1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
|
/*
* drivers/mtd/nand.c
*
* Overview:
* This is the generic MTD driver for NAND flash devices. It should be
* capable of working with almost all NAND chips currently available.
* Basic support for AG-AND chips is provided.
*
* Additional technical information is available on
* http://www.linux-mtd.infradead.org/doc/nand.html
*
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
* 2002-2006 Thomas Gleixner (tglx@linutronix.de)
*
* Credits:
* David Woodhouse for adding multichip support
*
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
* rework for 2K page size chips
*
* TODO:
* Enable cached programming for 2k page size chips
* Check, if mtd->ecctype should be set to MTD_ECC_HW
* if we have HW ECC support.
* The AG-AND chips have nice features for speed improvement,
* which are not supported yet. Read / program 4 pages in one go.
* BBT table is not serialized, has to be fixed
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/nand_bch.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/leds.h>
#include <linux/io.h>
#include <linux/mtd/partitions.h>
/* Define default oob placement schemes for large and small page devices */
static struct nand_ecclayout nand_oob_8 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{.offset = 3,
.length = 2},
{.offset = 6,
.length = 2} }
};
static struct nand_ecclayout nand_oob_16 = {
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 6, 7},
.oobfree = {
{.offset = 8,
. length = 8} }
};
static struct nand_ecclayout nand_oob_64 = {
.eccbytes = 24,
.eccpos = {
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = {
{.offset = 2,
.length = 38} }
};
static struct nand_ecclayout nand_oob_128 = {
.eccbytes = 48,
.eccpos = {
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127},
.oobfree = {
{.offset = 2,
.length = 78} }
};
static int nand_get_device(struct mtd_info *mtd, int new_state);
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops);
/*
* For devices which display every fart in the system on a separate LED. Is
* compiled away when LED support is disabled.
*/
DEFINE_LED_TRIGGER(nand_led_trigger);
static int check_offs_len(struct mtd_info *mtd,
loff_t ofs, uint64_t len)
{
struct nand_chip *chip = mtd->priv;
int ret = 0;
/* Start address must align on block boundary */
if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
pr_debug("%s: unaligned address\n", __func__);
ret = -EINVAL;
}
/* Length must align on block boundary */
if (len & ((1 << chip->phys_erase_shift) - 1)) {
pr_debug("%s: length not block aligned\n", __func__);
ret = -EINVAL;
}
return ret;
}
/**
* nand_release_device - [GENERIC] release chip
* @mtd: MTD device structure
*
* Release chip lock and wake up anyone waiting on the device.
*/
static void nand_release_device(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
/* Release the controller and the chip */
spin_lock(&chip->controller->lock);
chip->controller->active = NULL;
chip->state = FL_READY;
wake_up(&chip->controller->wq);
spin_unlock(&chip->controller->lock);
}
/**
* nand_read_byte - [DEFAULT] read one byte from the chip
* @mtd: MTD device structure
*
* Default read function for 8bit buswidth
*/
static uint8_t nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
return readb(chip->IO_ADDR_R);
}
/**
* nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
* nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
* @mtd: MTD device structure
*
* Default read function for 16bit buswidth with endianness conversion.
*
*/
static uint8_t nand_read_byte16(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
}
/**
* nand_read_word - [DEFAULT] read one word from the chip
* @mtd: MTD device structure
*
* Default read function for 16bit buswidth without endianness conversion.
*/
static u16 nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
return readw(chip->IO_ADDR_R);
}
/**
* nand_select_chip - [DEFAULT] control CE line
* @mtd: MTD device structure
* @chipnr: chipnumber to select, -1 for deselect
*
* Default select function for 1 chip devices.
*/
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
{
struct nand_chip *chip = mtd->priv;
switch (chipnr) {
case -1:
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
break;
case 0:
break;
default:
BUG();
}
}
/**
* nand_write_buf - [DEFAULT] write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*
* Default write function for 8bit buswidth.
*/
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
for (i = 0; i < len; i++)
writeb(buf[i], chip->IO_ADDR_W);
}
/**
* nand_read_buf - [DEFAULT] read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*
* Default read function for 8bit buswidth.
*/
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
for (i = 0; i < len; i++)
buf[i] = readb(chip->IO_ADDR_R);
}
/**
* nand_write_buf16 - [DEFAULT] write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*
* Default write function for 16bit buswidth.
*/
static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
u16 *p = (u16 *) buf;
len >>= 1;
for (i = 0; i < len; i++)
writew(p[i], chip->IO_ADDR_W);
}
/**
* nand_read_buf16 - [DEFAULT] read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*
* Default read function for 16bit buswidth.
*/
static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
u16 *p = (u16 *) buf;
len >>= 1;
for (i = 0; i < len; i++)
p[i] = readw(chip->IO_ADDR_R);
}
/**
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
* @mtd: MTD device structure
* @ofs: offset from device start
* @getchip: 0, if the chip is already selected
*
* Check, if the block is bad.
*/
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
int page, chipnr, res = 0, i = 0;
struct nand_chip *chip = mtd->priv;
u16 bad;
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
ofs += mtd->erasesize - mtd->writesize;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
if (getchip) {
chipnr = (int)(ofs >> chip->chip_shift);
nand_get_device(mtd, FL_READING);
/* Select the NAND device */
chip->select_chip(mtd, chipnr);
}
do {
if (chip->options & NAND_BUSWIDTH_16) {
chip->cmdfunc(mtd, NAND_CMD_READOOB,
chip->badblockpos & 0xFE, page);
bad = cpu_to_le16(chip->read_word(mtd));
if (chip->badblockpos & 0x1)
bad >>= 8;
else
bad &= 0xFF;
} else {
chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
page);
bad = chip->read_byte(mtd);
}
if (likely(chip->badblockbits == 8))
res = bad != 0xFF;
else
res = hweight8(bad) < chip->badblockbits;
ofs += mtd->writesize;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
i++;
} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
if (getchip) {
chip->select_chip(mtd, -1);
nand_release_device(mtd);
}
return res;
}
/**
* nand_default_block_markbad - [DEFAULT] mark a block bad
* @mtd: MTD device structure
* @ofs: offset from device start
*
* This is the default implementation, which can be overridden by a hardware
* specific driver. We try operations in the following order, according to our
* bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
* (1) erase the affected block, to allow OOB marker to be written cleanly
* (2) update in-memory BBT
* (3) write bad block marker to OOB area of affected block
* (4) update flash-based BBT
* Note that we retain the first error encountered in (3) or (4), finish the
* procedures, and dump the error in the end.
*/
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd->priv;
uint8_t buf[2] = { 0, 0 };
int block, res, ret = 0, i = 0;
int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
if (write_oob) {
struct erase_info einfo;
/* Attempt erase before marking OOB */
memset(&einfo, 0, sizeof(einfo));
einfo.mtd = mtd;
einfo.addr = ofs;
einfo.len = 1 << chip->phys_erase_shift;
nand_erase_nand(mtd, &einfo, 0);
}
/* Get block number */
block = (int)(ofs >> chip->bbt_erase_shift);
/* Mark block bad in memory-based BBT */
if (chip->bbt)
chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
/* Write bad block marker to OOB */
if (write_oob) {
struct mtd_oob_ops ops;
loff_t wr_ofs = ofs;
nand_get_device(mtd, FL_WRITING);
ops.datbuf = NULL;
ops.oobbuf = buf;
ops.ooboffs = chip->badblockpos;
if (chip->options & NAND_BUSWIDTH_16) {
ops.ooboffs &= ~0x01;
ops.len = ops.ooblen = 2;
} else {
ops.len = ops.ooblen = 1;
}
ops.mode = MTD_OPS_PLACE_OOB;
/* Write to first/last page(s) if necessary */
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
wr_ofs += mtd->erasesize - mtd->writesize;
do {
res = nand_do_write_oob(mtd, wr_ofs, &ops);
if (!ret)
ret = res;
i++;
wr_ofs += mtd->writesize;
} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
nand_release_device(mtd);
}
/* Update flash-based bad block table */
if (chip->bbt_options & NAND_BBT_USE_FLASH) {
res = nand_update_bbt(mtd, ofs);
if (!ret)
ret = res;
}
if (!ret)
mtd->ecc_stats.badblocks++;
return ret;
}
/**
* nand_check_wp - [GENERIC] check if the chip is write protected
* @mtd: MTD device structure
*
* Check, if the device is write protected. The function expects, that the
* device is already selected.
*/
static int nand_check_wp(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
/* Broken xD cards report WP despite being writable */
if (chip->options & NAND_BROKEN_XD)
return 0;
/* Check the WP bit */
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
}
/**
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
* @mtd: MTD device structure
* @ofs: offset from device start
* @getchip: 0, if the chip is already selected
* @allowbbt: 1, if its allowed to access the bbt area
*
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
int allowbbt)
{
struct nand_chip *chip = mtd->priv;
if (!chip->bbt)
return chip->block_bad(mtd, ofs, getchip);
/* Return info from the table */
return nand_isbad_bbt(mtd, ofs, allowbbt);
}
/**
* panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
* @mtd: MTD device structure
* @timeo: Timeout
*
* Helper function for nand_wait_ready used when needing to wait in interrupt
* context.
