summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/chelsio/cxgb4vf/t4vf_hw.c
blob: 427bfa71388b3a000cdaf5689d10e65fb1e3b8f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
/*
 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
 * driver for Linux.
 *
 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/pci.h>

#include "t4vf_common.h"
#include "t4vf_defs.h"

#include "../cxgb4/t4_regs.h"
#include "../cxgb4/t4_values.h"
#include "../cxgb4/t4fw_api.h"

/*
 * Wait for the device to become ready (signified by our "who am I" register
 * returning a value other than all 1's).  Return an error if it doesn't
 * become ready ...
 */
int t4vf_wait_dev_ready(struct adapter *adapter)
{
	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
	const u32 notready1 = 0xffffffff;
	const u32 notready2 = 0xeeeeeeee;
	u32 val;

	val = t4_read_reg(adapter, whoami);
	if (val != notready1 && val != notready2)
		return 0;
	msleep(500);
	val = t4_read_reg(adapter, whoami);
	if (val != notready1 && val != notready2)
		return 0;
	else
		return -EIO;
}

/*
 * Get the reply to a mailbox command and store it in @rpl in big-endian order
 * (since the firmware data structures are specified in a big-endian layout).
 */
static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
			 u32 mbox_data)
{
	for ( ; size; size -= 8, mbox_data += 8)
		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
}

/**
 *	t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
 *	@adapter: the adapter
 *	@cmd: the Firmware Mailbox Command or Reply
 *	@size: command length in bytes
 *	@access: the time (ms) needed to access the Firmware Mailbox
 *	@execute: the time (ms) the command spent being executed
 */
static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
			     int size, int access, int execute)
{
	struct mbox_cmd_log *log = adapter->mbox_log;
	struct mbox_cmd *entry;
	int i;

	entry = mbox_cmd_log_entry(log, log->cursor++);
	if (log->cursor == log->size)
		log->cursor = 0;

	for (i = 0; i < size / 8; i++)
		entry->cmd[i] = be64_to_cpu(cmd[i]);
	while (i < MBOX_LEN / 8)
		entry->cmd[i++] = 0;
	entry->timestamp = jiffies;
	entry->seqno = log->seqno++;
	entry->access = access;
	entry->execute = execute;
}

/**
 *	t4vf_wr_mbox_core - send a command to FW through the mailbox
 *	@adapter: the adapter
 *	@cmd: the command to write
 *	@size: command length in bytes
 *	@rpl: where to optionally store the reply
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sends the given command to FW through the mailbox and waits for the
 *	FW to execute the command.  If @rpl is not %NULL it is used to store
 *	the FW's reply to the command.  The command and its optional reply
 *	are of the same length.  FW can take up to 500 ms to respond.
 *	@sleep_ok determines whether we may sleep while awaiting the response.
 *	If sleeping is allowed we use progressive backoff otherwise we spin.
 *
 *	The return value is 0 on success or a negative errno on failure.  A
 *	failure can happen either because we are not able to execute the
 *	command or FW executes it but signals an error.  In the latter case
 *	the return value is the error code indicated by FW (negated).
 */
int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
		      void *rpl, bool sleep_ok)
{
	static const int delay[] = {
		1, 1, 3, 5, 10, 10, 20, 50, 100
	};

	u16 access = 0, execute = 0;
	u32 v, mbox_data;
	int i, ms, delay_idx, ret;
	const __be64 *p;
	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
	u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
	__be64 cmd_rpl[MBOX_LEN / 8];
	struct mbox_list entry;

	/* In T6, mailbox size is changed to 128 bytes to avoid
	 * invalidating the entire prefetch buffer.
	 */
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
		mbox_data = T4VF_MBDATA_BASE_ADDR;
	else
		mbox_data = T6VF_MBDATA_BASE_ADDR;

	/*
	 * Commands must be multiples of 16 bytes in length and may not be
	 * larger than the size of the Mailbox Data register array.
	 */
	if ((size % 16) != 0 ||
	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
		return -EINVAL;

	/* Queue ourselves onto the mailbox access list.  When our entry is at
	 * the front of the list, we have rights to access the mailbox.  So we
	 * wait [for a while] till we're at the front [or bail out with an
	 * EBUSY] ...
	 */
	spin_lock(&adapter->mbox_lock);
	list_add_tail(&entry.list, &adapter->mlist.list);
	spin_unlock(&adapter->mbox_lock);

	delay_idx = 0;
	ms = delay[0];

	for (i = 0; ; i += ms) {
		/* If we've waited too long, return a busy indication.  This
		 * really ought to be based on our initial position in the
		 * mailbox access list but this is a start.  We very rearely
		 * contend on access to the mailbox ...
		 */
		if (i > FW_CMD_MAX_TIMEOUT) {
			spin_lock(&adapter->mbox_lock);
			list_del(&entry.list);
			spin_unlock(&adapter->mbox_lock);
			ret = -EBUSY;
			t4vf_record_mbox(adapter, cmd, size, access, ret);
			return ret;
		}

		/* If we're at the head, break out and start the mailbox
		 * protocol.
		 */
		if (list_first_entry(&adapter->mlist.list, struct mbox_list,
				     list) == &entry)
			break;

		/* Delay for a bit before checking again ... */
		if (sleep_ok) {
			ms = delay[delay_idx];  /* last element may repeat */
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else {
			mdelay(ms);
		}
	}

	/*
	 * Loop trying to get ownership of the mailbox.  Return an error
	 * if we can't gain ownership.
	 */
	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
	if (v != MBOX_OWNER_DRV) {
		spin_lock(&adapter->mbox_lock);
		list_del(&entry.list);
		spin_unlock(&adapter->mbox_lock);
		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
		t4vf_record_mbox(adapter, cmd, size, access, ret);
		return ret;
	}

