1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
|
// SPDX-License-Identifier: GPL-2.0+
/* Renesas R-Car CAN FD device driver
*
* Copyright (C) 2015 Renesas Electronics Corp.
*/
/* The R-Car CAN FD controller can operate in either one of the below two modes
* - CAN FD only mode
* - Classical CAN (CAN 2.0) only mode
*
* This driver puts the controller in CAN FD only mode by default. In this
* mode, the controller acts as a CAN FD node that can also interoperate with
* CAN 2.0 nodes.
*
* To switch the controller to Classical CAN (CAN 2.0) only mode, add
* "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
* also required to switch modes.
*
* Note: The h/w manual register naming convention is clumsy and not acceptable
* to use as it is in the driver. However, those names are added as comments
* wherever it is modified to a readable name.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/can/led.h>
#include <linux/can/dev.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/iopoll.h>
#define RCANFD_DRV_NAME "rcar_canfd"
/* Global register bits */
/* RSCFDnCFDGRMCFG */
#define RCANFD_GRMCFG_RCMC BIT(0)
/* RSCFDnCFDGCFG / RSCFDnGCFG */
#define RCANFD_GCFG_EEFE BIT(6)
#define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
#define RCANFD_GCFG_DCS BIT(4)
#define RCANFD_GCFG_DCE BIT(1)
#define RCANFD_GCFG_TPRI BIT(0)
/* RSCFDnCFDGCTR / RSCFDnGCTR */
#define RCANFD_GCTR_TSRST BIT(16)
#define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
#define RCANFD_GCTR_THLEIE BIT(10)
#define RCANFD_GCTR_MEIE BIT(9)
#define RCANFD_GCTR_DEIE BIT(8)
#define RCANFD_GCTR_GSLPR BIT(2)
#define RCANFD_GCTR_GMDC_MASK (0x3)
#define RCANFD_GCTR_GMDC_GOPM (0x0)
#define RCANFD_GCTR_GMDC_GRESET (0x1)
#define RCANFD_GCTR_GMDC_GTEST (0x2)
/* RSCFDnCFDGSTS / RSCFDnGSTS */
#define RCANFD_GSTS_GRAMINIT BIT(3)
#define RCANFD_GSTS_GSLPSTS BIT(2)
#define RCANFD_GSTS_GHLTSTS BIT(1)
#define RCANFD_GSTS_GRSTSTS BIT(0)
/* Non-operational status */
#define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
/* RSCFDnCFDGERFL / RSCFDnGERFL */
#define RCANFD_GERFL_EEF1 BIT(17)
#define RCANFD_GERFL_EEF0 BIT(16)
#define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
#define RCANFD_GERFL_THLES BIT(2)
#define RCANFD_GERFL_MES BIT(1)
#define RCANFD_GERFL_DEF BIT(0)
#define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\
RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\
(gpriv->fdmode ?\
RCANFD_GERFL_CMPOF : 0)))
/* AFL Rx rules registers */
/* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
#define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8))
#define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff)
/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
#define RCANFD_GAFLECTR_AFLDAE BIT(8)
#define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f)
/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
#define RCANFD_GAFLID_GAFLLB BIT(29)
/* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
#define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
/* Channel register bits */
/* RSCFDnCmCFG - Classical CAN only */
#define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
#define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
#define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
#define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
/* RSCFDnCFDCmNCFG - CAN FD only */
#define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24)
#define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16)
#define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11)
#define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
#define RCANFD_CCTR_CTME BIT(24)
#define RCANFD_CCTR_ERRD BIT(23)
#define RCANFD_CCTR_BOM_MASK (0x3 << 21)
#define RCANFD_CCTR_BOM_ISO (0x0 << 21)
#define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
#define RCANFD_CCTR_BOM_BEND (0x2 << 21)
#define RCANFD_CCTR_TDCVFIE BIT(19)
#define RCANFD_CCTR_SOCOIE BIT(18)
#define RCANFD_CCTR_EOCOIE BIT(17)
#define RCANFD_CCTR_TAIE BIT(16)
#define RCANFD_CCTR_ALIE BIT(15)
#define RCANFD_CCTR_BLIE BIT(14)
#define RCANFD_CCTR_OLIE BIT(13)
#define RCANFD_CCTR_BORIE BIT(12)
#define RCANFD_CCTR_BOEIE BIT(11)
#define RCANFD_CCTR_EPIE BIT(10)
#define RCANFD_CCTR_EWIE BIT(9)
#define RCANFD_CCTR_BEIE BIT(8)
#define RCANFD_CCTR_CSLPR BIT(2)
#define RCANFD_CCTR_CHMDC_MASK (0x3)
#define RCANFD_CCTR_CHDMC_COPM (0x0)
#define RCANFD_CCTR_CHDMC_CRESET (0x1)
#define RCANFD_CCTR_CHDMC_CHLT (0x2)
/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
#define RCANFD_CSTS_COMSTS BIT(7)
#define RCANFD_CSTS_RECSTS BIT(6)
#define RCANFD_CSTS_TRMSTS BIT(5)
#define RCANFD_CSTS_BOSTS BIT(4)
#define RCANFD_CSTS_EPSTS BIT(3)
#define RCANFD_CSTS_SLPSTS BIT(2)
#define RCANFD_CSTS_HLTSTS BIT(1)
#define RCANFD_CSTS_CRSTSTS BIT(0)
#define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
#define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
#define RCANFD_CERFL_ADERR BIT(14)
#define RCANFD_CERFL_B0ERR BIT(13)
#define RCANFD_CERFL_B1ERR BIT(12)
#define RCANFD_CERFL_CERR BIT(11)
#define RCANFD_CERFL_AERR BIT(10)
#define RCANFD_CERFL_FERR BIT(9)
#define RCANFD_CERFL_SERR BIT(8)
#define RCANFD_CERFL_ALF BIT(7)
#define RCANFD_CERFL_BLF BIT(6)
#define RCANFD_CERFL_OVLF BIT(5)
#define RCANFD_CERFL_BORF BIT(4)
#define RCANFD_CERFL_BOEF BIT(3)
#define RCANFD_CERFL_EPF BIT(2)
#define RCANFD_CERFL_EWF BIT(1)
#define RCANFD_CERFL_BEF BIT(0)
#define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
/* RSCFDnCFDCmDCFG */
#define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24)
#define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20)
#define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16)
#define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
/* RSCFDnCFDCmFDCFG */
#define RCANFD_FDCFG_TDCE BIT(9)
#define RCANFD_FDCFG_TDCOC BIT(8)
#define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
/* RSCFDnCFDRFCCx */
#define RCANFD_RFCC_RFIM BIT(12)
#define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
#define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
#define RCANFD_RFCC_RFIE BIT(1)
#define RCANFD_RFCC_RFE BIT(0)
/* RSCFDnCFDRFSTSx */
#define RCANFD_RFSTS_RFIF BIT(3)
#define RCANFD_RFSTS_RFMLT BIT(2)
#define RCANFD_RFSTS_RFFLL BIT(1)
#define RCANFD_RFSTS_RFEMP BIT(0)
/* RSCFDnCFDRFIDx */
#define RCANFD_RFID_RFIDE BIT(31)
#define RCANFD_RFID_RFRTR BIT(30)
/* RSCFDnCFDRFPTRx */
#define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
#define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
#define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
/* RSCFDnCFDRFFDSTSx */
#define RCANFD_RFFDSTS_RFFDF BIT(2)
#define RCANFD_RFFDSTS_RFBRS BIT(1)
#define RCANFD_RFFDSTS_RFESI BIT(0)
/* Common FIFO bits */
/* RSCFDnCFDCFCCk */
#define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20)
#define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16)