*/
static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
{
struct nand_chip *chip = mtd->priv;
int i;
/* Wait for the device to get ready */
for (i = 0; i < timeo; i++) {
if (chip->dev_ready(mtd))
break;
touch_softlockup_watchdog();
mdelay(1);
}
}
/* Wait for the ready pin, after a command. The timeout is caught later. */
void nand_wait_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
unsigned long timeo = jiffies + msecs_to_jiffies(20);
/* 400ms timeout */
if (in_interrupt() || oops_in_progress)
return panic_nand_wait_ready(mtd, 400);
led_trigger_event(nand_led_trigger, LED_FULL);
/* Wait until command is processed or timeout occurs */
do {
if (chip->dev_ready(mtd))
break;
touch_softlockup_watchdog();
} while (time_before(jiffies, timeo));
led_trigger_event(nand_led_trigger, LED_OFF);
}
EXPORT_SYMBOL_GPL(nand_wait_ready);
/**
* nand_command - [DEFAULT] Send command to NAND device
* @mtd: MTD device structure
* @command: the command to be sent
* @column: the column address for this command, -1 if none
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This function is used for small page devices
* (256/512 Bytes per page).
*/
static void nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
register struct nand_chip *chip = mtd->priv;
int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
/* Write out the command to the device */
if (command == NAND_CMD_SEQIN) {
int readcmd;
if (column >= mtd->writesize) {
/* OOB area */
column -= mtd->writesize;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else {
column -= 256;
readcmd = NAND_CMD_READ1;
}
chip->cmd_ctrl(mtd, readcmd, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
}
chip->cmd_ctrl(mtd, command, ctrl);
/* Address cycle, when necessary */
ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (chip->options & NAND_BUSWIDTH_16)
column >>= 1;
chip->cmd_ctrl(mtd, column, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
}
if (page_addr != -1) {
chip->cmd_ctrl(mtd, page_addr, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
/* One more address cycle for devices > 32MiB */
if (chip->chipsize > (32 << 20))
chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
}
chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Program and erase have their own busy handlers status and sequential
* in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (chip->dev_ready)
break;
udelay(chip->chip_delay);
chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd,
NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
;
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!chip->dev_ready) {
udelay(chip->chip_delay);
return;
}
}
/*
* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine.
*/
ndelay(100);
nand_wait_ready(mtd);
}
/**
* nand_command_lp - [DEFAULT] Send command to NAND large page device
* @mtd: MTD device structure
* @command: the command to be sent
* @column: the column address for this command, -1 if none
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This is the version for the new large page
* devices. We don't have the separate regions as we have in the small page
* devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
*/
static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
register struct nand_chip *chip = mtd->priv;
/* Emulate NAND_CMD_READOOB */
if (command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* Command latch cycle */
chip->cmd_ctrl(mtd, command & 0xff,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
if (column != -1 || page_addr != -1) {
int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (chip->options & NAND_BUSWIDTH_16)
column >>= 1;
chip->cmd_ctrl(mtd, column, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
chip->cmd_ctrl(mtd, column >> 8, ctrl);
}
if (page_addr != -1) {
chip->cmd_ctrl(mtd, page_addr, ctrl);
chip->cmd_ctrl(mtd, page_addr >> 8,
NAND_NCE | NAND_ALE);
/* One more address cycle for devices > 128MiB */
if (chip->chipsize > (128 << 20))
chip->cmd_ctrl(mtd, page_addr >> 16,
NAND_NCE | NAND_ALE);
}
}
chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Program and erase have their own busy handlers status, sequential
* in, and deplete1 need no delay.
*/
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_DEPLETE1:
return;
case NAND_CMD_STATUS_ERROR:
case NAND_CMD_STATUS_ERROR0:
case NAND_CMD_STATUS_ERROR1:
case NAND_CMD_STATUS_ERROR2:
case NAND_CMD_STATUS_ERROR3:
/* Read error status commands require only a short delay */
udelay(chip->chip_delay);
return;
case NAND_CMD_RESET:
if (chip->dev_ready)
break;
udelay(chip->chip_delay);
chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
;
return;
case NAND_CMD_RNDOUT:
/* No ready / busy check necessary */
chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
return;
case NAND_CMD_READ0:
chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay.
*/
if (!chip->dev_ready) {
udelay(chip->chip_delay);
return;
}
}
/*
* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine.
*/
ndelay(100);
nand_wait_ready(mtd);
}
/**
* panic_nand_get_device - [GENERIC] Get chip for selected access
* @chip: the nand chip descriptor
* @mtd: MTD device structure
* @new_state: the state which is requested
*
* Used when in panic, no locks are taken.
*/
static void panic_nand_get_device(struct nand_chip *chip,
struct mtd_info *mtd, int new_state)
{
/* Hardware controller shared among independent devices */
chip->controller->active = chip;
chip->state = new_state;
}
/**
* nand_get_device - [GENERIC] Get chip for selected access
* @mtd: MTD device structure
* @new_state: the state which is requested
*
* Get the device and lock it for exclusive access
*/
static int
nand_get_device(struct mtd_info *mtd, int new_state)
{
struct nand_chip *chip = mtd->priv;
spinlock_t *lock = &chip->controller->lock;
wait_queue_head_t *wq = &chip->controller->wq;
DECLARE_WAITQUEUE(wait, current);
retry:
spin_lock(lock);
/* Hardware controller shared among independent devices */
if (!chip->controller->active)
chip->controller->active = chip;
if (chip->controller->active == chip && chip->state == FL_READY) {
chip->state = new_state;
spin_unlock(lock);
return 0;
}
if (new_state == FL_PM_SUSPENDED) {
if (chip->controller->active->state == FL_PM_SUSPENDED) {
chip->state = FL_PM_SUSPENDED;
spin_unlock(lock);
return 0;
}
}
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(wq, &wait);
spin_unlock(lock);
schedule();
remove_wait_queue(wq, &wait);
goto retry;
}
/**
* panic_nand_wait - [GENERIC] wait until the command is done
* @mtd: MTD device structure
* @chip: NAND chip structure
* @timeo: timeout
*
* Wait for command done. This is a helper function for nand_wait used when
* we are in interrupt context. May happen when in panic and trying to write
* an oops through mtdoops.
*/
static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
unsigned long timeo)
{
int i;
for (i = 0; i < timeo; i++) {
if (chip->dev_ready) {
if (chip->dev_ready(mtd))
break;
} else {
if (chip->read_byte(mtd) & NAND_STATUS_READY)
break;
}
mdelay(1);
}
}
/**
* nand_wait - [DEFAULT] wait until the command is done
* @mtd: MTD device structure
* @chip: NAND chip structure
*
* Wait for command done. This applies to erase and program only. Erase can
* take up to 400ms and program up to 20ms according to general NAND and
* SmartMedia specs.
*/
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
unsigned long timeo = jiffies;
int status, state = chip->state;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
led_trigger_event(nand_led_trigger, LED_FULL);
/*
* Apply this short delay always to ensure that we do wait tWB in any
* case on any machine.
*/
ndelay(100);
if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
else
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
if (in_interrupt() || oops_in_progress)
panic_nand_wait(mtd, chip, timeo);
else {
while (time_before(jiffies, timeo)) {
if (chip->dev_ready) {
if (chip->dev_ready(mtd))
break;
} else {
if (chip->read_byte(mtd) & NAND_STATUS_READY)
break;
}
cond_resched();
}
}
led_trigger_event(nand_led_trigger, LED_OFF);
status = (int)chip->read_byte(mtd);
/* This can happen if in case of timeout or buggy dev_ready */
WARN_ON(!(status & NAND_STATUS_READY));
return status;
}
/**
* __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
* @mtd: mtd info
* @ofs: offset to start unlock from
* @len: length to unlock
* @invert: when = 0, unlock the range of blocks within the lower and
* upper boundary address
* when = 1, unlock the range of blocks outside the boundaries
* of the lower and upper boundary address
*
* Returs unlock status.
*/
static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
uint64_t len, int invert)
{
int ret = 0;
int status, page;
struct nand_chip *chip = mtd->priv;
/* Submit address of first page to unlock */
page = ofs >> chip->page_shift;
chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
/* Submit address of last page to unlock */
page = (ofs + len) >> chip->page_shift;
chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
(page | invert) & chip->pagemask);
/* Call wait ready function */
status = chip->waitfunc(mtd, chip);
/* See if device thinks it succeeded */
if (status & NAND_STATUS_FAIL) {
pr_debug("%s: error status = 0x%08x\n",
__func__, status);
ret = -EIO;
}
return ret;
}
/**
* nand_unlock - [REPLACEABLE] unlocks specified locked blocks
* @mtd: mtd info
* @ofs: offset to start unlock from
* @len: length to unlock
*
* Returns unlock status.
*/
int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
int ret = 0;
int chipnr;
struct nand_chip *chip = mtd->priv;
pr_debug("%s: start = 0x%012llx, len = %llu\n",
__func__, (unsigned long long)ofs, len);
if (check_offs_len(mtd, ofs, len))
ret = -EINVAL;
/* Align to last block address if size addresses end of the device */
if (ofs + len == mtd->size)
len -= mtd->erasesize;
nand_get_device(mtd, FL_UNLOCKING);
/* Shift to get chip number */
chipnr = ofs >> chip->chip_shift;
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
__func__);
ret = -EIO;
goto out;
}
ret = __nand_unlock(mtd, ofs, len, 0);
out:
chip->select_chip(mtd, -1);
nand_release_device(mtd);
return ret;
}
EXPORT_SYMBOL(nand_unlock);
/**
* nand_lock - [REPLACEABLE] locks all blocks present in the device
* @mtd: mtd info
* @ofs: offset to start unlock from
* @len: length to unlock
*
* This feature is not supported in many NAND parts. 'Micron' NAND parts do
* have this feature, but it allows only to lock all blocks, not for specified
* range for block. Implementing 'lock' feature by making use of 'unlock', for
* now.