	/*
	 * Write the command array into the Mailbox Data register array and
	 * transfer ownership of the mailbox to the firmware.
	 *
	 * For the VFs, the Mailbox Data "registers" are actually backed by
	 * T4's "MA" interface rather than PL Registers (as is the case for
	 * the PFs).  Because these are in different coherency domains, the
	 * write to the VF's PL-register-backed Mailbox Control can race in
	 * front of the writes to the MA-backed VF Mailbox Data "registers".
	 * So we need to do a read-back on at least one byte of the VF Mailbox
	 * Data registers before doing the write to the VF Mailbox Control
	 * register.
	 */
	if (cmd_op != FW_VI_STATS_CMD)
		t4vf_record_mbox(adapter, cmd, size, access, 0);
	for (i = 0, p = cmd; i < size; i += 8)
		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
	t4_read_reg(adapter, mbox_data);         /* flush write */

	t4_write_reg(adapter, mbox_ctl,
		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
	t4_read_reg(adapter, mbox_ctl);          /* flush write */

	/*
	 * Spin waiting for firmware to acknowledge processing our command.
	 */
	delay_idx = 0;
	ms = delay[0];

	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
		if (sleep_ok) {
			ms = delay[delay_idx];
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else
			mdelay(ms);

		/*
		 * If we're the owner, see if this is the reply we wanted.
		 */
		v = t4_read_reg(adapter, mbox_ctl);
		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
			/*
			 * If the Message Valid bit isn't on, revoke ownership
			 * of the mailbox and continue waiting for our reply.
			 */
			if ((v & MBMSGVALID_F) == 0) {
				t4_write_reg(adapter, mbox_ctl,
					     MBOWNER_V(MBOX_OWNER_NONE));
				continue;
			}

			/*
			 * We now have our reply.  Extract the command return
			 * value, copy the reply back to our caller's buffer
			 * (if specified) and revoke ownership of the mailbox.
			 * We return the (negated) firmware command return
			 * code (this depends on FW_SUCCESS == 0).
			 */
			get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);

			/* return value in low-order little-endian word */
			v = be64_to_cpu(cmd_rpl[0]);

			if (rpl) {
				/* request bit in high-order BE word */
				WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
					 & FW_CMD_REQUEST_F) == 0);
				memcpy(rpl, cmd_rpl, size);
				WARN_ON((be32_to_cpu(*(__be32 *)rpl)
					 & FW_CMD_REQUEST_F) != 0);
			}
			t4_write_reg(adapter, mbox_ctl,
				     MBOWNER_V(MBOX_OWNER_NONE));
			execute = i + ms;
			if (cmd_op != FW_VI_STATS_CMD)
				t4vf_record_mbox(adapter, cmd_rpl, size, access,
						 execute);
			spin_lock(&adapter->mbox_lock);
			list_del(&entry.list);
			spin_unlock(&adapter->mbox_lock);
			return -FW_CMD_RETVAL_G(v);
		}
	}

	/* We timed out.  Return the error ... */
	ret = -ETIMEDOUT;
	t4vf_record_mbox(adapter, cmd, size, access, ret);
	spin_lock(&adapter->mbox_lock);
	list_del(&entry.list);
	spin_unlock(&adapter->mbox_lock);
	return ret;
}

#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)

/**
 *	init_link_config - initialize a link's SW state
 *	@lc: structure holding the link state
 *	@caps: link capabilities
 *
 *	Initializes the SW state maintained for each link, including the link's
 *	capabilities and default speed/flow-control/autonegotiation settings.
 */
static void init_link_config(struct link_config *lc, unsigned int caps)
{
	lc->supported = caps;
	lc->lp_advertising = 0;
	lc->requested_speed = 0;
	lc->speed = 0;
	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
	if (lc->supported & FW_PORT_CAP_ANEG) {
		lc->advertising = lc->supported & ADVERT_MASK;
		lc->autoneg = AUTONEG_ENABLE;
		lc->requested_fc |= PAUSE_AUTONEG;
	} else {
		lc->advertising = 0;
		lc->autoneg = AUTONEG_DISABLE;
	}
}

/**
 *	t4vf_port_init - initialize port hardware/software state
 *	@adapter: the adapter
 *	@pidx: the adapter port index
 */
int t4vf_port_init(struct adapter *adapter, int pidx)
{
	struct port_info *pi = adap2pinfo(adapter, pidx);
	struct fw_vi_cmd vi_cmd, vi_rpl;
	struct fw_port_cmd port_cmd, port_rpl;
	int v;

	/*
	 * Execute a VI Read command to get our Virtual Interface information
	 * like MAC address, etc.
	 */
	memset(&vi_cmd, 0, sizeof(vi_cmd));
	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
				       FW_CMD_REQUEST_F |
				       FW_CMD_READ_F);
	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
	if (v)
		return v;

	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);