#define RCANFD_CFCC_CFIM BIT(12)
#define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8)
#define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
#define RCANFD_CFCC_CFTXIE BIT(2)
#define RCANFD_CFCC_CFE BIT(0)
/* RSCFDnCFDCFSTSk */
#define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
#define RCANFD_CFSTS_CFTXIF BIT(4)
#define RCANFD_CFSTS_CFMLT BIT(2)
#define RCANFD_CFSTS_CFFLL BIT(1)
#define RCANFD_CFSTS_CFEMP BIT(0)
/* RSCFDnCFDCFIDk */
#define RCANFD_CFID_CFIDE BIT(31)
#define RCANFD_CFID_CFRTR BIT(30)
#define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
/* RSCFDnCFDCFPTRk */
#define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
#define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
#define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
/* RSCFDnCFDCFFDCSTSk */
#define RCANFD_CFFDCSTS_CFFDF BIT(2)
#define RCANFD_CFFDCSTS_CFBRS BIT(1)
#define RCANFD_CFFDCSTS_CFESI BIT(0)
/* This controller supports either Classical CAN only mode or CAN FD only mode.
* These modes are supported in two separate set of register maps & names.
* However, some of the register offsets are common for both modes. Those
* offsets are listed below as Common registers.
*
* The CAN FD only mode specific registers & Classical CAN only mode specific
* registers are listed separately. Their register names starts with
* RCANFD_F_xxx & RCANFD_C_xxx respectively.
*/
/* Common registers */
/* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
#define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
#define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
#define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
#define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
/* RSCFDnCFDGCFG / RSCFDnGCFG */
#define RCANFD_GCFG (0x0084)
/* RSCFDnCFDGCTR / RSCFDnGCTR */
#define RCANFD_GCTR (0x0088)
/* RSCFDnCFDGCTS / RSCFDnGCTS */
#define RCANFD_GSTS (0x008c)
/* RSCFDnCFDGERFL / RSCFDnGERFL */
#define RCANFD_GERFL (0x0090)
/* RSCFDnCFDGTSC / RSCFDnGTSC */
#define RCANFD_GTSC (0x0094)
/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
#define RCANFD_GAFLECTR (0x0098)
/* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
#define RCANFD_GAFLCFG0 (0x009c)
/* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */
#define RCANFD_GAFLCFG1 (0x00a0)
/* RSCFDnCFDRMNB / RSCFDnRMNB */
#define RCANFD_RMNB (0x00a4)
/* RSCFDnCFDRMND / RSCFDnRMND */
#define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
/* RSCFDnCFDRFCCx / RSCFDnRFCCx */
#define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x)))
/* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
#define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x)))
/* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
#define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x)))
/* Common FIFO Control registers */
/* RSCFDnCFDCFCCx / RSCFDnCFCCx */
#define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \
(0x04 * (idx)))
/* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
#define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \
(0x04 * (idx)))
/* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
#define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \
(0x04 * (idx)))
/* RSCFDnCFDFESTS / RSCFDnFESTS */
#define RCANFD_FESTS (0x0238)
/* RSCFDnCFDFFSTS / RSCFDnFFSTS */
#define RCANFD_FFSTS (0x023c)
/* RSCFDnCFDFMSTS / RSCFDnFMSTS */
#define RCANFD_FMSTS (0x0240)
/* RSCFDnCFDRFISTS / RSCFDnRFISTS */
#define RCANFD_RFISTS (0x0244)
/* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
#define RCANFD_CFRISTS (0x0248)
/* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
#define RCANFD_CFTISTS (0x024c)
/* RSCFDnCFDTMCp / RSCFDnTMCp */
#define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
/* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
#define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
/* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
#define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
/* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
#define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
/* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
#define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
/* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
#define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
/* RSCFDnCFDTMIECy / RSCFDnTMIECy */
#define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
/* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
#define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
/* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
#define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
/* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
#define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
/* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
#define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
/* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
#define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
/* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
#define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
/* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
#define RCANFD_GTINTSTS0 (0x0460)
/* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
#define RCANFD_GTINTSTS1 (0x0464)
/* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
#define RCANFD_GTSTCFG (0x0468)
/* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
#define RCANFD_GTSTCTR (0x046c)
/* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
#define RCANFD_GLOCKK (0x047c)
/* RSCFDnCFDGRMCFG */
#define RCANFD_GRMCFG (0x04fc)
/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
#define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
/* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
#define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
/* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
#define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
/* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
#define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
/* Classical CAN only mode register map */
/* RSCFDnGAFLXXXj offset */
#define RCANFD_C_GAFL_OFFSET (0x0500)
/* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
#define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
#define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
#define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
#define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
/* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
#define RCANFD_C_RFOFFSET (0x0e00)
#define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
#define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \
(0x10 * (x)))
#define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \
(0x10 * (x)) + (0x04 * (df)))
/* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