*
* Returns lock status.
*/
int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
int ret = 0;
int chipnr, status, page;
struct nand_chip *chip = mtd->priv;
pr_debug("%s: start = 0x%012llx, len = %llu\n",
__func__, (unsigned long long)ofs, len);
if (check_offs_len(mtd, ofs, len))
ret = -EINVAL;
nand_get_device(mtd, FL_LOCKING);
/* Shift to get chip number */
chipnr = ofs >> chip->chip_shift;
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
__func__);
status = MTD_ERASE_FAILED;
ret = -EIO;
goto out;
}
/* Submit address of first page to lock */
page = ofs >> chip->page_shift;
chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
/* Call wait ready function */
status = chip->waitfunc(mtd, chip);
/* See if device thinks it succeeded */
if (status & NAND_STATUS_FAIL) {
pr_debug("%s: error status = 0x%08x\n",
__func__, status);
ret = -EIO;
goto out;
}
ret = __nand_unlock(mtd, ofs, len, 0x1);
out:
chip->select_chip(mtd, -1);
nand_release_device(mtd);
return ret;
}
EXPORT_SYMBOL(nand_lock);
/**
* nand_read_page_raw - [INTERN] read raw page data without ecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
chip->read_buf(mtd, buf, mtd->writesize);
if (oob_required)
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/**
* nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* We need a special oob layout and handling even when OOB isn't used.
*/
static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size;
for (steps = chip->ecc.steps; steps > 0; steps--) {
chip->read_buf(mtd, buf, eccsize);
buf += eccsize;
if (chip->ecc.prepad) {
chip->read_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->read_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->read_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size)
chip->read_buf(mtd, oob, size);
return 0;
}
/**
* nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*/
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
unsigned int max_bitflips = 0;
chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @data_offs: offset of requested data within the page
* @readlen: data length
* @bufpoi: buffer to store read data
*/
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
{
int start_step, end_step, num_steps;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *p;
int data_col_addr, i, gaps = 0;
int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
int index = 0;
unsigned int max_bitflips = 0;
/* Column address within the page aligned to ECC size (256bytes) */
start_step = data_offs / chip->ecc.size;
end_step = (data_offs + readlen - 1) / chip->ecc.size;
num_steps = end_step - start_step + 1;
/* Data size aligned to ECC ecc.size */
datafrag_len = num_steps * chip->ecc.size;
eccfrag_len = num_steps * chip->ecc.bytes;
data_col_addr = start_step * chip->ecc.size;
/* If we read not a page aligned data */
if (data_col_addr != 0)
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
p = bufpoi + data_col_addr;
chip->read_buf(mtd, p, datafrag_len);
/* Calculate ECC */
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
/*
* The performance is faster if we position offsets according to
* ecc.pos. Let's make sure that there are no gaps in ECC positions.
*/
for (i = 0; i < eccfrag_len - 1; i++) {
if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
eccpos[i + start_step * chip->ecc.bytes + 1]) {
gaps = 1;
break;
}
}
if (gaps) {
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
} else {
/*
* Send the command to read the particular ECC bytes take care
* about buswidth alignment in read_buf.
*/
index = start_step * chip->ecc.bytes;
aligned_pos = eccpos[index] & ~(busw - 1);
aligned_len = eccfrag_len;
if (eccpos[index] & (busw - 1))
aligned_len++;
if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
aligned_len++;
chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
mtd->writesize + aligned_pos, -1);
chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
}
for (i = 0; i < eccfrag_len; i++)
chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
p = bufpoi + data_col_addr;
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
int stat;
stat = chip->ecc.correct(mtd, p,
&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers which need a special oob layout.
*/
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
unsigned int max_bitflips = 0;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
}
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Hardware ECC for large page chips, require OOB to be read first. For this
* ECC mode, the write_page method is re-used from ECC_HW. These methods
* read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
* multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
* the data area, by overwriting the NAND manufacturer bad block markings.
*/
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *ecc_calc = chip->buffers->ecccalc;
unsigned int max_bitflips = 0;
/* Read the OOB area first */
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
unsigned int max_bitflips = 0;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
if (chip->ecc.prepad) {
chip->read_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
chip->read_buf(mtd, oob, eccbytes);
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
oob += eccbytes;
if (chip->ecc.postpad) {
chip->read_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->read_buf(mtd, oob, i);
return max_bitflips;
}
/**
* nand_transfer_oob - [INTERN] Transfer oob to client buffer
* @chip: nand chip structure
* @oob: oob destination address
* @ops: oob ops structure
* @len: size of oob to transfer
*/
static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
struct mtd_oob_ops *ops, size_t len)
{
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(oob, chip->oob_poi + ops->ooboffs, len);
return oob + len;
case MTD_OPS_AUTO_OOB: {
struct nand_oobfree *free = chip->ecc.layout->oobfree;
uint32_t boffs = 0, roffs = ops->ooboffs;
size_t bytes = 0;
for (; free->length && len; free++, len -= bytes) {
/* Read request not from offset 0? */
if (unlikely(roffs)) {
if (roffs >= free->length) {
roffs -= free->length;
continue;
}
boffs = free->offset + roffs;
bytes = min_t(size_t, len,
(free->length - roffs));
roffs = 0;
} else {
bytes = min_t(size_t, len, free->length);
boffs = free->offset;
}
memcpy(oob, chip->oob_poi + boffs, bytes);
oob += bytes;
}
return oob;
}
default:
BUG();
}
return NULL;
}
/**
* nand_do_read_ops - [INTERN] Read data with ECC
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob ops structure
*
* Internal function. Called with chip held.
*/
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int chipnr, page, realpage, col, bytes, aligned, oob_required;
struct nand_chip *chip = mtd->priv;
struct mtd_ecc_stats stats;
int ret = 0;
uint32_t readlen = ops->len;
uint32_t oobreadlen = ops->ooblen;
uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
mtd->oobavail : mtd->oobsize;
uint8_t *bufpoi, *oob, *buf;
unsigned int max_bitflips = 0;
stats = mtd->ecc_stats;
chipnr = (int)(from >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
col = (int)(from & (mtd->writesize - 1));
buf = ops->datbuf;
oob = ops->oobbuf;
oob_required = oob ? 1 : 0;
while (1) {
bytes = min(mtd->writesize - col, readlen);
aligned = (bytes == mtd->writesize);
/* Is the current page in the buffer? */
if (realpage != chip->pagebuf || oob) {
bufpoi = aligned ? buf : chip->buffers->databuf;
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
/*
* Now read the page into the buffer. Absent an error,
* the read methods return max bitflips per ecc step.
*/
if (unlikely(ops->mode == MTD_OPS_RAW))
ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
oob_required,
page);
else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
!oob)
ret = chip->ecc.read_subpage(mtd, chip,
col, bytes, bufpoi);
else
ret = chip->ecc.read_page(mtd, chip, bufpoi,
oob_required, page);
if (ret < 0) {
if (!aligned)
/* Invalidate page cache */
chip->pagebuf = -1;
break;
}
max_bitflips = max_t(unsigned int, max_bitflips, ret);
/* Transfer not aligned data */
if (!aligned) {
if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
!(mtd->ecc_stats.failed - stats.failed) &&
(ops->mode != MTD_OPS_RAW)) {
chip->pagebuf = realpage;
chip->pagebuf_bitflips = ret;
} else {
/* Invalidate page cache */
chip->pagebuf = -1;
}
memcpy(buf, chip->buffers->databuf + col, bytes);
}
buf += bytes;
if (unlikely(oob)) {
int toread = min(oobreadlen, max_oobsize);
if (toread) {
oob = nand_transfer_oob(chip,
oob, ops, toread);
oobreadlen -= toread;
}
}
} else {
memcpy(buf, chip->buffers->databuf + col, bytes);
buf += bytes;
max_bitflips = max_t(unsigned int, max_bitflips,
chip->pagebuf_bitflips);
}
readlen -= bytes;
if (!readlen)
break;
/* For subsequent reads align to page boundary */
col = 0;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
chip->select_chip(mtd, -1);
ops->retlen = ops->len - (size_t) readlen;
if (oob)
ops->oobretlen = ops->ooblen - oobreadlen;
if (ret < 0)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return max_bitflips;
}
/**
* nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
*
* Get hold of the chip and call nand_do_read.