	/*
	 * If we don't have read access to our port information, we're done
	 * now.  Otherwise, execute a PORT Read command to get it ...
	 */
	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
		return 0;

	memset(&port_cmd, 0, sizeof(port_cmd));
	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
					    FW_CMD_REQUEST_F |
					    FW_CMD_READ_F |
					    FW_PORT_CMD_PORTID_V(pi->port_id));
	port_cmd.action_to_len16 =
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
			    FW_LEN16(port_cmd));
	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
	if (v)
		return v;

	v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
	pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
			FW_PORT_CMD_MDIOADDR_G(v) : -1;
	pi->port_type = FW_PORT_CMD_PTYPE_G(v);
	pi->mod_type = FW_PORT_MOD_TYPE_NA;

	init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));

	return 0;
}

/**
 *      t4vf_fw_reset - issue a reset to FW
 *      @adapter: the adapter
 *
 *	Issues a reset command to FW.  For a Physical Function this would
 *	result in the Firmware resetting all of its state.  For a Virtual
 *	Function this just resets the state associated with the VF.
 */
int t4vf_fw_reset(struct adapter *adapter)
{
	struct fw_reset_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
				      FW_CMD_WRITE_F);
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_query_params - query FW or device parameters
 *	@adapter: the adapter
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@vals: the parameter values
 *
 *	Reads the values of firmware or device parameters.  Up to 7 parameters
 *	can be queried at once.
 */
static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
			     const u32 *params, u32 *vals)
{
	int i, ret;
	struct fw_params_cmd cmd, rpl;
	struct fw_params_param *p;
	size_t len16;

	if (nparams > 7)
		return -EINVAL;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_READ_F);
	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
				      param[nparams].mnem), 16);
	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
		p->mnem = htonl(*params++);

	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (ret == 0)
		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
			*vals++ = be32_to_cpu(p->val);
	return ret;
}

/**
 *	t4vf_set_params - sets FW or device parameters
 *	@adapter: the adapter
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@vals: the parameter values
 *
 *	Sets the values of firmware or device parameters.  Up to 7 parameters
 *	can be specified at once.
 */
int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
		    const u32 *params, const u32 *vals)
{
	int i;
	struct fw_params_cmd cmd;
	struct fw_params_param *p;
	size_t len16;

	if (nparams > 7)
		return -EINVAL;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_WRITE_F);
	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
				      param[nparams]), 16);
	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
		p->mnem = cpu_to_be32(*params++);
		p->val = cpu_to_be32(*vals++);
	}

	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_fl_pkt_align - return the fl packet alignment
 *	@adapter: the adapter
 *
 *	T4 has a single field to specify the packing and padding boundary.
 *	T5 onwards has separate fields for this and hence the alignment for
 *	next packet offset is maximum of these two.  And T6 changes the
 *	Ingress Padding Boundary Shift, so it's all a mess and it's best
 *	if we put this in low-level Common Code ...
 *
 */
int t4vf_fl_pkt_align(struct adapter *adapter)
{
	u32 sge_control, sge_control2;
	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;

	sge_control = adapter->params.sge.sge_control;

	/* T4 uses a single control field to specify both the PCIe Padding and
	 * Packing Boundary.  T5 introduced the ability to specify these
	 * separately.  The actual Ingress Packet Data alignment boundary
	 * within Packed Buffer Mode is the maximum of these two
	 * specifications.  (Note that it makes no real practical sense to
	 * have the Pading Boudary be larger than the Packing Boundary but you
	 * could set the chip up that way and, in fact, legacy T4 code would
	 * end doing this because it would initialize the Padding Boundary and
	 * leave the Packing Boundary initialized to 0 (16 bytes).)
	 * Padding Boundary values in T6 starts from 8B,
	 * where as it is 32B for T4 and T5.
	 */
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
	else
		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;

	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);

	fl_align = ingpadboundary;
	if (!is_t4(adapter->params.chip)) {
		/* T5 has a different interpretation of one of the PCIe Packing
		 * Boundary values.
		 */
		sge_control2 = adapter->params.sge.sge_control2;
		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
			ingpackboundary = 16;
		else
			ingpackboundary = 1 << (ingpackboundary +
						INGPACKBOUNDARY_SHIFT_X);

		fl_align = max(ingpadboundary, ingpackboundary);
	}
	return fl_align;
}

/**
 *	t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
 *	@adapter: the adapter
 *	@qid: the Queue ID
 *	@qtype: the Ingress or Egress type for @qid
 *	@pbar2_qoffset: BAR2 Queue Offset
 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 *
 *	Returns the BAR2 SGE Queue Registers information associated with the
 *	indicated Absolute Queue ID.  These are passed back in return value
 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 *
 *	This may return an error which indicates that BAR2 SGE Queue
 *	registers aren't available.  If an error is not returned, then the
 *	following values are returned:
 *
 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 *
 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 *	require the "Inferred Queue ID" ability may be used.  E.g. the
 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 *	then these "Inferred Queue ID" register may not be used.
 */
int t4vf_bar2_sge_qregs(struct adapter *adapter,
			unsigned int qid,
			enum t4_bar2_qtype qtype,
			u64 *pbar2_qoffset,
			unsigned int *pbar2_qid)
{
	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
	u64 bar2_page_offset, bar2_qoffset;
	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;

	/* T4 doesn't support BAR2 SGE Queue registers.
	 */
	if (is_t4(adapter->params.chip))
		return -EINVAL;

	/* Get our SGE Page Size parameters.
	 */
	page_shift = adapter->params.sge.sge_vf_hps + 10;
	page_size = 1 << page_shift;

	/* Get the right Queues per Page parameters for our Queue.
	 */
	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
		     ? adapter->params.sge.sge_vf_eq_qpp
		     : adapter->params.sge.sge_vf_iq_qpp);
	qpp_mask = (1 << qpp_shift) - 1;

	/* Calculate the basics of the BAR2 SGE Queue register area:
	 *  o The BAR2 page the Queue registers will be in.
	 *  o The BAR2 Queue ID.
	 *  o The BAR2 Queue ID Offset into the BAR2 page.
	 */
	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
	bar2_qid = qid & qpp_mask;
	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;

