1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
|
/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <asm/mach/flash.h>
#include <linux/platform_data/mtd-mxc_nand.h>
#define DRIVER_NAME "mxc_nand"
/* Addresses for NFC registers */
#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
#define NFC_V1_V2_CONFIG (host->regs + 0x0a)
#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
#define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
#define NFC_V1_V2_WRPROT (host->regs + 0x12)
#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
#define NFC_V1_V2_CONFIG1_BIG (1 << 5)
#define NFC_V1_V2_CONFIG1_RST (1 << 6)
#define NFC_V1_V2_CONFIG1_CE (1 << 7)
#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
#define NFC_V2_CONFIG1_FP_INT (1 << 11)
#define NFC_V1_V2_CONFIG2_INT (1 << 15)
/*
* Operation modes for the NFC. Valid for v1, v2 and v3
* type controllers.
*/
#define NFC_CMD (1 << 0)
#define NFC_ADDR (1 << 1)
#define NFC_INPUT (1 << 2)
#define NFC_OUTPUT (1 << 3)
#define NFC_ID (1 << 4)
#define NFC_STATUS (1 << 5)
#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
#define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
#define NFC_V3_CONFIG1_SP_EN (1 << 0)
#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
#define NFC_V3_LAUNCH (host->regs_axi + 0x40)
#define NFC_V3_WRPROT (host->regs_ip + 0x0)
#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
#define NFC_V3_WRPROT_LOCK (1 << 1)
#define NFC_V3_WRPROT_UNLOCK (1 << 2)
#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
#define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
#define NFC_V3_CONFIG2_PS_512 (0 << 0)
#define NFC_V3_CONFIG2_PS_2048 (1 << 0)
#define NFC_V3_CONFIG2_PS_4096 (2 << 0)
#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
#define NFC_V3_CONFIG2_ECC_EN (1 << 3)
#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
#define NFC_V3_CONFIG2_INT_MSK (1 << 15)
#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
#define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
#define NFC_V3_CONFIG3_FW8 (1 << 3)
#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
#define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
#define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
#define NFC_V3_IPC (host->regs_ip + 0x2C)
#define NFC_V3_IPC_CREQ (1 << 0)
#define NFC_V3_IPC_INT (1 << 31)
#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
struct mxc_nand_host;
struct mxc_nand_devtype_data {
void (*preset)(struct mtd_info *);
void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
void (*send_page)(struct mtd_info *, unsigned int);
void (*send_read_id)(struct mxc_nand_host *);
uint16_t (*get_dev_status)(struct mxc_nand_host *);
int (*check_int)(struct mxc_nand_host *);
void (*irq_control)(struct mxc_nand_host *, int);
u32 (*get_ecc_status)(struct mxc_nand_host *);
const struct mtd_ooblayout_ops *ooblayout;
void (*select_chip)(struct mtd_info *mtd, int chip);
int (*correct_data)(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc);
int (*setup_data_interface)(struct mtd_info *mtd,
const struct nand_data_interface *conf,
bool check_only);
/*
* On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
* (CONFIG1:INT_MSK is set). To handle this the driver uses
* enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
*/
int irqpending_quirk;
int needs_ip;
size_t regs_offset;
size_t spare0_offset;
size_t axi_offset;
int spare_len;
int eccbytes;
int eccsize;
int ppb_shift;
};
struct mxc_nand_host {
struct nand_chip nand;