#define RCANFD_C_CFOFFSET (0x0e80)
#define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \
(0x10 * (idx)))
#define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \
(0x30 * (ch)) + (0x10 * (idx)))
#define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \
(0x30 * (ch)) + (0x10 * (idx)) + \
(0x04 * (df)))
/* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
#define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
#define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
#define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
#define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
/* RSCFDnTHLACCm */
#define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
/* RSCFDnRPGACCr */
#define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
/* CAN FD mode specific register map */
/* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
#define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m)))
#define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
#define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
#define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
#define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
/* RSCFDnCFDGAFLXXXj offset */
#define RCANFD_F_GAFL_OFFSET (0x1000)
/* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
#define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
#define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
#define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
#define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
/* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
#define RCANFD_F_RFOFFSET (0x3000)
#define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x)))
#define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \
(0x80 * (x)))
#define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \
(0x80 * (x)))
#define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \
(0x80 * (x)) + (0x04 * (df)))
/* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
#define RCANFD_F_CFOFFSET (0x3400)
#define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \
(0x80 * (idx)))
#define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \
(0x180 * (ch)) + (0x80 * (idx)))
#define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \
(0x180 * (ch)) + (0x80 * (idx)))
#define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \
(0x180 * (ch)) + (0x80 * (idx)) + \
(0x04 * (df)))
/* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
#define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
#define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
#define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
#define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
/* RSCFDnCFDTHLACCm */
#define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
/* RSCFDnCFDRPGACCr */
#define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
/* Constants */
#define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
#define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
#define RCANFD_NUM_CHANNELS 2 /* Two channels max */
#define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
#define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
#define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
/* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
* available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
* number is added to RFFIFO index.
*/
#define RCANFD_RFFIFO_IDX 0
/* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
* FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
*/
#define RCANFD_CFFIFO_IDX 0
/* fCAN clock select register settings */
enum rcar_canfd_fcanclk {
RCANFD_CANFDCLK = 0, /* CANFD clock */
RCANFD_EXTCLK, /* Externally input clock */
};
struct rcar_canfd_global;
/* Channel priv data */
struct rcar_canfd_channel {
struct can_priv can; /* Must be the first member */
struct net_device *ndev;
struct rcar_canfd_global *gpriv; /* Controller reference */
void __iomem *base; /* Register base address */
struct napi_struct napi;
u8 tx_len[RCANFD_FIFO_DEPTH]; /* For net stats */
u32 tx_head; /* Incremented on xmit */
u32 tx_tail; /* Incremented on xmit done */
u32 channel; /* Channel number */
spinlock_t tx_lock; /* To protect tx path */
};
/* Global priv data */
struct rcar_canfd_global {
struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
void __iomem *base; /* Register base address */
struct platform_device *pdev; /* Respective platform device */
struct clk *clkp; /* Peripheral clock */
struct clk *can_clk; /* fCAN clock */
enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */
unsigned long channels_mask; /* Enabled channels mask */
bool fdmode; /* CAN FD or Classical CAN only mode */
};
/* CAN FD mode nominal rate constants */
static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
.name = RCANFD_DRV_NAME,
.tseg1_min = 2,
.tseg1_max = 128,
.tseg2_min = 2,
.tseg2_max = 32,
.sjw_max = 32,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
/* CAN FD mode data rate constants */
static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
.name = RCANFD_DRV_NAME,
.tseg1_min = 2,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 8,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
/* Classical CAN mode bitrate constants */
static const struct can_bittiming_const rcar_canfd_bittiming_const = {
.name = RCANFD_DRV_NAME,
.tseg1_min = 4,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
/* Helper functions */
static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
{
u32 data = readl(reg);
data &= ~mask;
data |= (val & mask);
writel(data, reg);
}
static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
{
return readl(base + (offset));
}
static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
{
writel(val, base + (offset));
}
static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
{
rcar_canfd_update(val, val, base + (reg));
}
static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
{
rcar_canfd_update(val, 0, base + (reg));
}
static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
u32 mask, u32 val)
{
rcar_canfd_update(mask, val, base + (reg));
}
static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
struct canfd_frame *cf, u32 off)
{
u32 i, lwords;
lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
for (i = 0; i < lwords; i++)
*((u32 *)cf->data + i) =
rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
}
static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
struct canfd_frame *cf, u32 off)
{
u32 i, lwords;
lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
for (i = 0; i < lwords; i++)
rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
*((u32 *)cf->data + i));
}
static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
{
u32 i;
for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
can_free_echo_skb(ndev, i);
}
static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
