1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
*
* The data sheet for this device can be found at:
* http://wiki.laptop.org/go/Datasheets
*
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
*/
#define DEBUG
#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/rslib.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <asm/io.h>
#define CAFE_NAND_CTRL1 0x00
#define CAFE_NAND_CTRL2 0x04
#define CAFE_NAND_CTRL3 0x08
#define CAFE_NAND_STATUS 0x0c
#define CAFE_NAND_IRQ 0x10
#define CAFE_NAND_IRQ_MASK 0x14
#define CAFE_NAND_DATA_LEN 0x18
#define CAFE_NAND_ADDR1 0x1c
#define CAFE_NAND_ADDR2 0x20
#define CAFE_NAND_TIMING1 0x24
#define CAFE_NAND_TIMING2 0x28
#define CAFE_NAND_TIMING3 0x2c
#define CAFE_NAND_NONMEM 0x30
#define CAFE_NAND_ECC_RESULT 0x3C
#define CAFE_NAND_DMA_CTRL 0x40
#define CAFE_NAND_DMA_ADDR0 0x44
#define CAFE_NAND_DMA_ADDR1 0x48
#define CAFE_NAND_ECC_SYN01 0x50
#define CAFE_NAND_ECC_SYN23 0x54
#define CAFE_NAND_ECC_SYN45 0x58
#define CAFE_NAND_ECC_SYN67 0x5c
#define CAFE_NAND_READ_DATA 0x1000
#define CAFE_NAND_WRITE_DATA 0x2000
#define CAFE_GLOBAL_CTRL 0x3004
#define CAFE_GLOBAL_IRQ 0x3008
#define CAFE_GLOBAL_IRQ_MASK 0x300c
#define CAFE_NAND_RESET 0x3034
/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
#define CTRL1_CHIPSELECT (1<<19)
struct cafe_priv {
struct nand_chip nand;
struct pci_dev *pdev;
void __iomem *mmio;
struct rs_control *rs;
uint32_t ctl1;
uint32_t ctl2;
int datalen;
int nr_data;
int data_pos;
int page_addr;
bool usedma;
dma_addr_t dmaaddr;
unsigned char *dmabuf;
};
static int usedma = 1;
module_param(usedma, int, 0644);
static int skipbbt = 0;
module_param(skipbbt, int, 0644);
static int debug = 0;
module_param(debug, int, 0644);
static int regdebug = 0;
module_param(regdebug, int, 0644);
static int checkecc = 1;
module_param(checkecc, int, 0644);
static unsigned int numtimings;
static int timing[3];
module_param_array(timing, int, &numtimings, 0644);
static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
/* Hrm. Why isn't this already conditional on something in the struct device? */
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
/* Make it easier to switch to PIO if we need to */
#define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
#define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
static int cafe_device_ready(struct nand_chip *chip)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
cafe_writel(cafe, irqs, NAND_IRQ);
cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
return result;
}
static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
if (cafe->usedma)
memcpy(cafe->dmabuf + cafe->datalen, buf, len);
else
memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
cafe->datalen += len;
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
len, cafe->datalen);
}
static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
if (cafe->usedma)
memcpy(buf, cafe->dmabuf + cafe->datalen, len);
else
memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
len, cafe->datalen);
cafe->datalen += len;
}
static uint8_t cafe_read_byte(struct nand_chip *chip)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
uint8_t d;
cafe_read_buf(chip, &d, 1);
cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
return d;
}
static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command,
int column, int page_addr)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct cafe_priv *cafe = nand_get_controller_data(chip);
int adrbytes = 0;
uint32_t ctl1;
uint32_t doneint = 0x80000000;
cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
command, column, page_addr);
if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
/* Second half of a command we already calculated */
cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
ctl1 = cafe->ctl1;
cafe->ctl2 &= ~(1<<30);
cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
cafe->ctl1, cafe->nr_data);
goto do_command;
}
/* Reset ECC engine */
cafe_writel(cafe, 0, NAND_CTRL2);
/* Emulate NAND_CMD_READOOB on large-page chips */
if (mtd->writesize > 512 &&
command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* FIXME: Do we need to send read command before sending data
for small-page chips, to position the buffer correctly? */
if (column != -1) {
cafe_writel(cafe, column, NAND_ADDR1);
adrbytes = 2;
if (page_addr != -1)
goto write_adr2;
} else if (page_addr != -1) {
cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
page_addr >>= 16;
write_adr2:
cafe_writel(cafe, page_addr, NAND_ADDR2);
adrbytes += 2;
if (mtd->size > mtd->writesize << 16)
adrbytes++;
}
cafe->data_pos = cafe->datalen = 0;
/* Set command valid bit, mask in the chip select bit */
ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
/* Set RD or WR bits as appropriate */
if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
ctl1 |= (1<<26); /* rd */
/* Always 5 bytes, for now */
cafe->datalen = 4;
/* And one address cycle -- even for STATUS, since the controller doesn't work without */
adrbytes = 1;
} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
ctl1 |= 1<<26; /* rd */
/* For now, assume just read to end of page */
cafe->datalen = mtd->writesize + mtd->oobsize - column;
} else if (command == NAND_CMD_SEQIN)
ctl1 |= 1<<25; /* wr */
/* Set number of address bytes */
if (adrbytes)
ctl1 |= ((adrbytes-1)|8) << 27;
if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
/* Ignore the first command of a pair; the hardware
deals with them both at once, later */
cafe->ctl1 = ctl1;
cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
cafe->ctl1, cafe->datalen);
return;
}
/* RNDOUT and READ0 commands need a following byte */
if (command == NAND_CMD_RNDOUT)
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
do_command:
cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
/* NB: The datasheet lies -- we really should be subtracting 1 here */
cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
cafe_writel(cafe, 0x90000000, NAND_IRQ);
if (cafe->usedma && (ctl1 & (3<<25))) {
uint32_t dmactl = 0xc0000000 + cafe->datalen;
/* If WR or RD bits set, set up DMA */
if (ctl1 & (1<<26)) {
/* It's a read */
dmactl |= (1<<29);
/* ... so it's done when the DMA is done, not just
the command. */
doneint = 0x10000000;
}
cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
}
cafe->datalen = 0;
if (unlikely(regdebug)) {
int i;
printk("About to write command %08x to register 0\n", ctl1);
for (i=4; i< 0x5c; i+=4)
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
}
cafe_writel(cafe, ctl1, NAND_CTRL1);
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
if (1) {
int c;
uint32_t irqs;
for (c = 500000; c != 0; c--) {
irqs = cafe_readl(cafe, NAND_IRQ);
if (irqs & doneint)
break;
udelay(1);
if (!(c % 100000))
cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
cpu_relax();
}
cafe_writel(cafe, doneint, NAND_IRQ);
cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
}
WARN_ON(cafe->ctl2 & (1<<30));
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_RNDOUT:
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
return;
}
nand_wait_ready(chip);
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
}
static void cafe_select_chip(struct nand_chip *chip, int chipnr)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
/* Mask the appropriate bit into the stored value of ctl1
which will be used by cafe_nand_cmdfunc() */
if (chipnr)
cafe->ctl1 |= CTRL1_CHIPSELECT;
else
cafe->ctl1 &= ~CTRL1_CHIPSELECT;
}
static irqreturn_t cafe_nand_interrupt(int irq, void *id)
{
struct mtd_info *mtd = id;
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
if (!irqs)
return IRQ_NONE;
cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
return IRQ_HANDLED;
}
static int cafe_nand_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
mtd->oobsize);
}
/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
}
/**
* cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller expects OOB data read to chip->oob_poi
* @page: page number to read
*
* The hw generator calculates the error syndrome automatically. Therefore
* we need a special oob layout and handling.
*/
static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct cafe_priv *cafe = nand_get_controller_data(chip);
unsigned int max_bitflips = 0;
cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
cafe_readl(cafe, NAND_ECC_RESULT),
cafe_readl(cafe, NAND_ECC_SYN01));
nand_read_page_op(chip, page, 0, buf, mtd->writesize);
chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
unsigned short syn[8], pat[4];
int pos[4];
u8 *oob = chip->oob_poi;
int i, n;
for (i=0; i<8; i+=2) {
uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
}
n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
pat);
for (i = 0; i < n; i++) {
int p = pos[i];
/* The 12-bit symbols are mapped to bytes here */
if (p > 1374) {
/* out of range */
n = -1374;
} else if (p == 0) {
/* high four bits do not correspond to data */
if (pat[i] > 0xff)
n = -2048;
else
buf[0] ^= pat[i];
} else if (p == 1365) {
buf[2047] ^= pat[i] >> 4;
oob[0] ^= pat[i] << 4;
} else if (p > 1365) {
if ((p & 1) == 1) {
oob[3*p/2 - 2048] ^= pat[i] >> 4;
oob[3*p/2 - 2047] ^= pat[i] << 4;
} else {
oob[3*p/2 - 2049] ^= pat[i] >> 8;
oob[3*p/2 - 2048] ^= pat[i];
}
} else if ((p & 1) == 1) {
buf[3*p/2] ^= pat[i] >> 4;
buf[3*p/2 + 1] ^= pat[i] << 4;
} else {
