summaryrefslogtreecommitdiff
path: root/drivers/net/dsa/microchip/ksz_common.c
blob: b55f3649ff933189aa8ce34d9dbcd782cb05c078 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
/*
 * Microchip switch driver main logic
 *
 * Copyright (C) 2017
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <net/dsa.h>
#include <net/switchdev.h>

#include "ksz_priv.h"

static const struct {
	int index;
	char string[ETH_GSTRING_LEN];
} mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
	{ 0x00, "rx_hi" },
	{ 0x01, "rx_undersize" },
	{ 0x02, "rx_fragments" },
	{ 0x03, "rx_oversize" },
	{ 0x04, "rx_jabbers" },
	{ 0x05, "rx_symbol_err" },
	{ 0x06, "rx_crc_err" },
	{ 0x07, "rx_align_err" },
	{ 0x08, "rx_mac_ctrl" },
	{ 0x09, "rx_pause" },
	{ 0x0A, "rx_bcast" },
	{ 0x0B, "rx_mcast" },
	{ 0x0C, "rx_ucast" },
	{ 0x0D, "rx_64_or_less" },
	{ 0x0E, "rx_65_127" },
	{ 0x0F, "rx_128_255" },
	{ 0x10, "rx_256_511" },
	{ 0x11, "rx_512_1023" },
	{ 0x12, "rx_1024_1522" },
	{ 0x13, "rx_1523_2000" },
	{ 0x14, "rx_2001" },
	{ 0x15, "tx_hi" },
	{ 0x16, "tx_late_col" },
	{ 0x17, "tx_pause" },
	{ 0x18, "tx_bcast" },
	{ 0x19, "tx_mcast" },
	{ 0x1A, "tx_ucast" },
	{ 0x1B, "tx_deferred" },
	{ 0x1C, "tx_total_col" },
	{ 0x1D, "tx_exc_col" },
	{ 0x1E, "tx_single_col" },
	{ 0x1F, "tx_mult_col" },
	{ 0x80, "rx_total" },
	{ 0x81, "tx_total" },
	{ 0x82, "rx_discards" },
	{ 0x83, "tx_discards" },
};

static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
	u8 data;

	ksz_read8(dev, addr, &data);
	if (set)
		data |= bits;
	else
		data &= ~bits;
	ksz_write8(dev, addr, data);
}

static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
	u32 data;

	ksz_read32(dev, addr, &data);
	if (set)
		data |= bits;
	else
		data &= ~bits;
	ksz_write32(dev, addr, data);
}

static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
			 bool set)
{
	u32 addr;
	u8 data;

	addr = PORT_CTRL_ADDR(port, offset);
	ksz_read8(dev, addr, &data);

	if (set)
		data |= bits;
	else
		data &= ~bits;

	ksz_write8(dev, addr, data);
}

static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
			   u32 bits, bool set)
{
	u32 addr;
	u32 data;

	addr = PORT_CTRL_ADDR(port, offset);
	ksz_read32(dev, addr, &data);

	if (set)
		data |= bits;
	else
		data &= ~bits;

	ksz_write32(dev, addr, data);
}

static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
	u8 data;

	do {
		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
		if (!(data & waiton))
			break;
		usleep_range(1, 10);
	} while (timeout-- > 0);

	if (timeout <= 0)
		return -ETIMEDOUT;

	return 0;
}

static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
	struct ksz_device *dev = ds->priv;
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);

	/* wait to be cleared */
	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to read vlan table\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
	struct ksz_device *dev = ds->priv;
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);

	/* wait to be cleared */
	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to write vlan table\n");
		goto exit;
	}

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

	/* update vlan cache table */
	dev->vlan_cache[vid].table[0] = vlan_table[0];
	dev->vlan_cache[vid].table[1] = vlan_table[1];
	dev->vlan_cache[vid].table[2] = vlan_table[2];

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static void read_table(struct dsa_switch *ds, u32 *table)
{
	struct ksz_device *dev = ds->priv;

	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}

static void write_table(struct dsa_switch *ds, u32 *table)
{
	struct ksz_device *dev = ds->priv;

	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}

static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
	u32 data;

	do {
		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
		if (!(data & waiton))
			break;
		usleep_range(1, 10);
	} while (timeout-- > 0);

	if (timeout <= 0)
		return -ETIMEDOUT;

	return 0;
}

static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
	u32 data;

	do {
		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
		if (!(data & waiton))
			break;
		usleep_range(1, 10);
	} while (timeout-- > 0);

	if (timeout <= 0)
		return -ETIMEDOUT;

	return 0;
}

static int ksz_reset_switch(struct dsa_switch *ds)
{
	struct ksz_device *dev = ds->priv;
	u8 data8;
	u16 data16;
	u32 data32;