*/
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, uint8_t *buf)
{
struct mtd_oob_ops ops;
int ret;
nand_get_device(mtd, FL_READING);
ops.len = len;
ops.datbuf = buf;
ops.oobbuf = NULL;
ops.mode = MTD_OPS_PLACE_OOB;
ret = nand_do_read_ops(mtd, from, &ops);
*retlen = ops.retlen;
nand_release_device(mtd);
return ret;
}
/**
* nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
*/
static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/**
* nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
* with syndromes
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
*/
static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
uint8_t *buf = chip->oob_poi;
int length = mtd->oobsize;
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size;
uint8_t *bufpoi = buf;
int i, toread, sndrnd = 0, pos;
chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
for (i = 0; i < chip->ecc.steps; i++) {
if (sndrnd) {
pos = eccsize + i * (eccsize + chunk);
if (mtd->writesize > 512)
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
else
chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
} else
sndrnd = 1;
toread = min_t(int, length, chunk);
chip->read_buf(mtd, bufpoi, toread);
bufpoi += toread;
length -= toread;
}
if (length > 0)
chip->read_buf(mtd, bufpoi, length);
return 0;
}
/**
* nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to write
*/
static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int status = 0;
const uint8_t *buf = chip->oob_poi;
int length = mtd->oobsize;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
chip->write_buf(mtd, buf, length);
/* Send command to program the OOB data */
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/**
* nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
* with syndrome - only for large page flash
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to write
*/
static int nand_write_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size, length = mtd->oobsize;
int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
const uint8_t *bufpoi = chip->oob_poi;
/*
* data-ecc-data-ecc ... ecc-oob
* or
* data-pad-ecc-pad-data-pad .... ecc-pad-oob
*/
if (!chip->ecc.prepad && !chip->ecc.postpad) {
pos = steps * (eccsize + chunk);
steps = 0;
} else
pos = eccsize;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
for (i = 0; i < steps; i++) {
if (sndcmd) {
if (mtd->writesize <= 512) {
uint32_t fill = 0xFFFFFFFF;
len = eccsize;
while (len > 0) {
int num = min_t(int, len, 4);
chip->write_buf(mtd, (uint8_t *)&fill,
num);
len -= num;
}
} else {
pos = eccsize + i * (eccsize + chunk);
chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
}
} else
sndcmd = 1;
len = min_t(int, length, chunk);
chip->write_buf(mtd, bufpoi, len);
bufpoi += len;
length -= len;
}
if (length > 0)
chip->write_buf(mtd, bufpoi, length);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/**
* nand_do_read_oob - [INTERN] NAND read out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operations description structure
*
* NAND read out-of-band data from the spare area.
*/
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int page, realpage, chipnr;
struct nand_chip *chip = mtd->priv;
struct mtd_ecc_stats stats;
int readlen = ops->ooblen;
int len;
uint8_t *buf = ops->oobbuf;
int ret = 0;
pr_debug("%s: from = 0x%08Lx, len = %i\n",
__func__, (unsigned long long)from, readlen);
stats = mtd->ecc_stats;
if (ops->mode == MTD_OPS_AUTO_OOB)
len = chip->ecc.layout->oobavail;
else
len = mtd->oobsize;
if (unlikely(ops->ooboffs >= len)) {
pr_debug("%s: attempt to start read outside oob\n",
__func__);
return -EINVAL;
}
/* Do not allow reads past end of device */
if (unlikely(from >= mtd->size ||
ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
(from >> chip->page_shift)) * len)) {
pr_debug("%s: attempt to read beyond end of device\n",
__func__);
return -EINVAL;
}
chipnr = (int)(from >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
/* Shift to get page */
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
while (1) {
if (ops->mode == MTD_OPS_RAW)
ret = chip->ecc.read_oob_raw(mtd, chip, page);
else
ret = chip->ecc.read_oob(mtd, chip, page);
if (ret < 0)
break;
len = min(len, readlen);
buf = nand_transfer_oob(chip, buf, ops, len);
readlen -= len;
if (!readlen)
break;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
chip->select_chip(mtd, -1);
ops->oobretlen = ops->ooblen - readlen;
if (ret < 0)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
}
/**
* nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operation description structure
*
* NAND read data and/or out-of-band data.
*/
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int ret = -ENOTSUPP;
ops->retlen = 0;
/* Do not allow reads past end of device */
if (ops->datbuf && (from + ops->len) > mtd->size) {
pr_debug("%s: attempt to read beyond end of device\n",
__func__);
return -EINVAL;
}
nand_get_device(mtd, FL_READING);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_AUTO_OOB:
case MTD_OPS_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_read_oob(mtd, from, ops);
else
ret = nand_do_read_ops(mtd, from, ops);
out:
nand_release_device(mtd);
return ret;
}
/**
* nand_write_page_raw - [INTERN] raw page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
chip->write_buf(mtd, buf, mtd->writesize);
if (oob_required)
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/**
* nand_write_page_raw_syndrome - [INTERN] raw page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* We need a special oob layout and handling even when ECC isn't checked.
*/
static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size;
for (steps = chip->ecc.steps; steps > 0; steps--) {
chip->write_buf(mtd, buf, eccsize);
buf += eccsize;
if (chip->ecc.prepad) {
chip->write_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->read_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->write_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size)
chip->write_buf(mtd, oob, size);
return 0;
}
/**
* nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->buffers->ecccalc;
const uint8_t *p = buf;
uint32_t *eccpos = chip->ecc.layout->eccpos;
/* Software ECC calculation */
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
return chip->ecc.write_page_raw(mtd, chip, buf, 1);
}
/**
* nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->buffers->ecccalc;
const uint8_t *p = buf;
uint32_t *eccpos = chip->ecc.layout->eccpos;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
chip->write_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
}
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/**
* nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static int nand_write_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
const uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
chip->write_buf(mtd, p, eccsize);
if (chip->ecc.prepad) {
chip->write_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->ecc.calculate(mtd, p, oob);
chip->write_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->write_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->write_buf(mtd, oob, i);
return 0;
}
/**
* nand_write_page - [REPLACEABLE] write one page
* @mtd: MTD device structure
* @chip: NAND chip descriptor
* @buf: the data to write
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
* @cached: cached programming
* @raw: use _raw version of write_page
*/
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page,
int cached, int raw)
{
int status;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
if (unlikely(raw))
status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
else
status = chip->ecc.write_page(mtd, chip, buf, oob_required);
if (status < 0)
return status;
/*
* Cached progamming disabled for now. Not sure if it's worth the
* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
*/
cached = 0;
if (!cached || !(chip->options & NAND_CACHEPRG)) {
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
/*
* See if operation failed and additional status checks are
* available.
*/
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_WRITING, status,
page);
if (status & NAND_STATUS_FAIL)
return -EIO;
} else {
chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
}
return 0;
}
/**
* nand_fill_oob - [INTERN] Transfer client buffer to oob
* @mtd: MTD device structure
* @oob: oob data buffer
* @len: oob data write length
* @ops: oob ops structure
*/
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd->priv;
/*
* Initialise to all 0xFF, to avoid the possibility of left over OOB
* data from a previous OOB read.
*/
memset(chip->oob_poi, 0xff, mtd->oobsize);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(chip->oob_poi + ops->ooboffs, oob, len);
return oob + len;
case MTD_OPS_AUTO_OOB: {
struct nand_oobfree *free = chip->ecc.layout->oobfree;
uint32_t boffs = 0, woffs = ops->ooboffs;
size_t bytes = 0;
for (; free->length && len; free++, len -= bytes) {
/* Write request not from offset 0? */
if (unlikely(woffs)) {
if (woffs >= free->length) {
woffs -= free->length;
continue;
}
boffs = free->offset + woffs;
bytes = min_t(size_t, len,
(free->length - woffs));
woffs = 0;
} else {
bytes = min_t(size_t, len, free->length);
boffs = free->offset;
}
memcpy(chip->oob_poi + boffs, oob, bytes);
oob += bytes;
}
return oob;
}
default:
BUG();
}
return NULL;
}
#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
/**
* nand_do_write_ops - [INTERN] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operations description structure
*
* NAND write with ECC.
*/
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int chipnr, realpage, page, blockmask, column;
struct nand_chip *chip = mtd->priv;
uint32_t writelen = ops->len;
uint32_t oobwritelen = ops->ooblen;
uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
mtd->oobavail : mtd->oobsize;
uint8_t *oob = ops->oobbuf;
uint8_t *buf = ops->datbuf;
int ret, subpage;
int oob_required = oob ? 1 : 0;
ops->retlen = 0;
if (!writelen)
return 0;
/* Reject writes, which are not page aligned */
if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
pr_notice("%s: attempt to write non page aligned data\n",
__func__);
return -EINVAL;
}
column = to & (mtd->writesize - 1);
subpage = column || (writelen & (mtd->writesize - 1));
if (subpage && oob)
return -EINVAL;
chipnr = (int)(to >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
ret = -EIO;
goto err_out;
}
realpage = (int)(to >> chip->page_shift);
page = realpage & chip->pagemask;
blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
/* Invalidate the page cache, when we write to the cached page */
if (to <= (chip->pagebuf << chip->page_shift) &&
(chip->pagebuf << chip->page_shift) < (to + ops->len))
chip->pagebuf = -1;
/* Don't allow multipage oob writes with offset */
if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
ret = -EINVAL;
goto err_out;
}
while (1) {
int bytes = mtd->writesize;
int cached = writelen > bytes && page != blockmask;
uint8_t *wbuf = buf;
/* Partial page write? */
if (unlikely(column || writelen < (mtd->writesize - 1))) {
cached = 0;
bytes = min_t(int, bytes - column, (int) writelen);
chip->pagebuf = -1;
memset(chip->buffers->databuf, 0xff, mtd->writesize);
memcpy(&chip->buffers->databuf[column], buf, bytes);
wbuf = chip->buffers->databuf;
}
if (unlikely(oob)) {
size_t len = min(oobwritelen, oobmaxlen);
oob = nand_fill_oob(mtd, oob, len, ops);
oobwritelen -= len;
} else {
/* We still need to erase leftover OOB data */
memset(chip->oob_poi, 0xff, mtd->oobsize);
}
ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
cached, (ops->mode == MTD_OPS_RAW));
if (ret)
break;
writelen -= bytes;
if (!writelen)
break;
column = 0;
buf += bytes;
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
ops->retlen = ops->len - writelen;
if (unlikely(oob))
ops->oobretlen = ops->ooblen;
err_out:
chip->select_chip(mtd, -1);
return ret;
}
/**
* panic_nand_write - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* NAND write with ECC. Used when performing writes in interrupt context, this
* may for example be called by mtdoops when writing an oops while in panic.