struct device *dev;
void __iomem *spare0;
void __iomem *main_area0;
void __iomem *base;
void __iomem *regs;
void __iomem *regs_axi;
void __iomem *regs_ip;
int status_request;
struct clk *clk;
int clk_act;
int irq;
int eccsize;
int used_oobsize;
int active_cs;
struct completion op_completion;
uint8_t *data_buf;
unsigned int buf_start;
const struct mxc_nand_devtype_data *devtype_data;
struct mxc_nand_platform_data pdata;
};
static const char * const part_probes[] = {
"cmdlinepart", "RedBoot", "ofpart", NULL };
static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
{
int i;
u32 *t = trg;
const __iomem u32 *s = src;
for (i = 0; i < (size >> 2); i++)
*t++ = __raw_readl(s++);
}
static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
{
int i;
u16 *t = trg;
const __iomem u16 *s = src;
/* We assume that src (IO) is always 32bit aligned */
if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
memcpy32_fromio(trg, src, size);
return;
}
for (i = 0; i < (size >> 1); i++)
*t++ = __raw_readw(s++);
}
static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
{
/* __iowrite32_copy use 32bit size values so divide by 4 */
__iowrite32_copy(trg, src, size / 4);
}
static void memcpy16_toio(void __iomem *trg, const void *src, int size)
{
int i;
__iomem u16 *t = trg;
const u16 *s = src;
/* We assume that trg (IO) is always 32bit aligned */
if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
memcpy32_toio(trg, src, size);
return;
}
for (i = 0; i < (size >> 1); i++)
__raw_writew(*s++, t++);
}
static int check_int_v3(struct mxc_nand_host *host)
{
uint32_t tmp;
tmp = readl(NFC_V3_IPC);
if (!(tmp & NFC_V3_IPC_INT))
return 0;
tmp &= ~NFC_V3_IPC_INT;
writel(tmp, NFC_V3_IPC);
return 1;
}
static int check_int_v1_v2(struct mxc_nand_host *host)
{
uint32_t tmp;
tmp = readw(NFC_V1_V2_CONFIG2);
if (!(tmp & NFC_V1_V2_CONFIG2_INT))
return 0;
if (!host->devtype_data->irqpending_quirk)
writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
return 1;
}
static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
{
uint16_t tmp;
tmp = readw(NFC_V1_V2_CONFIG1);
if (activate)
tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
else
tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
writew(tmp, NFC_V1_V2_CONFIG1);
}
static void irq_control_v3(struct mxc_nand_host *host, int activate)
{
uint32_t tmp;
tmp = readl(NFC_V3_CONFIG2);
if (activate)
tmp &= ~NFC_V3_CONFIG2_INT_MSK;
else
tmp |= NFC_V3_CONFIG2_INT_MSK;
writel(tmp, NFC_V3_CONFIG2);
}
static void irq_control(struct mxc_nand_host *host, int activate)
{
if (host->devtype_data->irqpending_quirk) {
if (activate)
enable_irq(host->irq);
else
disable_irq_nosync(host->irq);
} else {
host->devtype_data->irq_control(host, activate);
}
}
static u32 get_ecc_status_v1(struct mxc_nand_host *host)
{
return readw(NFC_V1_V2_ECC_STATUS_RESULT);
}
static u32 get_ecc_status_v2(struct mxc_nand_host *host)
{
return readl(NFC_V1_V2_ECC_STATUS_RESULT);
}
static u32 get_ecc_status_v3(struct mxc_nand_host *host)
{
return readl(NFC_V3_ECC_STATUS_RESULT);
}
static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
{
struct mxc_nand_host *host = dev_id;
if (!host->devtype_data->check_int(host))
return IRQ_NONE;
irq_control(host, 0);
complete(&host->op_completion);
return IRQ_HANDLED;
}
/* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit of config2 register.
*/
static int wait_op_done(struct mxc_nand_host *host, int useirq)
{
int ret = 0;
/*
* If operation is already complete, don't bother to setup an irq or a
* loop.