	/* reset switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);

	/* turn off SPI DO Edge select */
	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);

	/* default configuration */
	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	/* disable interrupts */
	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);

	/* set broadcast storm protection 10% rate */
	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
	data16 &= ~BROADCAST_STORM_RATE;
	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);

	return 0;
}

static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
	u8 data8;
	u16 data16;

	/* enable tag tail for host port */
	if (cpu_port)
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
			     true);

	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);

	/* set back pressure */
	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);

	/* set flow control */
	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);

	/* enable broadcast storm limit */
	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);

	/* disable DiffServ priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);

	/* replace priority */
	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
		     false);
	ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
		       MTI_PVID_REPLACE, false);

	/* enable 802.1p priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);

	/* configure MAC to 1G & RGMII mode */
	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
	data8 |= PORT_RGMII_ID_EG_ENABLE;
	data8 &= ~PORT_MII_NOT_1GBIT;
	data8 &= ~PORT_MII_SEL_M;
	data8 |= PORT_RGMII_SEL;
	ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);

	/* clear pending interrupts */
	ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}

static void ksz_config_cpu_port(struct dsa_switch *ds)
{
	struct ksz_device *dev = ds->priv;
	int i;

	ds->num_ports = dev->port_cnt;

	for (i = 0; i < ds->num_ports; i++) {
		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
			dev->cpu_port = i;

			/* enable cpu port */
			port_setup(dev, i, true);
		}
	}
}

static int ksz_setup(struct dsa_switch *ds)
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;

	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
				       dev->num_vlans, GFP_KERNEL);
	if (!dev->vlan_cache)
		return -ENOMEM;

	ret = ksz_reset_switch(ds);
	if (ret) {
		dev_err(ds->dev, "failed to reset switch\n");
		return ret;
	}

	/* accept packet up to 2000bytes */
	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);

	ksz_config_cpu_port(ds);

	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);

	/* queue based egress rate limit */
	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);

	/* start switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);

	return 0;
}

static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds)
{
	return DSA_TAG_PROTO_KSZ;
}

static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
	struct ksz_device *dev = ds->priv;
	u16 val = 0;

	ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);

	return val;
}

static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct ksz_device *dev = ds->priv;

	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);

	return 0;
}

static int ksz_enable_port(struct dsa_switch *ds, int port,
			   struct phy_device *phy)
{
	struct ksz_device *dev = ds->priv;

	/* setup slave port */
	port_setup(dev, port, false);

	return 0;
}

static void ksz_disable_port(struct dsa_switch *ds, int port,
			     struct phy_device *phy)
{
	struct ksz_device *dev = ds->priv;

	/* there is no port disable */
	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
}

static int ksz_sset_count(struct dsa_switch *ds)
{
	return TOTAL_SWITCH_COUNTER_NUM;
}

static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
{
	int i;

	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
		memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
		       ETH_GSTRING_LEN);
	}
}

static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
				  uint64_t *buf)
{
	struct ksz_device *dev = ds->priv;
	int i;
	u32 data;
	int timeout;

	mutex_lock(&dev->stats_mutex);

	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
		data = MIB_COUNTER_READ;
		data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);

		timeout = 1000;
		do {
			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
				    &data);
			usleep_range(1, 10);
			if (!(data & MIB_COUNTER_READ))
				break;
		} while (timeout-- > 0);

		/* failed to read MIB. get out of loop */
		if (!timeout) {
			dev_dbg(dev->dev, "Failed to get MIB\n");
			break;
		}

		/* count resets upon read */
		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);

		dev->mib_value[i] += (uint64_t)data;
		buf[i] = dev->mib_value[i];
	}

	mutex_unlock(&dev->stats_mutex);
}

static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
	struct ksz_device *dev = ds->priv;
	u8 data;

	ksz_pread8(dev, port, P_STP_CTRL, &data);
	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);

	switch (state) {
	case BR_STATE_DISABLED:
		data |= PORT_LEARN_DISABLE;
		break;
	case BR_STATE_LISTENING:
		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
		break;
	case BR_STATE_LEARNING:
		data |= PORT_RX_ENABLE;
		break;
	case BR_STATE_FORWARDING:
		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
		break;
	case BR_STATE_BLOCKING:
		data |= PORT_LEARN_DISABLE;
		break;
	default:
		dev_err(ds->dev, "invalid STP state: %d\n", state);
		return;
	}

	ksz_pwrite8(dev, port, P_STP_CTRL, data);
}

static void ksz_port_fast_age(struct dsa_switch *ds, int port)
{
	struct ksz_device *dev = ds->priv;
	u8 data8;