*/
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf)
{
struct nand_chip *chip = mtd->priv;
struct mtd_oob_ops ops;
int ret;
/* Wait for the device to get ready */
panic_nand_wait(mtd, chip, 400);
/* Grab the device */
panic_nand_get_device(chip, mtd, FL_WRITING);
ops.len = len;
ops.datbuf = (uint8_t *)buf;
ops.oobbuf = NULL;
ops.mode = MTD_OPS_PLACE_OOB;
ret = nand_do_write_ops(mtd, to, &ops);
*retlen = ops.retlen;
return ret;
}
/**
* nand_write - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* NAND write with ECC.
*/
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf)
{
struct mtd_oob_ops ops;
int ret;
nand_get_device(mtd, FL_WRITING);
ops.len = len;
ops.datbuf = (uint8_t *)buf;
ops.oobbuf = NULL;
ops.mode = MTD_OPS_PLACE_OOB;
ret = nand_do_write_ops(mtd, to, &ops);
*retlen = ops.retlen;
nand_release_device(mtd);
return ret;
}
/**
* nand_do_write_oob - [MTD Interface] NAND write out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*
* NAND write out-of-band.
*/
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int chipnr, page, status, len;
struct nand_chip *chip = mtd->priv;
pr_debug("%s: to = 0x%08x, len = %i\n",
__func__, (unsigned int)to, (int)ops->ooblen);
if (ops->mode == MTD_OPS_AUTO_OOB)
len = chip->ecc.layout->oobavail;
else
len = mtd->oobsize;
/* Do not allow write past end of page */
if ((ops->ooboffs + ops->ooblen) > len) {
pr_debug("%s: attempt to write past end of page\n",
__func__);
return -EINVAL;
}
if (unlikely(ops->ooboffs >= len)) {
pr_debug("%s: attempt to start write outside oob\n",
__func__);
return -EINVAL;
}
/* Do not allow write past end of device */
if (unlikely(to >= mtd->size ||
ops->ooboffs + ops->ooblen >
((mtd->size >> chip->page_shift) -
(to >> chip->page_shift)) * len)) {
pr_debug("%s: attempt to write beyond end of device\n",
__func__);
return -EINVAL;
}
chipnr = (int)(to >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
/* Shift to get page */
page = (int)(to >> chip->page_shift);
/*
* Reset the chip. Some chips (like the Toshiba TC5832DC found in one
* of my DiskOnChip 2000 test units) will clear the whole data page too
* if we don't do this. I have no clue why, but I seem to have 'fixed'
* it in the doc2000 driver in August 1999. dwmw2.
*/
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
chip->select_chip(mtd, -1);
return -EROFS;
}
/* Invalidate the page cache, if we write to the cached page */
if (page == chip->pagebuf)
chip->pagebuf = -1;
nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
if (ops->mode == MTD_OPS_RAW)
status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
else
status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
chip->select_chip(mtd, -1);
if (status)
return status;
ops->oobretlen = ops->ooblen;
return 0;
}
/**
* nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*/
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int ret = -ENOTSUPP;
ops->retlen = 0;
/* Do not allow writes past end of device */
if (ops->datbuf && (to + ops->len) > mtd->size) {
pr_debug("%s: attempt to write beyond end of device\n",
__func__);
return -EINVAL;
}
nand_get_device(mtd, FL_WRITING);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_AUTO_OOB:
case MTD_OPS_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_write_oob(mtd, to, ops);
else
ret = nand_do_write_ops(mtd, to, ops);
out:
nand_release_device(mtd);
return ret;
}
/**
* single_erase_cmd - [GENERIC] NAND standard block erase command function
* @mtd: MTD device structure
* @page: the page address of the block which will be erased
*
* Standard erase command for NAND chips.
*/
static void single_erase_cmd(struct mtd_info *mtd, int page)
{
struct nand_chip *chip = mtd->priv;
/* Send commands to erase a block */
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
}
/**
* multi_erase_cmd - [GENERIC] AND specific block erase command function
* @mtd: MTD device structure
* @page: the page address of the block which will be erased
*
* AND multi block erase command function. Erase 4 consecutive blocks.
*/
static void multi_erase_cmd(struct mtd_info *mtd, int page)
{
struct nand_chip *chip = mtd->priv;
/* Send commands to erase a block */
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
}
/**
* nand_erase - [MTD Interface] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
*
* Erase one ore more blocks.
*/
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
return nand_erase_nand(mtd, instr, 0);
}
#define BBT_PAGE_MASK 0xffffff3f
/**
* nand_erase_nand - [INTERN] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
* @allowbbt: allow erasing the bbt area
*
* Erase one ore more blocks.
*/
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
int allowbbt)
{
int page, status, pages_per_block, ret, chipnr;
struct nand_chip *chip = mtd->priv;
loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
unsigned int bbt_masked_page = 0xffffffff;
loff_t len;
pr_debug("%s: start = 0x%012llx, len = %llu\n",
__func__, (unsigned long long)instr->addr,
(unsigned long long)instr->len);
if (check_offs_len(mtd, instr->addr, instr->len))
return -EINVAL;
/* Grab the lock and see if the device is available */
nand_get_device(mtd, FL_ERASING);
/* Shift to get first page */
page = (int)(instr->addr >> chip->page_shift);
chipnr = (int)(instr->addr >> chip->chip_shift);
/* Calculate pages in each block */
pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
/* Select the NAND device */
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
__func__);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/*
* If BBT requires refresh, set the BBT page mask to see if the BBT
* should be rewritten. Otherwise the mask is set to 0xffffffff which
* can not be matched. This is also done when the bbt is actually
* erased to avoid recursive updates.
*/
if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
/* Loop through the pages */
len = instr->len;
instr->state = MTD_ERASING;
while (len) {
/* Check if we have a bad block, we do not erase bad blocks! */
if (nand_block_checkbad(mtd, ((loff_t) page) <<
chip->page_shift, 0, allowbbt)) {
pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
__func__, page);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/*
* Invalidate the page cache, if we erase the block which
* contains the current cached page.
*/
if (page <= chip->pagebuf && chip->pagebuf <
(page + pages_per_block))
chip->pagebuf = -1;
chip->erase_cmd(mtd, page & chip->pagemask);
status = chip->waitfunc(mtd, chip);
/*
* See if operation failed and additional status checks are
* available
*/
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_ERASING,
status, page);
/* See if block erase succeeded */
if (status & NAND_STATUS_FAIL) {
pr_debug("%s: failed erase, page 0x%08x\n",
__func__, page);
instr->state = MTD_ERASE_FAILED;
instr->fail_addr =
((loff_t)page << chip->page_shift);
goto erase_exit;
}
/*
* If BBT requires refresh, set the BBT rewrite flag to the
* page being erased.
*/
if (bbt_masked_page != 0xffffffff &&
(page & BBT_PAGE_MASK) == bbt_masked_page)
rewrite_bbt[chipnr] =
((loff_t)page << chip->page_shift);
/* Increment page address and decrement length */
len -= (1 << chip->phys_erase_shift);
page += pages_per_block;
/* Check, if we cross a chip boundary */
if (len && !(page & chip->pagemask)) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
/*
* If BBT requires refresh and BBT-PERCHIP, set the BBT
* page mask to see if this BBT should be rewritten.
*/
if (bbt_masked_page != 0xffffffff &&
(chip->bbt_td->options & NAND_BBT_PERCHIP))
bbt_masked_page = chip->bbt_td->pages[chipnr] &
BBT_PAGE_MASK;
}
}
instr->state = MTD_ERASE_DONE;
erase_exit:
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
/* Deselect and wake up anyone waiting on the device */
chip->select_chip(mtd, -1);
nand_release_device(mtd);
/* Do call back function */
if (!ret)
mtd_erase_callback(instr);
/*
* If BBT requires refresh and erase was successful, rewrite any
* selected bad block tables.
*/
if (bbt_masked_page == 0xffffffff || ret)
return ret;
for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
if (!rewrite_bbt[chipnr])
continue;
/* Update the BBT for chip */
pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
__func__, chipnr, rewrite_bbt[chipnr],
chip->bbt_td->pages[chipnr]);
nand_update_bbt(mtd, rewrite_bbt[chipnr]);
}
/* Return more or less happy */
return ret;
}
/**
* nand_sync - [MTD Interface] sync
* @mtd: MTD device structure
*
* Sync is actually a wait for chip ready function.