buf[3*p/2 - 1] ^= pat[i] >> 8;
buf[3*p/2] ^= pat[i];
}
}
if (n < 0) {
dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
cafe_readl(cafe, NAND_ADDR2) * 2048);
for (i = 0; i < 0x5c; i += 4)
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
mtd->ecc_stats.failed++;
} else {
dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
mtd->ecc_stats.corrected += n;
max_bitflips = max_t(unsigned int, max_bitflips, n);
}
}
return max_bitflips;
}
static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = 0;
oobregion->length = chip->ecc.total;
return 0;
}
static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = chip->ecc.total;
oobregion->length = mtd->oobsize - chip->ecc.total;
return 0;
}
static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
.ecc = cafe_ooblayout_ecc,
.free = cafe_ooblayout_free,
};
/* Ick. The BBT code really ought to be able to work this bit out
for itself from the above, at least for the 2KiB case */
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_2048
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_2048
};
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_512
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_512
};
static int cafe_nand_write_page_lowlevel(struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct cafe_priv *cafe = nand_get_controller_data(chip);
nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
/* Set up ECC autogeneration */
cafe->ctl2 |= (1<<30);
return nand_prog_page_end_op(chip);
}
/* F_2[X]/(X**6+X+1) */
static unsigned short gf64_mul(u8 a, u8 b)
{
u8 c;
unsigned int i;
c = 0;
for (i = 0; i < 6; i++) {
if (a & 1)
c ^= b;
a >>= 1;
b <<= 1;
if ((b & 0x40) != 0)
b ^= 0x43;
}
return c;
}
/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
static u16 gf4096_mul(u16 a, u16 b)
{
u8 ah, al, bh, bl, ch, cl;
ah = a >> 6;
al = a & 0x3f;
bh = b >> 6;
bl = b & 0x3f;
ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
return (ch << 6) ^ cl;
}
static int cafe_mul(int x)
{
if (x == 0)
return 1;
return gf4096_mul(x, 0xe01);
}
static int cafe_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct cafe_priv *cafe = nand_get_controller_data(chip);
int err = 0;
cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
&cafe->dmaaddr, GFP_KERNEL);
if (!cafe->dmabuf)
return -ENOMEM;
/* Set up DMA address */
cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
/* Restore the DMA flag */
cafe->usedma = usedma;
cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
if (mtd->writesize == 2048)
cafe->ctl2 |= BIT(29); /* 2KiB page size */
/* Set up ECC according to the type of chip we found */
mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
if (mtd->writesize == 2048) {
cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
} else if (mtd->writesize == 512) {
cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
} else {
dev_warn(&cafe->pdev->dev,
"Unexpected NAND flash writesize %d. Aborting\n",
mtd->writesize);
err = -ENOTSUPP;
goto out_free_dma;
}
cafe->nand.ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
cafe->nand.ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
cafe->nand.ecc.size = mtd->writesize;
cafe->nand.ecc.bytes = 14;
cafe->nand.ecc.strength = 4;
cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
cafe->nand.ecc.write_oob = cafe_nand_write_oob;
cafe->nand.ecc.read_page = cafe_nand_read_page;
cafe->nand.ecc.read_oob = cafe_nand_read_oob;
return 0;
out_free_dma:
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
return err;
}
static void cafe_nand_detach_chip(struct nand_chip *chip)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
}
static const struct nand_controller_ops cafe_nand_controller_ops = {
.attach_chip = cafe_nand_attach_chip,
.detach_chip = cafe_nand_detach_chip,
};
static int cafe_nand_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct mtd_info *mtd;
struct cafe_priv *cafe;
uint32_t ctrl;
int err = 0;
/* Very old versions shared the same PCI ident for all three
functions on the chip. Verify the class too... */
if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
return -ENODEV;
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
if (!cafe) {
err = -ENOMEM;
goto out_disable_device;
}
mtd = nand_to_mtd(&cafe->nand);
mtd->dev.parent = &pdev->dev;
nand_set_controller_data(&cafe->nand, cafe);
cafe->pdev = pdev;
cafe->mmio = pci_iomap(pdev, 0, 0);
if (!cafe->mmio) {
dev_warn(&pdev->dev, "failed to iomap\n");
err = -ENOMEM;
goto out_free_mtd;
}
cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
if (!cafe->rs) {
err = -ENOMEM;
goto out_ior;
}
cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc;
cafe->nand.legacy.dev_ready = cafe_device_ready;