	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 |= SW_FAST_AGING;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	data8 &= ~SW_FAST_AGING;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
}

static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
{
	struct ksz_device *dev = ds->priv;

	if (flag) {
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, true);
		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
	} else {
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, false);
	}

	return 0;
}

static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
				 const struct switchdev_obj_port_vlan *vlan,
				 struct switchdev_trans *trans)
{
	/* nothing needed */

	return 0;
}

static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
			      const struct switchdev_obj_port_vlan *vlan,
			      struct switchdev_trans *trans)
{
	struct ksz_device *dev = ds->priv;
	u32 vlan_table[3];
	u16 vid;
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
		if (get_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to get vlan table\n");
			return;
		}

		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
		if (untagged)
			vlan_table[1] |= BIT(port);
		else
			vlan_table[1] &= ~BIT(port);
		vlan_table[1] &= ~(BIT(dev->cpu_port));

		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);

		if (set_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to set vlan table\n");
			return;
		}

		/* change PVID */
		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
	}
}

static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
			     const struct switchdev_obj_port_vlan *vlan)
{
	struct ksz_device *dev = ds->priv;
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	u32 vlan_table[3];
	u16 vid;
	u16 pvid;

	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
	pvid = pvid & 0xFFF;

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
		if (get_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to get vlan table\n");
			return -ETIMEDOUT;
		}

		vlan_table[2] &= ~BIT(port);

		if (pvid == vid)
			pvid = 1;

		if (untagged)
			vlan_table[1] &= ~BIT(port);

		if (set_vlan_table(ds, vid, vlan_table)) {
			dev_dbg(dev->dev, "Failed to set vlan table\n");
			return -ETIMEDOUT;
		}
	}

	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);

	return 0;
}

static int ksz_port_vlan_dump(struct dsa_switch *ds, int port,
			      struct switchdev_obj_port_vlan *vlan,
			      switchdev_obj_dump_cb_t *cb)
{
	struct ksz_device *dev = ds->priv;
	u16 vid;
	u16 data;
	struct vlan_table *vlan_cache;
	int err = 0;

	mutex_lock(&dev->vlan_mutex);

	/* use dev->vlan_cache due to lack of searching valid vlan entry */
	for (vid = vlan->vid_begin; vid < dev->num_vlans; vid++) {
		vlan_cache = &dev->vlan_cache[vid];

		if (!(vlan_cache->table[0] & VLAN_VALID))
			continue;

		vlan->vid_begin = vid;
		vlan->vid_end = vid;
		vlan->flags = 0;
		if (vlan_cache->table[2] & BIT(port)) {
			if (vlan_cache->table[1] & BIT(port))
				vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
			ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &data);
			if (vid == (data & 0xFFFFF))
				vlan->flags |= BRIDGE_VLAN_INFO_PVID;

			err = cb(&vlan->obj);
			if (err)
				break;
		}
	}

	mutex_unlock(&dev->vlan_mutex);

	return err;
}

struct alu_struct {
	/* entry 1 */
	u8	is_static:1;
	u8	is_src_filter:1;
	u8	is_dst_filter:1;
	u8	prio_age:3;
	u32	_reserv_0_1:23;
	u8	mstp:3;
	/* entry 2 */
	u8	is_override:1;
	u8	is_use_fid:1;
	u32	_reserv_1_1:23;
	u8	port_forward:7;
	/* entry 3 & 4*/
	u32	_reserv_2_1:9;
	u8	fid:7;
	u8	mac[ETH_ALEN];
};

static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
			    const unsigned char *addr, u16 vid)
{
	struct ksz_device *dev = ds->priv;
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* find any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	/* read ALU entry */
	read_table(ds, alu_table);

	/* update ALU entry */
	alu_table[0] = ALU_V_STATIC_VALID;
	alu_table[1] |= BIT(port);
	if (vid)
		alu_table[1] |= ALU_V_USE_FID;
	alu_table[2] = (vid << ALU_V_FID_S);
	alu_table[2] |= ((addr[0] << 8) | addr[1]);
	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
	alu_table[3] |= ((addr[4] << 8) | addr[5]);

	write_table(ds, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0)
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
			    const unsigned char *addr, u16 vid)
{
	struct ksz_device *dev = ds->priv;
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* read any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0) {
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
	if (alu_table[0] & ALU_V_STATIC_VALID) {
		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);

		/* clear forwarding port */
		alu_table[2] &= ~BIT(port);