{
u32 sts, ch;
int err;
/* Check RAMINIT flag as CAN RAM initialization takes place
* after the MCU reset
*/
err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
!(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
if (err) {
dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
return err;
}
/* Transition to Global Reset mode */
rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
/* Ensure Global reset mode */
err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
(sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
if (err) {
dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
return err;
}
/* Reset Global error flags */
rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
/* Set the controller into appropriate mode */
if (gpriv->fdmode)
rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
RCANFD_GRMCFG_RCMC);
else
rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
RCANFD_GRMCFG_RCMC);
/* Transition all Channels to reset mode */
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
rcar_canfd_clear_bit(gpriv->base,
RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_CHMDC_MASK,
RCANFD_CCTR_CHDMC_CRESET);
/* Ensure Channel reset mode */
err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
(sts & RCANFD_CSTS_CRSTSTS),
2, 500000);
if (err) {
dev_dbg(&gpriv->pdev->dev,
"channel %u reset failed\n", ch);
return err;
}
}
return 0;
}
static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
{
u32 cfg, ch;
/* Global configuration settings */
/* ECC Error flag Enable */
cfg = RCANFD_GCFG_EEFE;
if (gpriv->fdmode)
/* Truncate payload to configured message size RFPLS */
cfg |= RCANFD_GCFG_CMPOC;
/* Set External Clock if selected */
if (gpriv->fcan != RCANFD_CANFDCLK)
cfg |= RCANFD_GCFG_DCS;
rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
/* Channel configuration settings */
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_ERRD);
rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_BOM_MASK,
RCANFD_CCTR_BOM_BENTRY);
}
}
static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
u32 ch)
{
u32 cfg;
int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
if (ch == 0) {
start = 0; /* Channel 0 always starts from 0th rule */
} else {
/* Get number of Channel 0 rules and adjust */
cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0);
start = RCANFD_GAFLCFG_GETRNC(0, cfg);
}
/* Enable write access to entry */
page = RCANFD_GAFL_PAGENUM(start);
rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
(RCANFD_GAFLECTR_AFLPN(page) |
RCANFD_GAFLECTR_AFLDAE));
/* Write number of rules for channel */
rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0,
RCANFD_GAFLCFG_SETRNC(ch, num_rules));
if (gpriv->fdmode)
offset = RCANFD_F_GAFL_OFFSET;
else
offset = RCANFD_C_GAFL_OFFSET;
/* Accept all IDs */
rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
/* IDE or RTR is not considered for matching */
rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
/* Any data length accepted */
rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
/* Place the msg in corresponding Rx FIFO entry */
rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start),
RCANFD_GAFLP1_GAFLFDP(ridx));
/* Disable write access to page */
rcar_canfd_clear_bit(gpriv->base,
RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
}
static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
{
/* Rx FIFO is used for reception */
u32 cfg;
u16 rfdc, rfpls;
/* Select Rx FIFO based on channel */
u32 ridx = ch + RCANFD_RFFIFO_IDX;
rfdc = 2; /* b010 - 8 messages Rx FIFO depth */
if (gpriv->fdmode)
rfpls = 7; /* b111 - Max 64 bytes payload */
else
rfpls = 0; /* b000 - Max 8 bytes payload */
cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg);
}
static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
{
/* Tx/Rx(Common) FIFO configured in Tx mode is
* used for transmission
*
* Each channel has 3 Common FIFO dedicated to them.
* Use the 1st (index 0) out of 3
*/
u32 cfg;
u16 cftml, cfm, cfdc, cfpls;
cftml = 0; /* 0th buffer */
cfm = 1; /* b01 - Transmit mode */
cfdc = 2; /* b010 - 8 messages Tx FIFO depth */
if (gpriv->fdmode)
cfpls = 7; /* b111 - Max 64 bytes payload */
else
cfpls = 0; /* b000 - Max 8 bytes payload */
cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) |
RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) |
RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg);
if (gpriv->fdmode)
/* Clear FD mode specific control/status register */
rcar_canfd_write(gpriv->base,
RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0);
}
static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
{
u32 ctr;
/* Clear any stray error interrupt flags */
rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
/* Global interrupts setup */
ctr = RCANFD_GCTR_MEIE;
if (gpriv->fdmode)
ctr |= RCANFD_GCTR_CFMPOFIE;
rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
}
static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
*gpriv)
{
/* Disable all interrupts */
rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
/* Clear any stray error interrupt flags */
rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
}
static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
*priv)
{
u32 ctr, ch = priv->channel;
/* Clear any stray error flags */
rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
/* Channel interrupts setup */
ctr = (RCANFD_CCTR_TAIE |
RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
}
static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
*priv)
{
u32 ctr, ch = priv->channel;
ctr = (RCANFD_CCTR_TAIE |
RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
/* Clear any stray error flags */
rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
}
static void rcar_canfd_global_error(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
struct net_device_stats *stats = &ndev->stats;
u32 ch = priv->channel;
u32 gerfl, sts;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
netdev_dbg(ndev, "Ch0: ECC Error flag\n");
stats->tx_dropped++;
}
if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
netdev_dbg(ndev, "Ch1: ECC Error flag\n");
stats->tx_dropped++;
}
if (gerfl & RCANFD_GERFL_MES) {
sts = rcar_canfd_read(priv->base,
RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
if (sts & RCANFD_CFSTS_CFMLT) {
netdev_dbg(ndev, "Tx Message Lost flag\n");
stats->tx_dropped++;
rcar_canfd_write(priv->base,
RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
sts & ~RCANFD_CFSTS_CFMLT);
}
sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
if (sts & RCANFD_RFSTS_RFMLT) {
netdev_dbg(ndev, "Rx Message Lost flag\n");
stats->rx_dropped++;
rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
sts & ~RCANFD_RFSTS_RFMLT);
}
}
if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
/* Message Lost flag will be set for respective channel
* when this condition happens with counters and flags
* already updated.
