = {
	.name		= "dl2k",
	.id_table	= rio_pci_tbl,
	.probe		= rio_probe1,
	.remove		= rio_remove1,
};

module_pci_driver(rio_driver);
/*

Compile command:

gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c

Read Documentation/networking/dl2k.txt for details.

*/