		/* if there is no port to forward, clear table */
		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
			alu_table[0] = 0;
			alu_table[1] = 0;
			alu_table[2] = 0;
			alu_table[3] = 0;
		}
	} else {
		alu_table[0] = 0;
		alu_table[1] = 0;
		alu_table[2] = 0;
		alu_table[3] = 0;
	}

	write_table(ds, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
	ret = wait_alu_ready(dev, ALU_START, 1000);
	if (ret < 0)
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static void convert_alu(struct alu_struct *alu, u32 *alu_table)
{
	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
			ALU_V_PRIO_AGE_CNT_M;
	alu->mstp = alu_table[0] & ALU_V_MSTP_M;

	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;

	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;

	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
	alu->mac[1] = alu_table[2] & 0xFF;
	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
	alu->mac[5] = alu_table[3] & 0xFF;
}

static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
			     struct switchdev_obj_port_fdb *fdb,
			     switchdev_obj_dump_cb_t *cb)
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;
	u32 data;
	u32 alu_table[4];
	struct alu_struct alu;
	int timeout;

	mutex_lock(&dev->alu_mutex);

	/* start ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);

	do {
		timeout = 1000;
		do {
			ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
			if ((data & ALU_VALID) || !(data & ALU_START))
				break;
			usleep_range(1, 10);
		} while (timeout-- > 0);

		if (!timeout) {
			dev_dbg(dev->dev, "Failed to search ALU\n");
			ret = -ETIMEDOUT;
			goto exit;
		}

		/* read ALU table */
		read_table(ds, alu_table);

		convert_alu(&alu, alu_table);

		if (alu.port_forward & BIT(port)) {
			fdb->vid = alu.fid;
			if (alu.is_static)
				fdb->ndm_state = NUD_NOARP;
			else
				fdb->ndm_state = NUD_REACHABLE;
			ether_addr_copy(fdb->addr, alu.mac);

			ret = cb(&fdb->obj);
			if (ret)
				goto exit;
		}
	} while (data & ALU_START);

exit:

	/* stop ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);

	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
				const struct switchdev_obj_port_mdb *mdb,
				struct switchdev_trans *trans)
{
	/* nothing to do */
	return 0;
}

static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
			     const struct switchdev_obj_port_mdb *mdb,
			     struct switchdev_trans *trans)
{
	struct ksz_device *dev = ds->priv;
	u32 static_table[4];
	u32 data;
	int index;
	u32 mac_hi, mac_lo;

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

	for (index = 0; index < dev->num_statics; index++) {
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
		if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		read_table(ds, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */
			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    (static_table[3] == mac_lo)) {
				/* found matching one */
				break;
			}
		} else {
			/* found empty one */
			break;
		}
	}

	/* no available entry */
	if (index == dev->num_statics)
		goto exit;

	/* add entry */
	static_table[0] = ALU_V_STATIC_VALID;
	static_table[1] |= BIT(port);
	if (mdb->vid)
		static_table[1] |= ALU_V_USE_FID;
	static_table[2] = (mdb->vid << ALU_V_FID_S);
	static_table[2] |= mac_hi;
	static_table[3] = mac_lo;

	write_table(ds, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
	if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);
}

static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_mdb *mdb)
{
	struct ksz_device *dev = ds->priv;
	u32 static_table[4];
	u32 data;
	int index;
	int ret = 0;
	u32 mac_hi, mac_lo;

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

	for (index = 0; index < dev->num_statics; index++) {
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
		ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
		if (ret < 0) {
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		read_table(ds, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */

			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    (static_table[3] == mac_lo)) {
				/* found matching one */
				break;
			}
		}
	}

	/* no available entry */
	if (index == dev->num_statics) {
		ret = -EINVAL;
		goto exit;
	}

	/* clear port */
	static_table[1] &= ~BIT(port);

	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
		/* delete entry */
		static_table[0] = 0;
		static_table[1] = 0;
		static_table[2] = 0;
		static_table[3] = 0;
	}

	write_table(ds, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
	ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
	if (ret < 0)
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static int ksz_port_mdb_dump(struct dsa_switch *ds, int port,
			     struct switchdev_obj_port_mdb *mdb,
			     switchdev_obj_dump_cb_t *cb)
{
	/* this is not called by switch layer */
	return 0;
}

static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
			       struct dsa_mall_mirror_tc_entry *mirror,
			       bool ingress)
{
	struct ksz_device *dev = ds->priv;

	if (ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);

	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);

	/* configure mirror port */
	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
		     PORT_MIRROR_SNIFFER, true);