*/
netdev_dbg(ndev, "global payload overflow interrupt\n");
}
/* Clear all global error interrupts. Only affected channels bits
* get cleared
*/
rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
}
static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
u16 txerr, u16 rxerr)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
u32 ch = priv->channel;
netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
/* Propagate the error condition to the CAN stack */
skb = alloc_can_err_skb(ndev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
/* Channel error interrupts */
if (cerfl & RCANFD_CERFL_BEF) {
netdev_dbg(ndev, "Bus error\n");
cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_UNSPEC;
priv->can.can_stats.bus_error++;
}
if (cerfl & RCANFD_CERFL_ADERR) {
netdev_dbg(ndev, "ACK Delimiter Error\n");
stats->tx_errors++;
cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
}
if (cerfl & RCANFD_CERFL_B0ERR) {
netdev_dbg(ndev, "Bit Error (dominant)\n");
stats->tx_errors++;
cf->data[2] |= CAN_ERR_PROT_BIT0;
}
if (cerfl & RCANFD_CERFL_B1ERR) {
netdev_dbg(ndev, "Bit Error (recessive)\n");
stats->tx_errors++;
cf->data[2] |= CAN_ERR_PROT_BIT1;
}
if (cerfl & RCANFD_CERFL_CERR) {
netdev_dbg(ndev, "CRC Error\n");
stats->rx_errors++;
cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
}
if (cerfl & RCANFD_CERFL_AERR) {
netdev_dbg(ndev, "ACK Error\n");
stats->tx_errors++;
cf->can_id |= CAN_ERR_ACK;
cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
}
if (cerfl & RCANFD_CERFL_FERR) {
netdev_dbg(ndev, "Form Error\n");
stats->rx_errors++;
cf->data[2] |= CAN_ERR_PROT_FORM;
}
if (cerfl & RCANFD_CERFL_SERR) {
netdev_dbg(ndev, "Stuff Error\n");
stats->rx_errors++;
cf->data[2] |= CAN_ERR_PROT_STUFF;
}
if (cerfl & RCANFD_CERFL_ALF) {
netdev_dbg(ndev, "Arbitration lost Error\n");
priv->can.can_stats.arbitration_lost++;
cf->can_id |= CAN_ERR_LOSTARB;
cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
}
if (cerfl & RCANFD_CERFL_BLF) {
netdev_dbg(ndev, "Bus Lock Error\n");
stats->rx_errors++;
cf->can_id |= CAN_ERR_BUSERROR;
}
if (cerfl & RCANFD_CERFL_EWF) {
netdev_dbg(ndev, "Error warning interrupt\n");
priv->can.state = CAN_STATE_ERROR_WARNING;
priv->can.can_stats.error_warning++;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
CAN_ERR_CRTL_RX_WARNING;
cf->data[6] = txerr;
cf->data[7] = rxerr;
}
if (cerfl & RCANFD_CERFL_EPF) {
netdev_dbg(ndev, "Error passive interrupt\n");
priv->can.state = CAN_STATE_ERROR_PASSIVE;
priv->can.can_stats.error_passive++;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
CAN_ERR_CRTL_RX_PASSIVE;
cf->data[6] = txerr;
cf->data[7] = rxerr;
}
if (cerfl & RCANFD_CERFL_BOEF) {
netdev_dbg(ndev, "Bus-off entry interrupt\n");
rcar_canfd_tx_failure_cleanup(ndev);
priv->can.state = CAN_STATE_BUS_OFF;
priv->can.can_stats.bus_off++;
can_bus_off(ndev);
cf->can_id |= CAN_ERR_BUSOFF;
}
if (cerfl & RCANFD_CERFL_OVLF) {
netdev_dbg(ndev,
"Overload Frame Transmission error interrupt\n");
stats->tx_errors++;
cf->can_id |= CAN_ERR_PROT;
cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
}
/* Clear channel error interrupts that are handled */
rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
RCANFD_CERFL_ERR(~cerfl));
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
static void rcar_canfd_tx_done(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
u32 sts;
unsigned long flags;
u32 ch = priv->channel;
do {
u8 unsent, sent;
sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
stats->tx_packets++;
stats->tx_bytes += priv->tx_len[sent];
priv->tx_len[sent] = 0;
can_get_echo_skb(ndev, sent);
spin_lock_irqsave(&priv->tx_lock, flags);
priv->tx_tail++;
sts = rcar_canfd_read(priv->base,
RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
unsent = RCANFD_CFSTS_CFMC(sts);
/* Wake producer only when there is room */
if (unsent != RCANFD_FIFO_DEPTH)
netif_wake_queue(ndev);
if (priv->tx_head - priv->tx_tail <= unsent) {
spin_unlock_irqrestore(&priv->tx_lock, flags);
break;
}
spin_unlock_irqrestore(&priv->tx_lock, flags);
} while (1);
/* Clear interrupt */
rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
sts & ~RCANFD_CFSTS_CFTXIF);
can_led_event(ndev, CAN_LED_EVENT_TX);
}
static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_global *gpriv = dev_id;
struct net_device *ndev;
struct rcar_canfd_channel *priv;
u32 sts, gerfl;
u32 ch, ridx;
/* Global error interrupts still indicate a condition specific
* to a channel. RxFIFO interrupt is a global interrupt.