*/
if (host->devtype_data->check_int(host))
return 0;
if (useirq) {
unsigned long timeout;
reinit_completion(&host->op_completion);
irq_control(host, 1);
timeout = wait_for_completion_timeout(&host->op_completion, HZ);
if (!timeout && !host->devtype_data->check_int(host)) {
dev_dbg(host->dev, "timeout waiting for irq\n");
ret = -ETIMEDOUT;
}
} else {
int max_retries = 8000;
int done;
do {
udelay(1);
done = host->devtype_data->check_int(host);
if (done)
break;
} while (--max_retries);
if (!done) {
dev_dbg(host->dev, "timeout polling for completion\n");
ret = -ETIMEDOUT;
}
}
WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
return ret;
}
static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
/* fill command */
writel(cmd, NFC_V3_FLASH_CMD);
/* send out command */
writel(NFC_CMD, NFC_V3_LAUNCH);
/* Wait for operation to complete */
wait_op_done(host, useirq);
}
/* This function issues the specified command to the NAND device and
* waits for completion. */
static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
writew(cmd, NFC_V1_V2_FLASH_CMD);
writew(NFC_CMD, NFC_V1_V2_CONFIG2);
if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
int max_retries = 100;
/* Reset completion is indicated by NFC_CONFIG2 */
/* being set to 0 */
while (max_retries-- > 0) {
if (readw(NFC_V1_V2_CONFIG2) == 0) {
break;
}
udelay(1);
}
if (max_retries < 0)
pr_debug("%s: RESET failed\n", __func__);
} else {
/* Wait for operation to complete */
wait_op_done(host, useirq);
}
}
static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
{
/* fill address */
writel(addr, NFC_V3_FLASH_ADDR0);
/* send out address */
writel(NFC_ADDR, NFC_V3_LAUNCH);
wait_op_done(host, 0);
}
/* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command. */
static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
{
pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
writew(addr, NFC_V1_V2_FLASH_ADDR);
writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, islast);
}
static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint32_t tmp;
tmp = readl(NFC_V3_CONFIG1);
tmp &= ~(7 << 4);
writel(tmp, NFC_V3_CONFIG1);
/* transfer data from NFC ram to nand */
writel(ops, NFC_V3_LAUNCH);
wait_op_done(host, false);
}
static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
/* NANDFC buffer 0 is used for page read/write */
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
writew(ops, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
}
static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int bufs, i;
if (mtd->writesize > 512)
bufs = 4;
else
bufs = 1;
for (i = 0; i < bufs; i++) {
/* NANDFC buffer 0 is used for page read/write */
writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
writew(ops, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
}
}
static void send_read_id_v3(struct mxc_nand_host *host)
{
/* Read ID into main buffer */
writel(NFC_ID, NFC_V3_LAUNCH);
wait_op_done(host, true);
memcpy32_fromio(host->data_buf, host->main_area0, 16);
}
/* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id_v1_v2(struct mxc_nand_host *host)
{
/* NANDFC buffer 0 is used for device ID output */
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
writew(NFC_ID, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
memcpy32_fromio(host->data_buf, host->main_area0, 16);
}
static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
{
writew(NFC_STATUS, NFC_V3_LAUNCH);
wait_op_done(host, true);
return readl(NFC_V3_CONFIG1) >> 16;
}
/* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status. */
static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
{
void __iomem *main_buf = host->main_area0;
uint32_t store;
uint16_t ret;
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
/*
* The device status is stored in main_area0. To
* prevent corruption of the buffer save the value
* and restore it afterwards.
*/
store = readl(main_buf);
writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
wait_op_done(host, true);
ret = readw(main_buf);
writel(store, main_buf);
return ret;
}
/* This functions is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles R/B internally. Therefore, this function
* always returns status as ready.
*/
return 1;
}
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
/*
* If HW ECC is enabled, we turn it on during init. There is
* no need to enable again here.
*/
}
static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
/*
* 1-Bit errors are automatically corrected in HW. No need for
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
uint16_t ecc_status = get_ecc_status_v1(host);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
return -EBADMSG;
}
return 0;
}