	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
	 * hardware will infer the Absolute Queue ID simply from the writes to
	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
	 * from the BAR2 Page and BAR2 Queue ID.
	 *
	 * One important censequence of this is that some BAR2 SGE registers
	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
	 * there.  But other registers synthesize the SGE Queue ID purely
	 * from the writes to the registers -- the Write Combined Doorbell
	 * Buffer is a good example.  These BAR2 SGE Registers are only
	 * available for those BAR2 SGE Register areas where the SGE Absolute
	 * Queue ID can be inferred from simple writes.
	 */
	bar2_qoffset = bar2_page_offset;
	bar2_qinferred = (bar2_qid_offset < page_size);
	if (bar2_qinferred) {
		bar2_qoffset += bar2_qid_offset;
		bar2_qid = 0;
	}

	*pbar2_qoffset = bar2_qoffset;
	*pbar2_qid = bar2_qid;
	return 0;
}

/**
 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
 *	@adapter: the adapter
 *
 *	Retrieves various core SGE parameters in the form of hardware SGE
 *	register values.  The caller is responsible for decoding these as
 *	needed.  The SGE parameters are stored in @adapter->params.sge.
 */
int t4vf_get_sge_params(struct adapter *adapter)
{
	struct sge_params *sge_params = &adapter->params.sge;
	u32 params[7], vals[7];
	int v;

	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
	v = t4vf_query_params(adapter, 7, params, vals);
	if (v)
		return v;
	sge_params->sge_control = vals[0];
	sge_params->sge_host_page_size = vals[1];
	sge_params->sge_fl_buffer_size[0] = vals[2];
	sge_params->sge_fl_buffer_size[1] = vals[3];
	sge_params->sge_timer_value_0_and_1 = vals[4];
	sge_params->sge_timer_value_2_and_3 = vals[5];
	sge_params->sge_timer_value_4_and_5 = vals[6];

	/* T4 uses a single control field to specify both the PCIe Padding and
	 * Packing Boundary.  T5 introduced the ability to specify these
	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
	 * SGE_CONTROL in order to determine how ingress packet data will be
	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
	 * failure grabbing it we throw an error since we can't figure out the
	 * right value.
	 */
	if (!is_t4(adapter->params.chip)) {
		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
		v = t4vf_query_params(adapter, 1, params, vals);
		if (v != FW_SUCCESS) {
			dev_err(adapter->pdev_dev,
				"Unable to get SGE Control2; "
				"probably old firmware.\n");
			return v;
		}
		sge_params->sge_control2 = vals[0];
	}

	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
	v = t4vf_query_params(adapter, 2, params, vals);
	if (v)
		return v;
	sge_params->sge_ingress_rx_threshold = vals[0];
	sge_params->sge_congestion_control = vals[1];

	/* For T5 and later we want to use the new BAR2 Doorbells.
	 * Unfortunately, older firmware didn't allow the this register to be
	 * read.
	 */
	if (!is_t4(adapter->params.chip)) {
		u32 whoami;
		unsigned int pf, s_hps, s_qpp;

		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
			     FW_PARAMS_PARAM_XYZ_V(
				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
			     FW_PARAMS_PARAM_XYZ_V(
				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
		v = t4vf_query_params(adapter, 2, params, vals);
		if (v != FW_SUCCESS) {
			dev_warn(adapter->pdev_dev,
				 "Unable to get VF SGE Queues/Page; "
				 "probably old firmware.\n");
			return v;
		}
		sge_params->sge_egress_queues_per_page = vals[0];
		sge_params->sge_ingress_queues_per_page = vals[1];

		/* We need the Queues/Page for our VF.  This is based on the
		 * PF from which we're instantiated and is indexed in the
		 * register we just read. Do it once here so other code in
		 * the driver can just use it.
		 */
		whoami = t4_read_reg(adapter,
				     T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
		pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);

		s_hps = (HOSTPAGESIZEPF0_S +
			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
		sge_params->sge_vf_hps =
			((sge_params->sge_host_page_size >> s_hps)
			 & HOSTPAGESIZEPF0_M);

		s_qpp = (QUEUESPERPAGEPF0_S +
			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
		sge_params->sge_vf_eq_qpp =
			((sge_params->sge_egress_queues_per_page >> s_qpp)
			 & QUEUESPERPAGEPF0_M);
		sge_params->sge_vf_iq_qpp =
			((sge_params->sge_ingress_queues_per_page >> s_qpp)
			 & QUEUESPERPAGEPF0_M);
	}

	return 0;
}

/**
 *	t4vf_get_vpd_params - retrieve device VPD paremeters
 *	@adapter: the adapter
 *
 *	Retrives various device Vital Product Data parameters.  The parameters
 *	are stored in @adapter->params.vpd.
 */
int t4vf_get_vpd_params(struct adapter *adapter)
{
	struct vpd_params *vpd_params = &adapter->params.vpd;
	u32 params[7], vals[7];
	int v;

	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
	v = t4vf_query_params(adapter, 1, params, vals);
	if (v)
		return v;
	vpd_params->cclk = vals[0];

	return 0;
}

/**
 *	t4vf_get_dev_params - retrieve device paremeters
 *	@adapter: the adapter
 *
 *	Retrives various device parameters.  The parameters are stored in
 *	@adapter->params.dev.
 */
int t4vf_get_dev_params(struct adapter *adapter)
{
	struct dev_params *dev_params = &adapter->params.dev;
	u32 params[7], vals[7];
	int v;

	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
	v = t4vf_query_params(adapter, 2, params, vals);
	if (v)
		return v;
	dev_params->fwrev = vals[0];
	dev_params->tprev = vals[1];

	return 0;
}

/**
 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
 *	@adapter: the adapter
 *
 *	Retrieves global RSS mode and parameters with which we have to live
 *	and stores them in the @adapter's RSS parameters.
 */
int t4vf_get_rss_glb_config(struct adapter *adapter)
{
	struct rss_params *rss = &adapter->params.rss;
	struct fw_rss_glb_config_cmd cmd, rpl;
	int v;