*/
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
priv = gpriv->ch[ch];
ndev = priv->ndev;
ridx = ch + RCANFD_RFFIFO_IDX;
/* Global error interrupts */
gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
rcar_canfd_global_error(ndev);
/* Handle Rx interrupts */
sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
if (likely(sts & RCANFD_RFSTS_RFIF)) {
if (napi_schedule_prep(&priv->napi)) {
/* Disable Rx FIFO interrupts */
rcar_canfd_clear_bit(priv->base,
RCANFD_RFCC(ridx),
RCANFD_RFCC_RFIE);
__napi_schedule(&priv->napi);
}
}
}
return IRQ_HANDLED;
}
static void rcar_canfd_state_change(struct net_device *ndev,
u16 txerr, u16 rxerr)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
enum can_state rx_state, tx_state, state = priv->can.state;
struct can_frame *cf;
struct sk_buff *skb;
/* Handle transition from error to normal states */
if (txerr < 96 && rxerr < 96)
state = CAN_STATE_ERROR_ACTIVE;
else if (txerr < 128 && rxerr < 128)
state = CAN_STATE_ERROR_WARNING;
if (state != priv->can.state) {
netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
state, priv->can.state, txerr, rxerr);
skb = alloc_can_err_skb(ndev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
tx_state = txerr >= rxerr ? state : 0;
rx_state = txerr <= rxerr ? state : 0;
can_change_state(ndev, cf, tx_state, rx_state);
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
}
static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_global *gpriv = dev_id;
struct net_device *ndev;
struct rcar_canfd_channel *priv;
u32 sts, ch, cerfl;
u16 txerr, rxerr;
/* Common FIFO is a per channel resource */
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
priv = gpriv->ch[ch];
ndev = priv->ndev;
/* Channel error interrupts */
cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
txerr = RCANFD_CSTS_TECCNT(sts);
rxerr = RCANFD_CSTS_RECCNT(sts);
if (unlikely(RCANFD_CERFL_ERR(cerfl)))
rcar_canfd_error(ndev, cerfl, txerr, rxerr);
/* Handle state change to lower states */
if (unlikely((priv->can.state != CAN_STATE_ERROR_ACTIVE) &&
(priv->can.state != CAN_STATE_BUS_OFF)))
rcar_canfd_state_change(ndev, txerr, rxerr);
/* Handle Tx interrupts */
sts = rcar_canfd_read(priv->base,
RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
if (likely(sts & RCANFD_CFSTS_CFTXIF))
rcar_canfd_tx_done(ndev);
}
return IRQ_HANDLED;
}
static void rcar_canfd_set_bittiming(struct net_device *dev)
{
struct rcar_canfd_channel *priv = netdev_priv(dev);
const struct can_bittiming *bt = &priv->can.bittiming;
const struct can_bittiming *dbt = &priv->can.data_bittiming;
u16 brp, sjw, tseg1, tseg2;
u32 cfg;
u32 ch = priv->channel;
/* Nominal bit timing settings */
brp = bt->brp - 1;
sjw = bt->sjw - 1;
tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
tseg2 = bt->phase_seg2 - 1;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
/* CAN FD only mode */
cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) |
RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2));
rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
brp, sjw, tseg1, tseg2);
/* Data bit timing settings */
brp = dbt->brp - 1;
sjw = dbt->sjw - 1;
tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
tseg2 = dbt->phase_seg2 - 1;
cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) |
RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2));
rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
brp, sjw, tseg1, tseg2);
} else {
/* Classical CAN only mode */
cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
netdev_dbg(priv->ndev,
"rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
brp, sjw, tseg1, tseg2);
}
}
static int rcar_canfd_start(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
int err = -EOPNOTSUPP;
u32 sts, ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
rcar_canfd_set_bittiming(ndev);
rcar_canfd_enable_channel_interrupts(priv);
/* Set channel to Operational mode */
rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
/* Verify channel mode change */
err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
(sts & RCANFD_CSTS_COMSTS), 2, 500000);
if (err) {
netdev_err(ndev, "channel %u communication state failed\n", ch);
goto fail_mode_change;
}
/* Enable Common & Rx FIFO */
rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
RCANFD_CFCC_CFE);
rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
fail_mode_change:
rcar_canfd_disable_channel_interrupts(priv);
return err;
}
static int rcar_canfd_open(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
int err;
/* Peripheral clock is already enabled in probe */
err = clk_prepare_enable(gpriv->can_clk);
if (err) {
netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
goto out_clock;
}
err = open_candev(ndev);
if (err) {
netdev_err(ndev, "open_candev() failed, error %d\n", err);
goto out_can_clock;
}
napi_enable(&priv->napi);
err = rcar_canfd_start(ndev);
if (err)
goto out_close;
netif_start_queue(ndev);
can_led_event(ndev, CAN_LED_EVENT_OPEN);
return 0;
out_close:
napi_disable(&priv->napi);
close_candev(ndev);
out_can_clock:
clk_disable_unprepare(gpriv->can_clk);
out_clock:
return err;
}
static void rcar_canfd_stop(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
int err;
u32 sts, ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
/* Transition to channel reset mode */
rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
/* Check Channel reset mode */
err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
(sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
if (err)
netdev_err(ndev, "channel %u reset failed\n", ch);
rcar_canfd_disable_channel_interrupts(priv);
/* Disable Common & Rx FIFO */
rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
RCANFD_CFCC_CFE);
rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
/* Set the state as STOPPED */
priv->can.state = CAN_STATE_STOPPED;
}
static int rcar_canfd_close(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
netif_stop_queue(ndev);
rcar_canfd_stop(ndev);
napi_disable(&priv->napi);
clk_disable_unprepare(gpriv->can_clk);