*/
static void nand_sync(struct mtd_info *mtd)
{
pr_debug("%s: called\n", __func__);
/* Grab the lock and see if the device is available */
nand_get_device(mtd, FL_SYNCING);
/* Release it and go back */
nand_release_device(mtd);
}
/**
* nand_block_isbad - [MTD Interface] Check if block at offset is bad
* @mtd: MTD device structure
* @offs: offset relative to mtd start
*/
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
{
return nand_block_checkbad(mtd, offs, 1, 0);
}
/**
* nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
*/
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd->priv;
int ret;
ret = nand_block_isbad(mtd, ofs);
if (ret) {
/* If it was bad already, return success and do nothing */
if (ret > 0)
return 0;
return ret;
}
return chip->block_markbad(mtd, ofs);
}
/**
* nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
* @subfeature_param: the subfeature parameters, a four bytes array.
*/
static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
int addr, uint8_t *subfeature_param)
{
int status;
if (!chip->onfi_version)
return -EINVAL;
chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
status = chip->waitfunc(mtd, chip);
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
/**
* nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
* @subfeature_param: the subfeature parameters, a four bytes array.
*/
static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
int addr, uint8_t *subfeature_param)
{
if (!chip->onfi_version)
return -EINVAL;
/* clear the sub feature parameters */
memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
return 0;
}
/**
* nand_suspend - [MTD Interface] Suspend the NAND flash
* @mtd: MTD device structure
*/
static int nand_suspend(struct mtd_info *mtd)
{
return nand_get_device(mtd, FL_PM_SUSPENDED);
}
/**
* nand_resume - [MTD Interface] Resume the NAND flash
* @mtd: MTD device structure
*/
static void nand_resume(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
if (chip->state == FL_PM_SUSPENDED)
nand_release_device(mtd);
else
pr_err("%s called for a chip which is not in suspended state\n",
__func__);
}
/* Set default functions */
static void nand_set_defaults(struct nand_chip *chip, int busw)
{
/* check for proper chip_delay setup, set 20us if not */
if (!chip->chip_delay)
chip->chip_delay = 20;
/* check, if a user supplied command function given */
if (chip->cmdfunc == NULL)
chip->cmdfunc = nand_command;
/* check, if a user supplied wait function given */
if (chip->waitfunc == NULL)
chip->waitfunc = nand_wait;
if (!chip->select_chip)
chip->select_chip = nand_select_chip;
if (!chip->read_byte)
chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
if (!chip->read_word)
chip->read_word = nand_read_word;
if (!chip->block_bad)
chip->block_bad = nand_block_bad;
if (!chip->block_markbad)
chip->block_markbad = nand_default_block_markbad;
if (!chip->write_buf)
chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
if (!chip->read_buf)
chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
if (!chip->scan_bbt)
chip->scan_bbt = nand_default_bbt;
if (!chip->controller) {
chip->controller = &chip->hwcontrol;
spin_lock_init(&chip->controller->lock);
init_waitqueue_head(&chip->controller->wq);
}
}
/* Sanitize ONFI strings so we can safely print them */
static void sanitize_string(uint8_t *s, size_t len)
{
ssize_t i;
/* Null terminate */
s[len - 1] = 0;
/* Remove non printable chars */
for (i = 0; i < len - 1; i++) {
if (s[i] < ' ' || s[i] > 127)
s[i] = '?';
}
/* Remove trailing spaces */
strim(s);
}
static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
{
int i;
while (len--) {
crc ^= *p++ << 8;
for (i = 0; i < 8; i++)
crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
}
return crc;
}
/*
* Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
*/
static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
int *busw)
{
struct nand_onfi_params *p = &chip->onfi_params;
int i;
int val;
/* ONFI need to be probed in 8 bits mode */
WARN_ON(chip->options & NAND_BUSWIDTH_16);
/* Try ONFI for unknown chip or LP */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
return 0;
chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
for (i = 0; i < 3; i++) {
chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
le16_to_cpu(p->crc)) {
pr_info("ONFI param page %d valid\n", i);
break;
}
}
if (i == 3)
return 0;
/* Check version */
val = le16_to_cpu(p->revision);
if (val & (1 << 5))
chip->onfi_version = 23;
else if (val & (1 << 4))
chip->onfi_version = 22;
else if (val & (1 << 3))
chip->onfi_version = 21;
else if (val & (1 << 2))
chip->onfi_version = 20;
else if (val & (1 << 1))
chip->onfi_version = 10;
else
chip->onfi_version = 0;
if (!chip->onfi_version) {
pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
return 0;
}
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
sanitize_string(p->model, sizeof(p->model));
if (!mtd->name)
mtd->name = p->model;
mtd->writesize = le32_to_cpu(p->byte_per_page);
mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
chip->chipsize = le32_to_cpu(p->blocks_per_lun);
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
*busw = 0;
if (le16_to_cpu(p->features) & 1)
*busw = NAND_BUSWIDTH_16;
pr_info("ONFI flash detected\n");
return 1;
}
/*
* nand_id_has_period - Check if an ID string has a given wraparound period
* @id_data: the ID string
* @arrlen: the length of the @id_data array
* @period: the period of repitition
*
* Check if an ID string is repeated within a given sequence of bytes at
* specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
* period of 2). This is a helper function for nand_id_len(). Returns non-zero
* if the repetition has a period of @period; otherwise, returns zero.
*/
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
int i, j;
for (i = 0; i < period; i++)
for (j = i + period; j < arrlen; j += period)
if (id_data[i] != id_data[j])
return 0;
return 1;
}
/*
* nand_id_len - Get the length of an ID string returned by CMD_READID
* @id_data: the ID string
* @arrlen: the length of the @id_data array
* Returns the length of the ID string, according to known wraparound/trailing
* zero patterns. If no pattern exists, returns the length of the array.
*/
static int nand_id_len(u8 *id_data, int arrlen)
{
int last_nonzero, period;
/* Find last non-zero byte */
for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
if (id_data[last_nonzero])
break;
/* All zeros */
if (last_nonzero < 0)
return 0;
/* Calculate wraparound period */
for (period = 1; period < arrlen; period++)
if (nand_id_has_period(id_data, arrlen, period))
break;
/* There's a repeated pattern */
if (period < arrlen)
return period;
/* There are trailing zeros */
if (last_nonzero < arrlen - 1)
return last_nonzero + 1;
/* No pattern detected */
return arrlen;
}
/*
* Many new NAND share similar device ID codes, which represent the size of the
* chip. The rest of the parameters must be decoded according to generic or
* manufacturer-specific "extended ID" decoding patterns.
*/
static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
u8 id_data[8], int *busw)
{
int extid, id_len;
/* The 3rd id byte holds MLC / multichip data */
chip->cellinfo = id_data[2];
/* The 4th id byte is the important one */
extid = id_data[3];
id_len = nand_id_len(id_data, 8);
/*
* Field definitions are in the following datasheets:
* Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
* New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
* Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
*
* Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
* ID to decide what to do.
*/
if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
id_data[5] != 0x00) {
/* Calc pagesize */
mtd->writesize = 2048 << (extid & 0x03);
extid >>= 2;
/* Calc oobsize */
switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
case 1:
mtd->oobsize = 128;
break;
case 2:
mtd->oobsize = 218;
break;
case 3:
mtd->oobsize = 400;
break;
case 4:
mtd->oobsize = 436;
break;
case 5:
mtd->oobsize = 512;
break;
case 6:
default: /* Other cases are "reserved" (unknown) */
mtd->oobsize = 640;
break;
}
extid >>= 2;
/* Calc blocksize */
mtd->erasesize = (128 * 1024) <<
(((extid >> 1) & 0x04) | (extid & 0x03));
*busw = 0;
} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
unsigned int tmp;
/* Calc pagesize */
mtd->writesize = 2048 << (extid & 0x03);
extid >>= 2;
/* Calc oobsize */
switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
case 0:
mtd->oobsize = 128;
break;
case 1:
mtd->oobsize = 224;
break;
case 2:
mtd->oobsize = 448;
break;
case 3:
mtd->oobsize = 64;
break;
case 4:
mtd->oobsize = 32;
break;
case 5:
mtd->oobsize = 16;
break;
default:
mtd->oobsize = 640;
break;
}
extid >>= 2;
/* Calc blocksize */
tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
if (tmp < 0x03)
mtd->erasesize = (128 * 1024) << tmp;
else if (tmp == 0x03)
mtd->erasesize = 768 * 1024;
else
mtd->erasesize = (64 * 1024) << tmp;
*busw = 0;
} else {
/* Calc pagesize */
mtd->writesize = 1024 << (extid & 0x03);
extid >>= 2;
/* Calc oobsize */
mtd->oobsize = (8 << (extid & 0x01)) *
(mtd->writesize >> 9);
extid >>= 2;
/* Calc blocksize. Blocksize is multiples of 64KiB */
mtd->erasesize = (64 * 1024) << (extid & 0x03);
extid >>= 2;
/* Get buswidth information */
*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
}
}
/*
* Old devices have chip data hardcoded in the device ID table. nand_decode_id
* decodes a matching ID table entry and assigns the MTD size parameters for
* the chip.