	/*
	 * Execute an RSS Global Configuration read command to retrieve
	 * our RSS configuration.
	 */
	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
				      FW_CMD_REQUEST_F |
				      FW_CMD_READ_F);
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (v)
		return v;

	/*
	 * Transate the big-endian RSS Global Configuration into our
	 * cpu-endian format based on the RSS mode.  We also do first level
	 * filtering at this point to weed out modes which don't support
	 * VF Drivers ...
	 */
	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
			be32_to_cpu(rpl.u.manual.mode_pkd));
	switch (rss->mode) {
	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
		u32 word = be32_to_cpu(
				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);

		rss->u.basicvirtual.synmapen =
			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
		rss->u.basicvirtual.syn4tupenipv6 =
			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
		rss->u.basicvirtual.syn2tupenipv6 =
			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
		rss->u.basicvirtual.syn4tupenipv4 =
			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
		rss->u.basicvirtual.syn2tupenipv4 =
			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);

		rss->u.basicvirtual.ofdmapen =
			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);

		rss->u.basicvirtual.tnlmapen =
			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
		rss->u.basicvirtual.tnlalllookup =
			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);

		rss->u.basicvirtual.hashtoeplitz =
			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);

		/* we need at least Tunnel Map Enable to be set */
		if (!rss->u.basicvirtual.tnlmapen)
			return -EINVAL;
		break;
	}

	default:
		/* all unknown/unsupported RSS modes result in an error */
		return -EINVAL;
	}

	return 0;
}

/**
 *	t4vf_get_vfres - retrieve VF resource limits
 *	@adapter: the adapter
 *
 *	Retrieves configured resource limits and capabilities for a virtual
 *	function.  The results are stored in @adapter->vfres.
 */
int t4vf_get_vfres(struct adapter *adapter)
{
	struct vf_resources *vfres = &adapter->params.vfres;
	struct fw_pfvf_cmd cmd, rpl;
	int v;
	u32 word;

	/*
	 * Execute PFVF Read command to get VF resource limits; bail out early
	 * with error on command failure.
	 */
	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_READ_F);
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (v)
		return v;

	/*
	 * Extract VF resource limits and return success.
	 */
	word = be32_to_cpu(rpl.niqflint_niq);
	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
	vfres->niq = FW_PFVF_CMD_NIQ_G(word);

	word = be32_to_cpu(rpl.type_to_neq);
	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);

	word = be32_to_cpu(rpl.tc_to_nexactf);
	vfres->tc = FW_PFVF_CMD_TC_G(word);
	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);

	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);

	return 0;
}

/**
 *	t4vf_read_rss_vi_config - read a VI's RSS configuration
 *	@adapter: the adapter
 *	@viid: Virtual Interface ID
 *	@config: pointer to host-native VI RSS Configuration buffer
 *
 *	Reads the Virtual Interface's RSS configuration information and
 *	translates it into CPU-native format.
 */
int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
			    union rss_vi_config *config)
{
	struct fw_rss_vi_config_cmd cmd, rpl;
	int v;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_READ_F |
				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (v)
		return v;

	switch (adapter->params.rss.mode) {
	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);

		config->basicvirtual.ip6fourtupen =
			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
		config->basicvirtual.ip6twotupen =
			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
		config->basicvirtual.ip4fourtupen =
			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
		config->basicvirtual.ip4twotupen =
			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
		config->basicvirtual.udpen =
			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
		config->basicvirtual.defaultq =
			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
		break;
	}

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 *	t4vf_write_rss_vi_config - write a VI's RSS configuration
 *	@adapter: the adapter
 *	@viid: Virtual Interface ID
 *	@config: pointer to host-native VI RSS Configuration buffer
 *
 *	Write the Virtual Interface's RSS configuration information
 *	(translating it into firmware-native format before writing).
 */
int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
			     union rss_vi_config *config)
{
	struct fw_rss_vi_config_cmd cmd, rpl;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	switch (adapter->params.rss.mode) {
	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
		u32 word = 0;

		if (config->basicvirtual.ip6fourtupen)
			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
		if (config->basicvirtual.ip6twotupen)
			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
		if (config->basicvirtual.ip4fourtupen)
			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
		if (config->basicvirtual.ip4twotupen)
			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
		if (config->basicvirtual.udpen)
			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
				config->basicvirtual.defaultq);
		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
		break;
	}

	default:
		return -EINVAL;
	}

	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
}

/**
 *	t4vf_config_rss_range - configure a portion of the RSS mapping table
 *	@adapter: the adapter
 *	@viid: Virtual Interface of RSS Table Slice
 *	@start: starting entry in the table to write
 *	@n: how many table entries to write
 *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
 *	@nrspq: number of values in @rspq
 *
 *	Programs the selected part of the VI's RSS mapping table with the
 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
 *	until the full table range is populated.
 *
 *	The caller must ensure the values in @rspq are in the range 0..1023.
 */
int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
			  int start, int n, const u16 *rspq, int nrspq)
{
	const u16 *rsp = rspq;
	const u16 *rsp_end = rspq+nrspq;
	struct fw_rss_ind_tbl_cmd cmd;

	/*
	 * Initialize firmware command template to write the RSS table.
	 */
	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));

	/*
	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
	 * reserved.
	 */
	while (n > 0) {
		__be32 *qp = &cmd.iq0_to_iq2;
		int nq = min(n, 32);
		int ret;