cafe->nand.legacy.read_byte = cafe_read_byte;
cafe->nand.legacy.read_buf = cafe_read_buf;
cafe->nand.legacy.write_buf = cafe_write_buf;
cafe->nand.legacy.select_chip = cafe_select_chip;
cafe->nand.legacy.set_features = nand_get_set_features_notsupp;
cafe->nand.legacy.get_features = nand_get_set_features_notsupp;
cafe->nand.legacy.chip_delay = 0;
/* Enable the following for a flash based bad block table */
cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
if (skipbbt)
cafe->nand.options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK;
if (numtimings && numtimings != 3) {
dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
}
if (numtimings == 3) {
cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
timing[0], timing[1], timing[2]);
} else {
timing[0] = cafe_readl(cafe, NAND_TIMING1);
timing[1] = cafe_readl(cafe, NAND_TIMING2);
timing[2] = cafe_readl(cafe, NAND_TIMING3);
if (timing[0] | timing[1] | timing[2]) {
cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
timing[0], timing[1], timing[2]);
} else {
dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
timing[0] = timing[1] = timing[2] = 0xffffffff;
}
}
/* Start off by resetting the NAND controller completely */
cafe_writel(cafe, 1, NAND_RESET);
cafe_writel(cafe, 0, NAND_RESET);
cafe_writel(cafe, timing[0], NAND_TIMING1);
cafe_writel(cafe, timing[1], NAND_TIMING2);
cafe_writel(cafe, timing[2], NAND_TIMING3);
cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
"CAFE NAND", mtd);
if (err) {
dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
goto out_free_rs;
}
/* Disable master reset, enable NAND clock */
ctrl = cafe_readl(cafe, GLOBAL_CTRL);
ctrl &= 0xffffeff0;
ctrl |= 0x00007000;
cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
cafe_writel(cafe, 0, NAND_DMA_CTRL);
cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
/* Enable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
cafe_readl(cafe, GLOBAL_CTRL),
cafe_readl(cafe, GLOBAL_IRQ_MASK));
/* Do not use the DMA during the NAND identification */
cafe->usedma = 0;
/* Scan to find existence of the device */
cafe->nand.legacy.dummy_controller.ops = &cafe_nand_controller_ops;
err = nand_scan(&cafe->nand, 2);
if (err)
goto out_irq;
pci_set_drvdata(pdev, mtd);
mtd->name = "cafe_nand";
err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
if (err)
goto out_cleanup_nand;
goto out;
out_cleanup_nand:
nand_cleanup(&cafe->nand);
out_irq:
/* Disable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
free_irq(pdev->irq, mtd);
out_free_rs:
free_rs(cafe->rs);
out_ior:
pci_iounmap(pdev, cafe->mmio);
out_free_mtd:
kfree(cafe);
out_disable_device:
pci_disable_device(pdev);
out:
return err;
}
static void cafe_nand_remove(struct pci_dev *pdev)
{
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
int ret;
/* Disable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
free_irq(pdev->irq, mtd);
ret = mtd_device_unregister(mtd);
WARN_ON(ret);
nand_cleanup(chip);
free_rs(cafe->rs);
pci_iounmap(pdev, cafe->mmio);
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
kfree(cafe);
pci_disable_device(pdev);
}
static const struct pci_device_id cafe_nand_tbl[] = {
{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
PCI_ANY_ID, PCI_ANY_ID },
{ }
};
MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
static int cafe_nand_resume(struct pci_dev *pdev)
{
uint32_t ctrl;
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
/* Start off by resetting the NAND controller completely */
cafe_writel(cafe, 1, NAND_RESET);
cafe_writel(cafe, 0, NAND_RESET);
cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
/* Restore timing configuration */
cafe_writel(cafe, timing[0], NAND_TIMING1);
cafe_writel(cafe, timing[1], NAND_TIMING2);
cafe_writel(cafe, timing[2], NAND_TIMING3);
/* Disable master reset, enable NAND clock */
ctrl = cafe_readl(cafe, GLOBAL_CTRL);
ctrl &= 0xffffeff0;
ctrl |= 0x00007000;
cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
cafe_writel(cafe, 0, NAND_DMA_CTRL);
cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
/* Set up DMA address */
cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
if (sizeof(cafe->dmaaddr) > 4)
/* Shift in two parts to shut the compiler up */
cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
else
cafe_writel(cafe, 0, NAND_DMA_ADDR1);
/* Enable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
return 0;
}
static struct pci_driver cafe_nand_pci_driver = {
.name = "CAFÉ NAND",
.id_table = cafe_nand_tbl,
.probe = cafe_nand_probe,
.remove = cafe_nand_remove,
.resume = cafe_nand_resume,
};
module_pci_driver(cafe_nand_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
|