*/
static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
struct nand_flash_dev *type, u8 id_data[8],
int *busw)
{
int maf_id = id_data[0];
mtd->erasesize = type->erasesize;
mtd->writesize = type->pagesize;
mtd->oobsize = mtd->writesize / 32;
*busw = type->options & NAND_BUSWIDTH_16;
/*
* Check for Spansion/AMD ID + repeating 5th, 6th byte since
* some Spansion chips have erasesize that conflicts with size
* listed in nand_ids table.
* Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
*/
if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
&& id_data[6] == 0x00 && id_data[7] == 0x00
&& mtd->writesize == 512) {
mtd->erasesize = 128 * 1024;
mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
}
}
/*
* Set the bad block marker/indicator (BBM/BBI) patterns according to some
* heuristic patterns using various detected parameters (e.g., manufacturer,
* page size, cell-type information).
*/
static void nand_decode_bbm_options(struct mtd_info *mtd,
struct nand_chip *chip, u8 id_data[8])
{
int maf_id = id_data[0];
/* Set the bad block position */
if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
else
chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
/*
* Bad block marker is stored in the last page of each block on Samsung
* and Hynix MLC devices; stored in first two pages of each block on
* Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
* AMD/Spansion, and Macronix. All others scan only the first page.
*/
if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
(maf_id == NAND_MFR_SAMSUNG ||
maf_id == NAND_MFR_HYNIX))
chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
(maf_id == NAND_MFR_SAMSUNG ||
maf_id == NAND_MFR_HYNIX ||
maf_id == NAND_MFR_TOSHIBA ||
maf_id == NAND_MFR_AMD ||
maf_id == NAND_MFR_MACRONIX)) ||
(mtd->writesize == 2048 &&
maf_id == NAND_MFR_MICRON))
chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
}
/*
* Get the flash and manufacturer id and lookup if the type is supported.
*/
static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
struct nand_chip *chip,
int busw,
int *maf_id, int *dev_id,
struct nand_flash_dev *type)
{
int i, maf_idx;
u8 id_data[8];
/* Select the device */
chip->select_chip(mtd, 0);
/*
* Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
* after power-up.
*/
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Send the command for reading device ID */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
*maf_id = chip->read_byte(mtd);
*dev_id = chip->read_byte(mtd);
/*
* Try again to make sure, as some systems the bus-hold or other
* interface concerns can cause random data which looks like a
* possibly credible NAND flash to appear. If the two results do
* not match, ignore the device completely.
*/
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read entire ID string */
for (i = 0; i < 8; i++)
id_data[i] = chip->read_byte(mtd);
if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
pr_info("%s: second ID read did not match "
"%02x,%02x against %02x,%02x\n", __func__,
*maf_id, *dev_id, id_data[0], id_data[1]);
return ERR_PTR(-ENODEV);
}
if (!type)
type = nand_flash_ids;
for (; type->name != NULL; type++)
if (*dev_id == type->id)
break;
chip->onfi_version = 0;
if (!type->name || !type->pagesize) {
/* Check is chip is ONFI compliant */
if (nand_flash_detect_onfi(mtd, chip, &busw))
goto ident_done;
}
if (!type->name)
return ERR_PTR(-ENODEV);
if (!mtd->name)
mtd->name = type->name;
chip->chipsize = (uint64_t)type->chipsize << 20;
if (!type->pagesize && chip->init_size) {
/* Set the pagesize, oobsize, erasesize by the driver */
busw = chip->init_size(mtd, chip, id_data);
} else if (!type->pagesize) {
/* Decode parameters from extended ID */
nand_decode_ext_id(mtd, chip, id_data, &busw);
} else {
nand_decode_id(mtd, chip, type, id_data, &busw);
}
/* Get chip options */
chip->options |= type->options;
/*
* Check if chip is not a Samsung device. Do not clear the
* options for chips which do not have an extended id.
*/
if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:
/* Try to identify manufacturer */
for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
if (nand_manuf_ids[maf_idx].id == *maf_id)
break;
}
if (chip->options & NAND_BUSWIDTH_AUTO) {
WARN_ON(chip->options & NAND_BUSWIDTH_16);
chip->options |= busw;
nand_set_defaults(chip, busw);
} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
/*
* Check, if buswidth is correct. Hardware drivers should set
* chip correct!
*/
pr_info("NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
*dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
pr_warn("NAND bus width %d instead %d bit\n",
(chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
busw ? 16 : 8);
return ERR_PTR(-EINVAL);
}
nand_decode_bbm_options(mtd, chip, id_data);
/* Calculate the address shift from the page size */
chip->page_shift = ffs(mtd->writesize) - 1;
/* Convert chipsize to number of pages per chip -1 */
chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
chip->bbt_erase_shift = chip->phys_erase_shift =
ffs(mtd->erasesize) - 1;
if (chip->chipsize & 0xffffffff)
chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
else {
chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
chip->chip_shift += 32 - 1;
}
chip->badblockbits = 8;
/* Check for AND chips with 4 page planes */
if (chip->options & NAND_4PAGE_ARRAY)
chip->erase_cmd = multi_erase_cmd;
else
chip->erase_cmd = single_erase_cmd;
/* Do not replace user supplied command function! */
if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
chip->cmdfunc = nand_command_lp;
pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
" %dMiB, page size: %d, OOB size: %d\n",
*maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
chip->onfi_version ? chip->onfi_params.model : type->name,
(int)(chip->chipsize >> 20), mtd->writesize, mtd->oobsize);
return type;
}
/**
* nand_scan_ident - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
* @maxchips: number of chips to scan for
* @table: alternative NAND ID table
*
* This is the first phase of the normal nand_scan() function. It reads the
* flash ID and sets up MTD fields accordingly.
*
* The mtd->owner field must be set to the module of the caller.
*/
int nand_scan_ident(struct mtd_info *mtd, int maxchips,
struct nand_flash_dev *table)
{
int i, busw, nand_maf_id, nand_dev_id;
struct nand_chip *chip = mtd->priv;
struct nand_flash_dev *type;
/* Get buswidth to select the correct functions */
busw = chip->options & NAND_BUSWIDTH_16;
/* Set the default functions */
nand_set_defaults(chip, busw);
/* Read the flash type */
type = nand_get_flash_type(mtd, chip, busw,
&nand_maf_id, &nand_dev_id, table);
if (IS_ERR(type)) {
if (!(chip->options & NAND_SCAN_SILENT_NODEV))
pr_warn("No NAND device found\n");
chip->select_chip(mtd, -1);
return PTR_ERR(type);
}
chip->select_chip(mtd, -1);
/* Check for a chip array */
for (i = 1; i < maxchips; i++) {
chip->select_chip(mtd, i);
/* See comment in nand_get_flash_type for reset */
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Send the command for reading device ID */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
if (nand_maf_id != chip->read_byte(mtd) ||
nand_dev_id != chip->read_byte(mtd)) {
chip->select_chip(mtd, -1);
break;
}
chip->select_chip(mtd, -1);
}
if (i > 1)
pr_info("%d NAND chips detected\n", i);
/* Store the number of chips and calc total size for mtd */
chip->numchips = i;
mtd->size = i * chip->chipsize;
return 0;
}
EXPORT_SYMBOL(nand_scan_ident);
/**
* nand_scan_tail - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
*
* This is the second phase of the normal nand_scan() function. It fills out
* all the uninitialized function pointers with the defaults and scans for a
* bad block table if appropriate.
*/
int nand_scan_tail(struct mtd_info *mtd)
{
int i;
struct nand_chip *chip = mtd->priv;
/* New bad blocks should be marked in OOB, flash-based BBT, or both */
BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
!(chip->bbt_options & NAND_BBT_USE_FLASH));
if (!(chip->options & NAND_OWN_BUFFERS))
chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
if (!chip->buffers)
return -ENOMEM;
/* Set the internal oob buffer location, just after the page data */
chip->oob_poi = chip->buffers->databuf + mtd->writesize;
/*
* If no default placement scheme is given, select an appropriate one.