		/*
		 * Set up the firmware RSS command header to send the next
		 * "nq" Ingress Queue IDs to the firmware.
		 */
		cmd.niqid = cpu_to_be16(nq);
		cmd.startidx = cpu_to_be16(start);

		/*
		 * "nq" more done for the start of the next loop.
		 */
		start += nq;
		n -= nq;

		/*
		 * While there are still Ingress Queue IDs to stuff into the
		 * current firmware RSS command, retrieve them from the
		 * Ingress Queue ID array and insert them into the command.
		 */
		while (nq > 0) {
			/*
			 * Grab up to the next 3 Ingress Queue IDs (wrapping
			 * around the Ingress Queue ID array if necessary) and
			 * insert them into the firmware RSS command at the
			 * current 3-tuple position within the commad.
			 */
			u16 qbuf[3];
			u16 *qbp = qbuf;
			int nqbuf = min(3, nq);

			nq -= nqbuf;
			qbuf[0] = qbuf[1] = qbuf[2] = 0;
			while (nqbuf) {
				nqbuf--;
				*qbp++ = *rsp++;
				if (rsp >= rsp_end)
					rsp = rspq;
			}
			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
		}

		/*
		 * Send this portion of the RRS table update to the firmware;
		 * bail out on any errors.
		 */
		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 *	t4vf_alloc_vi - allocate a virtual interface on a port
 *	@adapter: the adapter
 *	@port_id: physical port associated with the VI
 *
 *	Allocate a new Virtual Interface and bind it to the indicated
 *	physical port.  Return the new Virtual Interface Identifier on
 *	success, or a [negative] error number on failure.
 */
int t4vf_alloc_vi(struct adapter *adapter, int port_id)
{
	struct fw_vi_cmd cmd, rpl;
	int v;

	/*
	 * Execute a VI command to allocate Virtual Interface and return its
	 * VIID.
	 */
	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_WRITE_F |
				    FW_CMD_EXEC_F);
	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
					 FW_VI_CMD_ALLOC_F);
	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (v)
		return v;

	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
}

/**
 *	t4vf_free_vi -- free a virtual interface
 *	@adapter: the adapter
 *	@viid: the virtual interface identifier
 *
 *	Free a previously allocated Virtual Interface.  Return an error on
 *	failure.
 */
int t4vf_free_vi(struct adapter *adapter, int viid)
{
	struct fw_vi_cmd cmd;

	/*
	 * Execute a VI command to free the Virtual Interface.
	 */
	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_EXEC_F);
	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
					 FW_VI_CMD_FREE_F);
	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_enable_vi - enable/disable a virtual interface
 *	@adapter: the adapter
 *	@viid: the Virtual Interface ID
 *	@rx_en: 1=enable Rx, 0=disable Rx
 *	@tx_en: 1=enable Tx, 0=disable Tx
 *
 *	Enables/disables a virtual interface.
 */
int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
		   bool rx_en, bool tx_en)
{
	struct fw_vi_enable_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_EXEC_F |
				     FW_VI_ENABLE_CMD_VIID_V(viid));
	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
				       FW_LEN16(cmd));
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_identify_port - identify a VI's port by blinking its LED
 *	@adapter: the adapter
 *	@viid: the Virtual Interface ID
 *	@nblinks: how many times to blink LED at 2.5 Hz
 *
 *	Identifies a VI's port by blinking its LED.
 */
int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
		       unsigned int nblinks)
{
	struct fw_vi_enable_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_EXEC_F |
				     FW_VI_ENABLE_CMD_VIID_V(viid));
	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
				       FW_LEN16(cmd));
	cmd.blinkdur = cpu_to_be16(nblinks);
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_set_rxmode - set Rx properties of a virtual interface
 *	@adapter: the adapter
 *	@viid: the VI id
 *	@mtu: the new MTU or -1 for no change
 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
 *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
 *		-1 no change
 *
 *	Sets Rx properties of a virtual interface.
 */
int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
		    bool sleep_ok)
{
	struct fw_vi_rxmode_cmd cmd;

	/* convert to FW values */
	if (mtu < 0)
		mtu = FW_VI_RXMODE_CMD_MTU_M;
	if (promisc < 0)
		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
	if (all_multi < 0)
		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
	if (bcast < 0)
		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
	if (vlanex < 0)
		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
				     FW_VI_RXMODE_CMD_VIID_V(viid));
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	cmd.mtu_to_vlanexen =
		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
}

/**
 *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
 *	@adapter: the adapter
 *	@viid: the Virtual Interface Identifier
 *	@free: if true any existing filters for this VI id are first removed
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@idx: where to store the index of each allocated filter
 *	@hash: pointer to hash address filter bitmap
 *	@sleep_ok: call is allowed to sleep
 *
 *	Allocates an exact-match filter for each of the supplied addresses and
 *	sets it to the corresponding address.  If @idx is not %NULL it should
 *	have at least @naddr entries, each of which will be set to the index of
 *	the filter allocated for the corresponding MAC address.  If a filter
 *	could not be allocated for an address its index is set to 0xffff.
 *	If @hash is not %NULL addresses that fail to allocate an exact filter
 *	are hashed and update the hash filter bitmap pointed at by @hash.
 *
 *	Returns a negative error number or the number of filters allocated.
 */
int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
			unsigned int naddr, const u8 **addr, u16 *idx,
			u64 *hash, bool sleep_ok)
{
	int offset, ret = 0;
	unsigned nfilters = 0;
	unsigned int rem = naddr;
	struct fw_vi_mac_cmd cmd, rpl;
	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;

	if (naddr > max_naddr)
		return -EINVAL;

	for (offset = 0; offset < naddr; /**/) {
		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
					 ? rem
					 : ARRAY_SIZE(cmd.u.exact));
		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
						     u.exact[fw_naddr]), 16);
		struct fw_vi_mac_exact *p;
		int i;

		memset(&cmd, 0, sizeof(cmd));
		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
					     FW_CMD_REQUEST_F |
					     FW_CMD_WRITE_F |
					     (free ? FW_CMD_EXEC_F : 0) |
					     FW_VI_MAC_CMD_VIID_V(viid));
		cmd.freemacs_to_len16 =
			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
				    FW_CMD_LEN16_V(len16));