close_candev(ndev);
can_led_event(ndev, CAN_LED_EVENT_STOP);
return 0;
}
static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
u32 sts = 0, id, dlc;
unsigned long flags;
u32 ch = priv->channel;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
if (cf->can_id & CAN_EFF_FLAG) {
id = cf->can_id & CAN_EFF_MASK;
id |= RCANFD_CFID_CFIDE;
} else {
id = cf->can_id & CAN_SFF_MASK;
}
if (cf->can_id & CAN_RTR_FLAG)
id |= RCANFD_CFID_CFRTR;
dlc = RCANFD_CFPTR_CFDLC(can_len2dlc(cf->len));
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
rcar_canfd_write(priv->base,
RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id);
rcar_canfd_write(priv->base,
RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
if (can_is_canfd_skb(skb)) {
/* CAN FD frame format */
sts |= RCANFD_CFFDCSTS_CFFDF;
if (cf->flags & CANFD_BRS)
sts |= RCANFD_CFFDCSTS_CFBRS;
if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
sts |= RCANFD_CFFDCSTS_CFESI;
}
rcar_canfd_write(priv->base,
RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts);
rcar_canfd_put_data(priv, cf,
RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
} else {
rcar_canfd_write(priv->base,
RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
rcar_canfd_write(priv->base,
RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
rcar_canfd_put_data(priv, cf,
RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
}
priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len;
can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH);
spin_lock_irqsave(&priv->tx_lock, flags);
priv->tx_head++;
/* Stop the queue if we've filled all FIFO entries */
if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
netif_stop_queue(ndev);
/* Start Tx: Write 0xff to CFPC to increment the CPU-side
* pointer for the Common FIFO
*/
rcar_canfd_write(priv->base,
RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff);
spin_unlock_irqrestore(&priv->tx_lock, flags);
return NETDEV_TX_OK;
}
static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct canfd_frame *cf;
struct sk_buff *skb;
u32 sts = 0, id, dlc;
u32 ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx));
dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx));
sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx));
if (sts & RCANFD_RFFDSTS_RFFDF)
skb = alloc_canfd_skb(priv->ndev, &cf);
else
skb = alloc_can_skb(priv->ndev,
(struct can_frame **)&cf);
} else {
id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
}
if (!skb) {
stats->rx_dropped++;
return;
}
if (id & RCANFD_RFID_RFIDE)
cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
else
cf->can_id = id & CAN_SFF_MASK;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
if (sts & RCANFD_RFFDSTS_RFFDF)
cf->len = can_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
else
cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
if (sts & RCANFD_RFFDSTS_RFESI) {
cf->flags |= CANFD_ESI;
netdev_dbg(priv->ndev, "ESI Error\n");
}
if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
cf->can_id |= CAN_RTR_FLAG;
} else {
if (sts & RCANFD_RFFDSTS_RFBRS)
cf->flags |= CANFD_BRS;
rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0));
}
} else {
cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
if (id & RCANFD_RFID_RFRTR)
cf->can_id |= CAN_RTR_FLAG;
else
rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
}
/* Write 0xff to RFPC to increment the CPU-side
* pointer of the Rx FIFO
*/
rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff);
can_led_event(priv->ndev, CAN_LED_EVENT_RX);
stats->rx_bytes += cf->len;
stats->rx_packets++;
netif_receive_skb(skb);
}
static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
{
struct rcar_canfd_channel *priv =
container_of(napi, struct rcar_canfd_channel, napi);
int num_pkts;
u32 sts;
u32 ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
for (num_pkts = 0; num_pkts < quota; num_pkts++) {
sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
/* Check FIFO empty condition */
if (sts & RCANFD_RFSTS_RFEMP)
break;
rcar_canfd_rx_pkt(priv);
/* Clear interrupt bit */
if (sts & RCANFD_RFSTS_RFIF)
rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
sts & ~RCANFD_RFSTS_RFIF);
}
/* All packets processed */
if (num_pkts < quota) {
if (napi_complete_done(napi, num_pkts)) {
/* Enable Rx FIFO interrupts */
rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx),
RCANFD_RFCC_RFIE);
}
}
return num_pkts;
}
static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int err;
switch (mode) {
case CAN_MODE_START:
err = rcar_canfd_start(ndev);
if (err)
return err;
netif_wake_queue(ndev);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int rcar_canfd_get_berr_counter(const struct net_device *dev,
struct can_berr_counter *bec)
{
struct rcar_canfd_channel *priv = netdev_priv(dev);
u32 val, ch = priv->channel;
/* Peripheral clock is already enabled in probe */
val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
bec->txerr = RCANFD_CSTS_TECCNT(val);
bec->rxerr = RCANFD_CSTS_RECCNT(val);
return 0;
}
static const struct net_device_ops rcar_canfd_netdev_ops = {
.ndo_open = rcar_canfd_open,
.ndo_stop = rcar_canfd_close,
.ndo_start_xmit = rcar_canfd_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
u32 fcan_freq)
{
struct platform_device *pdev = gpriv->pdev;
struct rcar_canfd_channel *priv;
struct net_device *ndev;
int err = -ENODEV;
ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
if (!ndev) {
dev_err(&pdev->dev, "alloc_candev() failed\n");
err = -ENOMEM;
goto fail;
}
priv = netdev_priv(ndev);
ndev->netdev_ops = &rcar_canfd_netdev_ops;
ndev->flags |= IFF_ECHO;
priv->ndev = ndev;
priv->base = gpriv->base;
priv->channel = ch;
priv->can.clock.freq = fcan_freq;
dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
if (gpriv->fdmode) {
priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
priv->can.data_bittiming_const =
&rcar_canfd_data_bittiming_const;
/* Controller starts in CAN FD only mode */
can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
} else {
/* Controller starts in Classical CAN only mode */