*/
if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
switch (mtd->oobsize) {
case 8:
chip->ecc.layout = &nand_oob_8;
break;
case 16:
chip->ecc.layout = &nand_oob_16;
break;
case 64:
chip->ecc.layout = &nand_oob_64;
break;
case 128:
chip->ecc.layout = &nand_oob_128;
break;
default:
pr_warn("No oob scheme defined for oobsize %d\n",
mtd->oobsize);
BUG();
}
}
if (!chip->write_page)
chip->write_page = nand_write_page;
/* set for ONFI nand */
if (!chip->onfi_set_features)
chip->onfi_set_features = nand_onfi_set_features;
if (!chip->onfi_get_features)
chip->onfi_get_features = nand_onfi_get_features;
/*
* Check ECC mode, default to software if 3byte/512byte hardware ECC is
* selected and we have 256 byte pagesize fallback to software ECC
*/
switch (chip->ecc.mode) {
case NAND_ECC_HW_OOB_FIRST:
/* Similar to NAND_ECC_HW, but a separate read_page handle */
if (!chip->ecc.calculate || !chip->ecc.correct ||
!chip->ecc.hwctl) {
pr_warn("No ECC functions supplied; "
"hardware ECC not possible\n");
BUG();
}
if (!chip->ecc.read_page)
chip->ecc.read_page = nand_read_page_hwecc_oob_first;
case NAND_ECC_HW:
/* Use standard hwecc read page function? */
if (!chip->ecc.read_page)
chip->ecc.read_page = nand_read_page_hwecc;
if (!chip->ecc.write_page)
chip->ecc.write_page = nand_write_page_hwecc;
if (!chip->ecc.read_page_raw)
chip->ecc.read_page_raw = nand_read_page_raw;
if (!chip->ecc.write_page_raw)
chip->ecc.write_page_raw = nand_write_page_raw;
if (!chip->ecc.read_oob)
chip->ecc.read_oob = nand_read_oob_std;
if (!chip->ecc.write_oob)
chip->ecc.write_oob = nand_write_oob_std;
case NAND_ECC_HW_SYNDROME:
if ((!chip->ecc.calculate || !chip->ecc.correct ||
!chip->ecc.hwctl) &&
(!chip->ecc.read_page ||
chip->ecc.read_page == nand_read_page_hwecc ||
!chip->ecc.write_page ||
chip->ecc.write_page == nand_write_page_hwecc)) {
pr_warn("No ECC functions supplied; "
"hardware ECC not possible\n");
BUG();
}
/* Use standard syndrome read/write page function? */
if (!chip->ecc.read_page)
chip->ecc.read_page = nand_read_page_syndrome;
if (!chip->ecc.write_page)
chip->ecc.write_page = nand_write_page_syndrome;
if (!chip->ecc.read_page_raw)
chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
if (!chip->ecc.write_page_raw)
chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
if (!chip->ecc.read_oob)
chip->ecc.read_oob = nand_read_oob_syndrome;
if (!chip->ecc.write_oob)
chip->ecc.write_oob = nand_write_oob_syndrome;
if (mtd->writesize >= chip->ecc.size) {
if (!chip->ecc.strength) {
pr_warn("Driver must set ecc.strength when using hardware ECC\n");
BUG();
}
break;
}
pr_warn("%d byte HW ECC not possible on "
"%d byte page size, fallback to SW ECC\n",
chip->ecc.size, mtd->writesize);
chip->ecc.mode = NAND_ECC_SOFT;
case NAND_ECC_SOFT:
chip->ecc.calculate = nand_calculate_ecc;
chip->ecc.correct = nand_correct_data;
chip->ecc.read_page = nand_read_page_swecc;
chip->ecc.read_subpage = nand_read_subpage;
chip->ecc.write_page = nand_write_page_swecc;
chip->ecc.read_page_raw = nand_read_page_raw;
chip->ecc.write_page_raw = nand_write_page_raw;
chip->ecc.read_oob = nand_read_oob_std;
chip->ecc.write_oob = nand_write_oob_std;
if (!chip->ecc.size)
chip->ecc.size = 256;
chip->ecc.bytes = 3;
chip->ecc.strength = 1;
break;
case NAND_ECC_SOFT_BCH:
if (!mtd_nand_has_bch()) {
pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
BUG();
}
chip->ecc.calculate = nand_bch_calculate_ecc;
chip->ecc.correct = nand_bch_correct_data;
chip->ecc.read_page = nand_read_page_swecc;
chip->ecc.read_subpage = nand_read_subpage;
chip->ecc.write_page = nand_write_page_swecc;
chip->ecc.read_page_raw = nand_read_page_raw;
chip->ecc.write_page_raw = nand_write_page_raw;
chip->ecc.read_oob = nand_read_oob_std;
chip->ecc.write_oob = nand_write_oob_std;
/*
* Board driver should supply ecc.size and ecc.bytes values to
* select how many bits are correctable; see nand_bch_init()
* for details. Otherwise, default to 4 bits for large page
* devices.
*/
if (!chip->ecc.size && (mtd->oobsize >= 64)) {
chip->ecc.size = 512;
chip->ecc.bytes = 7;
}
chip->ecc.priv = nand_bch_init(mtd,
chip->ecc.size,
chip->ecc.bytes,
&chip->ecc.layout);
if (!chip->ecc.priv) {
pr_warn("BCH ECC initialization failed!\n");
BUG();
}
chip->ecc.strength =
chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
break;
case NAND_ECC_NONE:
pr_warn("NAND_ECC_NONE selected by board driver. "
"This is not recommended!\n");
chip->ecc.read_page = nand_read_page_raw;
chip->ecc.write_page = nand_write_page_raw;
chip->ecc.read_oob = nand_read_oob_std;
chip->ecc.read_page_raw = nand_read_page_raw;
chip->ecc.write_page_raw = nand_write_page_raw;
chip->ecc.write_oob = nand_write_oob_std;
chip->ecc.size = mtd->writesize;
chip->ecc.bytes = 0;
chip->ecc.strength = 0;
break;
default:
pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
BUG();
}
/* For many systems, the standard OOB write also works for raw */
if (!chip->ecc.read_oob_raw)
chip->ecc.read_oob_raw = chip->ecc.read_oob;
if (!chip->ecc.write_oob_raw)
chip->ecc.write_oob_raw = chip->ecc.write_oob;
/*
* The number of bytes available for a client to place data into
* the out of band area.
*/
chip->ecc.layout->oobavail = 0;
for (i = 0; chip->ecc.layout->oobfree[i].length
&& i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
chip->ecc.layout->oobavail +=
chip->ecc.layout->oobfree[i].length;
mtd->oobavail = chip->ecc.layout->oobavail;
/*
* Set the number of read / write steps for one page depending on ECC
* mode.
*/
chip->ecc.steps = mtd->writesize / chip->ecc.size;
if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
pr_warn("Invalid ECC parameters\n");
BUG();
}
chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
!(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
switch (chip->ecc.steps) {
case 2:
mtd->subpage_sft = 1;
break;
case 4:
case 8:
case 16:
mtd->subpage_sft = 2;
break;
}
}
chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
/* Initialize state */
chip->state = FL_READY;
/* Invalidate the pagebuffer reference */
chip->pagebuf = -1;
/* Large page NAND with SOFT_ECC should support subpage reads */
if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
chip->options |= NAND_SUBPAGE_READ;
/* Fill in remaining MTD driver data */
mtd->type = MTD_NANDFLASH;
mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
MTD_CAP_NANDFLASH;
mtd->_erase = nand_erase;
mtd->_point = NULL;
mtd->_unpoint = NULL;
mtd->_read = nand_read;
mtd->_write = nand_write;
mtd->_panic_write = panic_nand_write;
mtd->_read_oob = nand_read_oob;
mtd->_write_oob = nand_write_oob;
mtd->_sync = nand_sync;
mtd->_lock = NULL;
mtd->_unlock = NULL;
mtd->_suspend = nand_suspend;
mtd->_resume = nand_resume;
mtd->_block_isbad = nand_block_isbad;
mtd->_block_markbad = nand_block_markbad;
mtd->writebufsize = mtd->writesize;
/* propagate ecc info to mtd_info */
mtd->ecclayout = chip->ecc.layout;
mtd->ecc_strength = chip->ecc.strength;
/*
* Initialize bitflip_threshold to its default prior scan_bbt() call.
* scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
* properly set.
*/
if (!mtd->bitflip_threshold)
mtd->bitflip_threshold = mtd->ecc_strength;
/* Check, if we should skip the bad block table scan */
if (chip->options & NAND_SKIP_BBTSCAN)
return 0;
/* Build bad block table */
return chip->scan_bbt(mtd);
}
EXPORT_SYMBOL(nand_scan_tail);
/*
* is_module_text_address() isn't exported, and it's mostly a pointless
* test if this is a module _anyway_ -- they'd have to try _really_ hard
* to call us from in-kernel code if the core NAND support is modular.
*/
#ifdef MODULE
#define caller_is_module() (1)
#else
#define caller_is_module() \
is_module_text_address((unsigned long)__builtin_return_address(0))
#endif
/**
* nand_scan - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
* @maxchips: number of chips to scan for
*
* This fills out all the uninitialized function pointers with the defaults.
* The flash ID is read and the mtd/chip structures are filled with the
* appropriate values. The mtd->owner field must be set to the module of the
* caller.
*/
int nand_scan(struct mtd_info *mtd, int maxchips)
{
int ret;
/* Many callers got this wrong, so check for it for a while... */
if (!mtd->owner && caller_is_module()) {
pr_crit("%s called with NULL mtd->owner!\n", __func__);
BUG();
}
ret = nand_scan_ident(mtd, maxchips, NULL);
if (!ret)
ret = nand_scan_tail(mtd);
return ret;
}
EXPORT_SYMBOL(nand_scan);
/**
* nand_release - [NAND Interface] Free resources held by the NAND device
* @mtd: MTD device structure
*/
void nand_release(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
mtd_device_unregister(mtd);
/* Free bad block table memory */
kfree(chip->bbt);
if (!(chip->options & NAND_OWN_BUFFERS))
kfree(chip->buffers);
/* Free bad block descriptor memory */
if (chip->badblock_pattern && chip->badblock_pattern->options
& NAND_BBT_DYNAMICSTRUCT)
kfree(chip->badblock_pattern);
}
EXPORT_SYMBOL_GPL(nand_release);
static int __init nand_base_init(void)
{
led_trigger_register_simple("nand-disk", &nand_led_trigger);
return 0;
}
static void __exit nand_base_exit(void)
{
led_trigger_unregister_simple(nand_led_trigger);
}
module_init(nand_base_init);
module_exit(nand_base_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION("Generic NAND flash driver code");
|