static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
u32 ecc_stat, err;
int no_subpages = 1;
int ret = 0;
u8 ecc_bit_mask, err_limit;
ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
no_subpages = mtd->writesize >> 9;
ecc_stat = host->devtype_data->get_ecc_status(host);
do {
err = ecc_stat & ecc_bit_mask;
if (err > err_limit) {
printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
return -EBADMSG;
} else {
ret += err;
}
ecc_stat >>= 4;
} while (--no_subpages);
pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
return ret;
}
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
return 0;
}
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint8_t ret;
/* Check for status request */
if (host->status_request)
return host->devtype_data->get_dev_status(host) & 0xFF;
if (nand_chip->options & NAND_BUSWIDTH_16) {
/* only take the lower byte of each word */
ret = *(uint16_t *)(host->data_buf + host->buf_start);
host->buf_start += 2;
} else {
ret = *(uint8_t *)(host->data_buf + host->buf_start);
host->buf_start++;
}
pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
return ret;
}
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint16_t ret;
ret = *(uint16_t *)(host->data_buf + host->buf_start);
host->buf_start += 2;
return ret;
}
/* Write data of length len to buffer buf. The data to be
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
* Operation by the NFC, the data is written to NAND Flash */
static void mxc_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(host->data_buf + col, buf, n);
host->buf_start += n;
}
/* Read the data buffer from the NAND Flash. To read the data from NAND
* Flash first the data output cycle is initiated by the NFC, which copies
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
*/
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(buf, host->data_buf + col, n);
host->buf_start += n;
}
/* This function is used by upper layer for select and
* deselect of the NAND chip */
static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
if (chip == -1) {
/* Disable the NFC clock */
if (host->clk_act) {
clk_disable_unprepare(host->clk);
host->clk_act = 0;
}
return;
}
if (!host->clk_act) {
/* Enable the NFC clock */
clk_prepare_enable(host->clk);
host->clk_act = 1;
}
}
static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
if (chip == -1) {
/* Disable the NFC clock */
if (host->clk_act) {
clk_disable_unprepare(host->clk);
host->clk_act = 0;
}
return;
}
if (!host->clk_act) {
/* Enable the NFC clock */
clk_prepare_enable(host->clk);
host->clk_act = 1;
}
host->active_cs = chip;
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
}
/*
* The controller splits a page into data chunks of 512 bytes + partial oob.
* There are writesize / 512 such chunks, the size of the partial oob parts is
* oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
* contains additionally the byte lost by rounding (if any).
* This function handles the needed shuffling between host->data_buf (which
* holds a page in natural order, i.e. writesize bytes data + oobsize bytes
* spare) and the NFC buffer.
*/
static void copy_spare(struct mtd_info *mtd, bool bfrom)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(this);
u16 i, oob_chunk_size;
u16 num_chunks = mtd->writesize / 512;
u8 *d = host->data_buf + mtd->writesize;
u8 __iomem *s = host->spare0;
u16 sparebuf_size = host->devtype_data->spare_len;
/* size of oob chunk for all but possibly the last one */
oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
if (bfrom) {
for (i = 0; i < num_chunks - 1; i++)
memcpy16_fromio(d + i * oob_chunk_size,
s + i * sparebuf_size,
oob_chunk_size);
/* the last chunk */
memcpy16_fromio(d + i * oob_chunk_size,
s + i * sparebuf_size,
host->used_oobsize - i * oob_chunk_size);
} else {
for (i = 0; i < num_chunks - 1; i++)
memcpy16_toio(&s[i * sparebuf_size],
&d[i * oob_chunk_size],
oob_chunk_size);
/* the last chunk */
memcpy16_toio(&s[i * sparebuf_size],
&d[i * oob_chunk_size],
host->used_oobsize - i * oob_chunk_size);
}
}
/*
* MXC NANDFC can only perform full page+spare or spare-only read/write. When
* the upper layers perform a read/write buf operation, the saved column address
* is used to index into the full page. So usually this function is called with
* column == 0 (unless no column cycle is needed indicated by column == -1)
*/
static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
/* Write out column address, if necessary */
if (column != -1) {
host->devtype_data->send_addr(host, column & 0xff,
page_addr == -1);
if (mtd->writesize > 512)
/* another col addr cycle for 2k page */
host->devtype_data->send_addr(host,
(column >> 8) & 0xff,
false);
}