		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
			p->valid_to_idx = cpu_to_be16(
				FW_VI_MAC_CMD_VALID_F |
				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
		}


		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
					sleep_ok);
		if (ret && ret != -ENOMEM)
			break;

		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
			u16 index = FW_VI_MAC_CMD_IDX_G(
				be16_to_cpu(p->valid_to_idx));

			if (idx)
				idx[offset+i] =
					(index >= max_naddr
					 ? 0xffff
					 : index);
			if (index < max_naddr)
				nfilters++;
			else if (hash)
				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
		}

		free = false;
		offset += fw_naddr;
		rem -= fw_naddr;
	}

	/*
	 * If there were no errors or we merely ran out of room in our MAC
	 * address arena, return the number of filters actually written.
	 */
	if (ret == 0 || ret == -ENOMEM)
		ret = nfilters;
	return ret;
}

/**
 *	t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
 *	@adapter: the adapter
 *	@viid: the VI id
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@sleep_ok: call is allowed to sleep
 *
 *	Frees the exact-match filter for each of the supplied addresses
 *
 *	Returns a negative error number or the number of filters freed.
 */
int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
		       unsigned int naddr, const u8 **addr, bool sleep_ok)
{
	int offset, ret = 0;
	struct fw_vi_mac_cmd cmd;
	unsigned int nfilters = 0;
	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
	unsigned int rem = naddr;

	if (naddr > max_naddr)
		return -EINVAL;

	for (offset = 0; offset < (int)naddr ; /**/) {
		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
					 rem : ARRAY_SIZE(cmd.u.exact));
		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
						     u.exact[fw_naddr]), 16);
		struct fw_vi_mac_exact *p;
		int i;

		memset(&cmd, 0, sizeof(cmd));
		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
				     FW_CMD_EXEC_V(0) |
				     FW_VI_MAC_CMD_VIID_V(viid));
		cmd.freemacs_to_len16 =
				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
					    FW_CMD_LEN16_V(len16));

		for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
			p->valid_to_idx = cpu_to_be16(
				FW_VI_MAC_CMD_VALID_F |
				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
		}

		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
					sleep_ok);
		if (ret)
			break;

		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
			u16 index = FW_VI_MAC_CMD_IDX_G(
						be16_to_cpu(p->valid_to_idx));

			if (index < max_naddr)
				nfilters++;
		}

		offset += fw_naddr;
		rem -= fw_naddr;
	}

	if (ret == 0)
		ret = nfilters;
	return ret;
}

/**
 *	t4vf_change_mac - modifies the exact-match filter for a MAC address
 *	@adapter: the adapter
 *	@viid: the Virtual Interface ID
 *	@idx: index of existing filter for old value of MAC address, or -1
 *	@addr: the new MAC address value
 *	@persist: if idx < 0, the new MAC allocation should be persistent
 *
 *	Modifies an exact-match filter and sets it to the new MAC address.
 *	Note that in general it is not possible to modify the value of a given
 *	filter so the generic way to modify an address filter is to free the
 *	one being used by the old address value and allocate a new filter for
 *	the new address value.  @idx can be -1 if the address is a new
 *	addition.
 *
 *	Returns a negative error number or the index of the filter with the new
 *	MAC value.
 */
int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
		    int idx, const u8 *addr, bool persist)
{
	int ret;
	struct fw_vi_mac_cmd cmd, rpl;
	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
					     u.exact[1]), 16);
	unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;

	/*
	 * If this is a new allocation, determine whether it should be
	 * persistent (across a "freemacs" operation) or not.
	 */
	if (idx < 0)
		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
				     FW_VI_MAC_CMD_VIID_V(viid));
	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
				      FW_VI_MAC_CMD_IDX_V(idx));
	memcpy(p->macaddr, addr, sizeof(p->macaddr));

	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (ret == 0) {
		p = &rpl.u.exact[0];
		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
		if (ret >= max_mac_addr)
			ret = -ENOMEM;
	}
	return ret;
}

/**
 *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
 *	@adapter: the adapter
 *	@viid: the Virtual Interface Identifier
 *	@ucast: whether the hash filter should also match unicast addresses
 *	@vec: the value to be written to the hash filter
 *	@sleep_ok: call is allowed to sleep
 *
 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
 */
int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
		       bool ucast, u64 vec, bool sleep_ok)
{
	struct fw_vi_mac_cmd cmd;
	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
					     u.exact[0]), 16);

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
				     FW_VI_ENABLE_CMD_VIID_V(viid));
	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
					    FW_CMD_LEN16_V(len16));
	cmd.u.hash.hashvec = cpu_to_be64(vec);
	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
}

/**
 *	t4vf_get_port_stats - collect "port" statistics
 *	@adapter: the adapter
 *	@pidx: the port index
 *	@s: the stats structure to fill
 *
 *	Collect statistics for the "port"'s Virtual Interface.
 */
int t4vf_get_port_stats(struct adapter *adapter, int pidx,
			struct t4vf_port_stats *s)
{
	struct port_info *pi = adap2pinfo(adapter, pidx);
	struct fw_vi_stats_vf fwstats;
	unsigned int rem = VI_VF_NUM_STATS;
	__be64 *fwsp = (__be64 *)&fwstats;