	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);

	return 0;
}

static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
				struct dsa_mall_mirror_tc_entry *mirror)
{
	struct ksz_device *dev = ds->priv;
	u8 data;

	if (mirror->ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);

	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);

	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
			     PORT_MIRROR_SNIFFER, false);
}

static const struct dsa_switch_ops ksz_switch_ops = {
	.get_tag_protocol	= ksz_get_tag_protocol,
	.setup			= ksz_setup,
	.phy_read		= ksz_phy_read16,
	.phy_write		= ksz_phy_write16,
	.port_enable		= ksz_enable_port,
	.port_disable		= ksz_disable_port,
	.get_strings		= ksz_get_strings,
	.get_ethtool_stats	= ksz_get_ethtool_stats,
	.get_sset_count		= ksz_sset_count,
	.port_stp_state_set	= ksz_port_stp_state_set,
	.port_fast_age		= ksz_port_fast_age,
	.port_vlan_filtering	= ksz_port_vlan_filtering,
	.port_vlan_prepare	= ksz_port_vlan_prepare,
	.port_vlan_add		= ksz_port_vlan_add,
	.port_vlan_del		= ksz_port_vlan_del,
	.port_vlan_dump		= ksz_port_vlan_dump,
	.port_fdb_dump		= ksz_port_fdb_dump,
	.port_fdb_add		= ksz_port_fdb_add,
	.port_fdb_del		= ksz_port_fdb_del,
	.port_mdb_prepare       = ksz_port_mdb_prepare,
	.port_mdb_add           = ksz_port_mdb_add,
	.port_mdb_del           = ksz_port_mdb_del,
	.port_mdb_dump          = ksz_port_mdb_dump,
	.port_mirror_add	= ksz_port_mirror_add,
	.port_mirror_del	= ksz_port_mirror_del,
};

struct ksz_chip_data {
	u32 chip_id;
	const char *dev_name;
	int num_vlans;
	int num_alus;
	int num_statics;
	int cpu_ports;
	int port_cnt;
};

static const struct ksz_chip_data ksz_switch_chips[] = {
	{
		.chip_id = 0x00947700,
		.dev_name = "KSZ9477",
		.num_vlans = 4096,
		.num_alus = 4096,
		.num_statics = 16,
		.cpu_ports = 0x7F,	/* can be configured as cpu port */
		.port_cnt = 7,		/* total physical port count */
	},
};

static int ksz_switch_init(struct ksz_device *dev)
{
	int i;

	mutex_init(&dev->reg_mutex);
	mutex_init(&dev->stats_mutex);
	mutex_init(&dev->alu_mutex);
	mutex_init(&dev->vlan_mutex);

	dev->ds->ops = &ksz_switch_ops;

	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
		const struct ksz_chip_data *chip = &ksz_switch_chips[i];

		if (dev->chip_id == chip->chip_id) {
			dev->name = chip->dev_name;
			dev->num_vlans = chip->num_vlans;
			dev->num_alus = chip->num_alus;
			dev->num_statics = chip->num_statics;
			dev->port_cnt = chip->port_cnt;
			dev->cpu_ports = chip->cpu_ports;

			break;
		}
	}

	/* no switch found */
	if (!dev->port_cnt)
		return -ENODEV;

	return 0;
}

struct ksz_device *ksz_switch_alloc(struct device *base,
				    const struct ksz_io_ops *ops,
				    void *priv)
{
	struct dsa_switch *ds;
	struct ksz_device *swdev;

	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
	if (!ds)
		return NULL;

	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
	if (!swdev)
		return NULL;

	ds->priv = swdev;
	swdev->dev = base;

	swdev->ds = ds;
	swdev->priv = priv;
	swdev->ops = ops;

	return swdev;
}
EXPORT_SYMBOL(ksz_switch_alloc);

int ksz_switch_detect(struct ksz_device *dev)
{
	u8 data8;
	u32 id32;
	int ret;

	/* turn off SPI DO Edge select */
	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	if (ret)
		return ret;

	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
	if (ret)
		return ret;

	/* read chip id */
	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
	if (ret)
		return ret;

	dev->chip_id = id32;

	return 0;
}
EXPORT_SYMBOL(ksz_switch_detect);

int ksz_switch_register(struct ksz_device *dev)
{
	int ret;

	if (dev->pdata)
		dev->chip_id = dev->pdata->chip_id;

	if (ksz_switch_detect(dev))
		return -EINVAL;

	ret = ksz_switch_init(dev);
	if (ret)
		return ret;

	return dsa_register_switch(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_register);

void ksz_switch_remove(struct ksz_device *dev)
{
	dsa_unregister_switch(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_remove);

MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
MODULE_LICENSE("GPL");