/* Write out page address, if necessary */
if (page_addr != -1) {
/* paddr_0 - p_addr_7 */
host->devtype_data->send_addr(host, (page_addr & 0xff), false);
if (mtd->writesize > 512) {
if (mtd->size >= 0x10000000) {
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff,
false);
host->devtype_data->send_addr(host,
(page_addr >> 16) & 0xff,
true);
} else
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff, true);
} else {
/* One more address cycle for higher density devices */
if (mtd->size >= 0x4000000) {
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff,
false);
host->devtype_data->send_addr(host,
(page_addr >> 16) & 0xff,
true);
} else
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff, true);
}
}
}
static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
if (section >= nand_chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * 16) + 6;
oobregion->length = nand_chip->ecc.bytes;
return 0;
}
static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
if (section > nand_chip->ecc.steps)
return -ERANGE;
if (!section) {
if (mtd->writesize <= 512) {
oobregion->offset = 0;
oobregion->length = 5;
} else {
oobregion->offset = 2;
oobregion->length = 4;
}
} else {
oobregion->offset = ((section - 1) * 16) +
nand_chip->ecc.bytes + 6;
if (section < nand_chip->ecc.steps)
oobregion->length = (section * 16) + 6 -
oobregion->offset;
else
oobregion->length = mtd->oobsize - oobregion->offset;
}
return 0;
}
static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
.ecc = mxc_v1_ooblayout_ecc,
.free = mxc_v1_ooblayout_free,
};
static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
if (section >= nand_chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * stepsize) + 7;
oobregion->length = nand_chip->ecc.bytes;
return 0;
}
static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
if (section >= nand_chip->ecc.steps)
return -ERANGE;
if (!section) {
if (mtd->writesize <= 512) {
oobregion->offset = 0;
oobregion->length = 5;
} else {
oobregion->offset = 2;
oobregion->length = 4;
}
} else {
oobregion->offset = section * stepsize;
oobregion->length = 7;
}
return 0;
}
static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
.ecc = mxc_v2_ooblayout_ecc,
.free = mxc_v2_ooblayout_free,
};
/*
* v2 and v3 type controllers can do 4bit or 8bit ecc depending
* on how much oob the nand chip has. For 8bit ecc we need at least
* 26 bytes of oob data per 512 byte block.
*/
static int get_eccsize(struct mtd_info *mtd)
{
int oobbytes_per_512 = 0;
oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
if (oobbytes_per_512 < 26)
return 4;
else
return 8;
}
static void preset_v1(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint16_t config1 = 0;
if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
if (!host->devtype_data->irqpending_quirk)
config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
host->eccsize = 1;
writew(config1, NFC_V1_V2_CONFIG1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, NFC_V1_V2_CONFIG);
/* Blocks to be unlocked */
writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
/* Unlock Block Command for given address range */
writew(0x4, NFC_V1_V2_WRPROT);
}
static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd,
const struct nand_data_interface *conf,
bool check_only)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int tRC_min_ns, tRC_ps, ret;
unsigned long rate, rate_round;
const struct nand_sdr_timings *timings;
u16 config1;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return -ENOTSUPP;
config1 = readw(NFC_V1_V2_CONFIG1);
tRC_min_ns = timings->tRC_min / 1000;
rate = 1000000000 / tRC_min_ns;
/*
* For tRC < 30ns we have to use EDO mode. In this case the controller
* does one access per clock cycle. Otherwise the controller does one
* access in two clock cycles, thus we have to double the rate to the
* controller.
*/
if (tRC_min_ns < 30) {
rate_round = clk_round_rate(host->clk, rate);
config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
tRC_ps = 1000000000 / (rate_round / 1000);
} else {
rate *= 2;
rate_round = clk_round_rate(host->clk, rate);
config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
tRC_ps = 1000000000 / (rate_round / 1000 / 2);
}
/*
* The timing values compared against are from the i.MX25 Automotive
* datasheet, Table 50. NFC Timing Parameters
*/
if (timings->tCLS_min > tRC_ps - 1000 ||
timings->tCLH_min > tRC_ps - 2000 ||
timings->tCS_min > tRC_ps - 1000 ||
timings->tCH_min > tRC_ps - 2000 ||
timings->tWP_min > tRC_ps - 1500 ||
timings->tALS_min > tRC_ps ||
timings->tALH_min > tRC_ps - 3000 ||
timings->tDS_min > tRC_ps ||
timings->tDH_min > tRC_ps - 5000 ||
timings->tWC_min > 2 * tRC_ps ||
timings->tWH_min > tRC_ps - 2500 ||