	/*
	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
	 * commands.  We could use a Work Request and get all of them at once
	 * but that's an asynchronous interface which is awkward to use.
	 */
	while (rem) {
		unsigned int ix = VI_VF_NUM_STATS - rem;
		unsigned int nstats = min(6U, rem);
		struct fw_vi_stats_cmd cmd, rpl;
		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
			      sizeof(struct fw_vi_stats_ctl));
		size_t len16 = DIV_ROUND_UP(len, 16);
		int ret;

		memset(&cmd, 0, sizeof(cmd));
		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
					     FW_CMD_REQUEST_F |
					     FW_CMD_READ_F);
		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
		cmd.u.ctl.nstats_ix =
			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
				    FW_VI_STATS_CMD_NSTATS_V(nstats));
		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
		if (ret)
			return ret;

		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);

		rem -= nstats;
		fwsp += nstats;
	}

	/*
	 * Translate firmware statistics into host native statistics.
	 */
	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);

	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);

	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);

	return 0;
}

/**
 *	t4vf_iq_free - free an ingress queue and its free lists
 *	@adapter: the adapter
 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
 *	@iqid: ingress queue ID
 *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
 *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
 *
 *	Frees an ingress queue and its associated free lists, if any.
 */
int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_EXEC_F);
	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
					 FW_LEN16(cmd));
	cmd.type_to_iqandstindex =
		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));

	cmd.iqid = cpu_to_be16(iqid);
	cmd.fl0id = cpu_to_be16(fl0id);
	cmd.fl1id = cpu_to_be16(fl1id);
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_eth_eq_free - free an Ethernet egress queue
 *	@adapter: the adapter
 *	@eqid: egress queue ID
 *
 *	Frees an Ethernet egress queue.
 */
int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
{
	struct fw_eq_eth_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_EXEC_F);
	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
					 FW_LEN16(cmd));
	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_handle_fw_rpl - process a firmware reply message
 *	@adapter: the adapter
 *	@rpl: start of the firmware message
 *
 *	Processes a firmware message, such as link state change messages.
 */
int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
{
	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));

	switch (opcode) {
	case FW_PORT_CMD: {
		/*
		 * Link/module state change message.
		 */
		const struct fw_port_cmd *port_cmd =
			(const struct fw_port_cmd *)rpl;
		u32 stat, mod;
		int action, port_id, link_ok, speed, fc, pidx;

		/*
		 * Extract various fields from port status change message.
		 */
		action = FW_PORT_CMD_ACTION_G(
			be32_to_cpu(port_cmd->action_to_len16));
		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
			dev_err(adapter->pdev_dev,
				"Unknown firmware PORT reply action %x\n",
				action);
			break;
		}

		port_id = FW_PORT_CMD_PORTID_G(
			be32_to_cpu(port_cmd->op_to_portid));

		stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
		link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
		speed = 0;
		fc = 0;
		if (stat & FW_PORT_CMD_RXPAUSE_F)
			fc |= PAUSE_RX;
		if (stat & FW_PORT_CMD_TXPAUSE_F)
			fc |= PAUSE_TX;
		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
			speed = 100;
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
			speed = 1000;
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
			speed = 10000;
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
			speed = 40000;

		/*
		 * Scan all of our "ports" (Virtual Interfaces) looking for
		 * those bound to the physical port which has changed.  If
		 * our recorded state doesn't match the current state,
		 * signal that change to the OS code.
		 */
		for_each_port(adapter, pidx) {
			struct port_info *pi = adap2pinfo(adapter, pidx);
			struct link_config *lc;

			if (pi->port_id != port_id)
				continue;

			lc = &pi->link_cfg;

			mod = FW_PORT_CMD_MODTYPE_G(stat);
			if (mod != pi->mod_type) {
				pi->mod_type = mod;
				t4vf_os_portmod_changed(adapter, pidx);
			}

			if (link_ok != lc->link_ok || speed != lc->speed ||
			    fc != lc->fc) {
				/* something changed */
				lc->link_ok = link_ok;
				lc->speed = speed;
				lc->fc = fc;
				lc->supported =
					be16_to_cpu(port_cmd->u.info.pcap);
				lc->lp_advertising =
					be16_to_cpu(port_cmd->u.info.lpacap);
				t4vf_os_link_changed(adapter, pidx, link_ok);
			}
		}
		break;
	}

	default:
		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
			opcode);
	}
	return 0;
}

/**
 */
int t4vf_prep_adapter(struct adapter *adapter)
{
	int err;
	unsigned int chipid;

	/* Wait for the device to become ready before proceeding ...
	 */
	err = t4vf_wait_dev_ready(adapter);
	if (err)
		return err;

	/* Default port and clock for debugging in case we can't reach
	 * firmware.
	 */
	adapter->params.nports = 1;
	adapter->params.vfres.pmask = 1;
	adapter->params.vpd.cclk = 50000;

	adapter->params.chip = 0;
	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
	case CHELSIO_T4:
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
		adapter->params.arch.sge_fl_db = DBPRIO_F;
		adapter->params.arch.mps_tcam_size =
				NUM_MPS_CLS_SRAM_L_INSTANCES;
		break;

	case CHELSIO_T5:
		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
		adapter->params.arch.mps_tcam_size =
				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
		break;

	case CHELSIO_T6:
		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
		adapter->params.arch.sge_fl_db = 0;
		adapter->params.arch.mps_tcam_size =
				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
		break;
	}

	return 0;
}