priv->can.bittiming_const = &rcar_canfd_bittiming_const;
priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
}
priv->can.do_set_mode = rcar_canfd_do_set_mode;
priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
priv->gpriv = gpriv;
SET_NETDEV_DEV(ndev, &pdev->dev);
netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll,
RCANFD_NAPI_WEIGHT);
err = register_candev(ndev);
if (err) {
dev_err(&pdev->dev,
"register_candev() failed, error %d\n", err);
goto fail_candev;
}
spin_lock_init(&priv->tx_lock);
devm_can_led_init(ndev);
gpriv->ch[priv->channel] = priv;
dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
return 0;
fail_candev:
netif_napi_del(&priv->napi);
free_candev(ndev);
fail:
return err;
}
static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
{
struct rcar_canfd_channel *priv = gpriv->ch[ch];
if (priv) {
unregister_candev(priv->ndev);
netif_napi_del(&priv->napi);
free_candev(priv->ndev);
}
}
static int rcar_canfd_probe(struct platform_device *pdev)
{
void __iomem *addr;
u32 sts, ch, fcan_freq;
struct rcar_canfd_global *gpriv;
struct device_node *of_child;
unsigned long channels_mask = 0;
int err, ch_irq, g_irq;
bool fdmode = true; /* CAN FD only mode - default */
if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
fdmode = false; /* Classical CAN only mode */
of_child = of_get_child_by_name(pdev->dev.of_node, "channel0");
if (of_child && of_device_is_available(of_child))
channels_mask |= BIT(0); /* Channel 0 */
of_child = of_get_child_by_name(pdev->dev.of_node, "channel1");
if (of_child && of_device_is_available(of_child))
channels_mask |= BIT(1); /* Channel 1 */
ch_irq = platform_get_irq(pdev, 0);
if (ch_irq < 0) {
err = ch_irq;
goto fail_dev;
}
g_irq = platform_get_irq(pdev, 1);
if (g_irq < 0) {
err = g_irq;
goto fail_dev;
}
/* Global controller context */
gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
if (!gpriv) {
err = -ENOMEM;
goto fail_dev;
}
gpriv->pdev = pdev;
gpriv->channels_mask = channels_mask;
gpriv->fdmode = fdmode;
/* Peripheral clock */
gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(gpriv->clkp)) {
err = PTR_ERR(gpriv->clkp);
dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
err);
goto fail_dev;
}
/* fCAN clock: Pick External clock. If not available fallback to
* CANFD clock
*/
gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
if (IS_ERR(gpriv->can_clk)) {
err = PTR_ERR(gpriv->can_clk);
dev_err(&pdev->dev,
"cannot get canfd clock, error %d\n", err);
goto fail_dev;
}
gpriv->fcan = RCANFD_CANFDCLK;
} else {
gpriv->fcan = RCANFD_EXTCLK;
}
fcan_freq = clk_get_rate(gpriv->can_clk);
if (gpriv->fcan == RCANFD_CANFDCLK)
/* CANFD clock is further divided by (1/2) within the IP */
fcan_freq /= 2;
addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(addr)) {
err = PTR_ERR(addr);
goto fail_dev;
}
gpriv->base = addr;
/* Request IRQ that's common for both channels */
err = devm_request_irq(&pdev->dev, ch_irq,
rcar_canfd_channel_interrupt, 0,
"canfd.chn", gpriv);
if (err) {
dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
ch_irq, err);
goto fail_dev;
}
err = devm_request_irq(&pdev->dev, g_irq,
rcar_canfd_global_interrupt, 0,
"canfd.gbl", gpriv);
if (err) {
dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
g_irq, err);
goto fail_dev;
}
/* Enable peripheral clock for register access */
err = clk_prepare_enable(gpriv->clkp);
if (err) {
dev_err(&pdev->dev,
"failed to enable peripheral clock, error %d\n", err);
goto fail_dev;
}
err = rcar_canfd_reset_controller(gpriv);
if (err) {
dev_err(&pdev->dev, "reset controller failed\n");
goto fail_clk;
}
/* Controller in Global reset & Channel reset mode */
rcar_canfd_configure_controller(gpriv);
/* Configure per channel attributes */
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
/* Configure Channel's Rx fifo */
rcar_canfd_configure_rx(gpriv, ch);
/* Configure Channel's Tx (Common) fifo */
rcar_canfd_configure_tx(gpriv, ch);
/* Configure receive rules */
rcar_canfd_configure_afl_rules(gpriv, ch);
}
/* Configure common interrupts */
rcar_canfd_enable_global_interrupts(gpriv);
/* Start Global operation mode */
rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
RCANFD_GCTR_GMDC_GOPM);
/* Verify mode change */
err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
!(sts & RCANFD_GSTS_GNOPM), 2, 500000);
if (err) {
dev_err(&pdev->dev, "global operational mode failed\n");
goto fail_mode;
}
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
if (err)
goto fail_channel;
}
platform_set_drvdata(pdev, gpriv);
dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
gpriv->fcan, gpriv->fdmode);
return 0;
fail_channel:
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
rcar_canfd_channel_remove(gpriv, ch);
fail_mode:
rcar_canfd_disable_global_interrupts(gpriv);
fail_clk:
clk_disable_unprepare(gpriv->clkp);
fail_dev:
return err;
}
static int rcar_canfd_remove(struct platform_device *pdev)
{
struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
u32 ch;
rcar_canfd_reset_controller(gpriv);
rcar_canfd_disable_global_interrupts(gpriv);
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
rcar_canfd_channel_remove(gpriv, ch);
}
/* Enter global sleep mode */
rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
clk_disable_unprepare(gpriv->clkp);
return 0;
}
static int __maybe_unused rcar_canfd_suspend(struct device *dev)
{
return 0;
}
static int __maybe_unused rcar_canfd_resume(struct device *dev)
{
return 0;
}
static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
rcar_canfd_resume);
static const struct of_device_id rcar_canfd_of_table[] = {
{ .compatible = "renesas,rcar-gen3-canfd" },
{ }
};
MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
static struct platform_driver rcar_canfd_driver = {
.driver = {
.name = RCANFD_DRV_NAME,
.of_match_table = of_match_ptr(rcar_canfd_of_table),
.pm = &rcar_canfd_pm_ops,
},
.probe = rcar_canfd_probe,
.remove = rcar_canfd_remove,
};
module_platform_driver(rcar_canfd_driver);
MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
|