timings->tRR_min > 6 * tRC_ps ||
timings->tRP_min > 3 * tRC_ps / 2 ||
timings->tRC_min > 2 * tRC_ps ||
timings->tREH_min > (tRC_ps / 2) - 2500) {
dev_dbg(host->dev, "Timing out of bounds\n");
return -EINVAL;
}
if (check_only)
return 0;
ret = clk_set_rate(host->clk, rate);
if (ret)
return ret;
writew(config1, NFC_V1_V2_CONFIG1);
dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
"normal");
return 0;
}
static void preset_v2(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint16_t config1 = 0;
config1 |= NFC_V2_CONFIG1_FP_INT;
if (!host->devtype_data->irqpending_quirk)
config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
if (mtd->writesize) {
uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
if (nand_chip->ecc.mode == NAND_ECC_HW)
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
host->eccsize = get_eccsize(mtd);
if (host->eccsize == 4)
config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
} else {
host->eccsize = 1;
}
writew(config1, NFC_V1_V2_CONFIG1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, NFC_V1_V2_CONFIG);
/* Blocks to be unlocked */
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
/* Unlock Block Command for given address range */
writew(0x4, NFC_V1_V2_WRPROT);
}
static void preset_v3(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(chip);
uint32_t config2, config3;
int i, addr_phases;
writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
/* Unlock the internal RAM Buffer */
writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
NFC_V3_WRPROT);
/* Blocks to be unlocked */
for (i = 0; i < NAND_MAX_CHIPS; i++)
writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
writel(0, NFC_V3_IPC);
config2 = NFC_V3_CONFIG2_ONE_CYCLE |
NFC_V3_CONFIG2_2CMD_PHASES |
NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
NFC_V3_CONFIG2_ST_CMD(0x70) |
NFC_V3_CONFIG2_INT_MSK |
NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
addr_phases = fls(chip->pagemask) >> 3;
if (mtd->writesize == 2048) {
config2 |= NFC_V3_CONFIG2_PS_2048;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
} else if (mtd->writesize == 4096) {
config2 |= NFC_V3_CONFIG2_PS_4096;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
} else {
config2 |= NFC_V3_CONFIG2_PS_512;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
}
if (mtd->writesize) {
if (chip->ecc.mode == NAND_ECC_HW)
config2 |= NFC_V3_CONFIG2_ECC_EN;
config2 |= NFC_V3_CONFIG2_PPB(
ffs(mtd->erasesize / mtd->writesize) - 6,
host->devtype_data->ppb_shift);
host->eccsize = get_eccsize(mtd);
if (host->eccsize == 8)
config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
}
writel(config2, NFC_V3_CONFIG2);
config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
NFC_V3_CONFIG3_NO_SDMA |
NFC_V3_CONFIG3_RBB_MODE |
NFC_V3_CONFIG3_SBB(6) | /* Reset default */
NFC_V3_CONFIG3_ADD_OP(0);
if (!(chip->options & NAND_BUSWIDTH_16))
config3 |= NFC_V3_CONFIG3_FW8;
writel(config3, NFC_V3_CONFIG3);
writel(0, NFC_V3_DELAY_LINE);
}
/* Used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash */
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/* Reset command state information */
host->status_request = false;
/* Command pre-processing step */
switch (command) {
case NAND_CMD_RESET:
host->devtype_data->preset(mtd);
host->devtype_data->send_cmd(host, command, false);
break;
case NAND_CMD_STATUS:
host->buf_start = 0;
host->status_request = true;
host->devtype_data->send_cmd(host, command, true);
WARN_ONCE(column != -1 || page_addr != -1,
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
command, column, page_addr);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
if (command == NAND_CMD_READ0)
host->buf_start = column;
else
host->buf_start = column + mtd->writesize;
command = NAND_CMD_READ0; /* only READ0 is valid */
host->devtype_data->send_cmd(host, command, false);
WARN_ONCE(column < 0,
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
command, column, page_addr);
mxc_do_addr_cycle(mtd, 0, page_addr);
if (mtd->writesize > 512)
host->devtype_data->send_cmd(host,
NAND_CMD_READSTART, true);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
memcpy32_fromio(host->data_buf, host->main_area0,
mtd->writesize);
copy_spare(mtd, true);
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize)
/* call ourself to read a page */
mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
host->buf_start = column;
host->devtype_data->send_cmd(host, command, false);
WARN_ONCE(column < -1,
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
command, column, page_addr);
mxc_do_addr_cycle(mtd, 0, page_addr);
break;
case NAND_CMD_PAGEPROG:
memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
copy_spare(mtd, false);
host->devtype_data->send_page(mtd, NFC_INPUT);
host->devtype_data->send_cmd(host, command, true);
WARN_ONCE(column != -1 || page_addr != -1,
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
command, column, page_addr);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READID:
host->devtype_data->send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
host->devtype_data->send_read_id(host);
host->buf_start = 0;
break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
host->devtype_data->send_cmd(host, command, false);
WARN_ONCE(column != -1,
"Unexpected column value (cmd=%u, col=%d)\n",
command, column);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_PARAM:
host->devtype_data->send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
memcpy32_fromio(host->data_buf, host->main_area0, 512);
host->buf_start = 0;
break;
default:
WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
command);
break;
}
}
static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
struct nand_chip *chip, int addr,
u8 *subfeature_param)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int i;
if (!chip->onfi_version ||
!(le16_to_cpu(chip->onfi_params.opt_cmd)
& ONFI_OPT_CMD_SET_GET_FEATURES))
return -EINVAL;
host->buf_start = 0;
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
chip->write_byte(mtd, subfeature_param[i]);
memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
mxc_do_addr_cycle(mtd, addr, -1);
host->devtype_data->send_page(mtd, NFC_INPUT);
return 0;
}
static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
struct nand_chip *chip, int addr,
u8 *subfeature_param)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int i;
if (!chip->onfi_version ||
!(le16_to_cpu(chip->onfi_params.opt_cmd)
& ONFI_OPT_CMD_SET_GET_FEATURES))
return -EINVAL;
host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
mxc_do_addr_cycle(mtd, addr, -1);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
memcpy32_fromio(host->data_buf, host->main_area0, 512);
host->buf_start = 0;
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
*subfeature_param++ = chip->read_byte(mtd);
return 0;
}
/*
* The generic flash bbt decriptors overlap with our ecc
* hardware, so define some i.MX specific ones.
*/
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/* v1 + irqpending_quirk: i.MX21 */
static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
.preset = preset_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
.send_read_id = send_read_id_v1_v2,
.get_dev_status = get_dev_status_v1_v2,
.check_int = check_int_v1_v2,
.irq_control = irq_control_v1_v2,
.get_ecc_status = get_ecc_status_v1,
.ooblayout = &mxc_v1_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
.correct_data = mxc_nand_correct_data_v1,
.irqpending_quirk = 1,
.needs_ip = 0,
.regs_offset = 0xe00,
.spare0_offset = 0x800,
.spare_len = 16,
.eccbytes = 3,
.eccsize = 1,
};
/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
.preset = preset_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
.send_read_id = send_read_id_v1_v2,
.get_dev_status = get_dev_status_v1_v2,
.check_int = check_int_v1_v2,
.irq_control = irq_control_v1_v2,
.get_ecc_status = get_ecc_status_v1,
.ooblayout = &mxc_v1_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
.correct_data = mxc_nand_correct_data_v1,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0xe00,
.spare0_offset = 0x800,
.axi_offset = 0,
.spare_len = 16,
.eccbytes = 3,
.eccsize = 1,
};
/* v21: i.MX25, i.MX35 */
static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
.preset = preset_v2,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v2,
.send_read_id = send_read_id_v1_v2,
.get_dev_status = get_dev_status_v1_v2,
.check_int = check_int_v1_v2,
.irq_control = irq_control_v1_v2,
.get_ecc_status = get_ecc_status_v2,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v2,
.correct_data = mxc_nand_correct_data_v2_v3,
.setup_data_interface = mxc_nand_v2_setup_data_interface,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0x1e00,
.spare0_offset = 0x1000,
.axi_offset = 0,
.spare_len = 64,
.eccbytes = 9,
.eccsize = 0,
};
/* v3.2a: i.MX51 */
static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
.preset = preset_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
.send_read_id = send_read_id_v3,
.get_dev_status = get_dev_status_v3,
.check_int = check_int_v3,
.irq_control = irq_control_v3,
.get_ecc_status = get_ecc_status_v3,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
.correct_data = mxc_nand_correct_data_v2_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
.spare0_offset = 0x1000,
.axi_offset = 0x1e00,
.spare_len = 64,
.eccbytes = 0,
.eccsize = 0,
.ppb_shift = 7,
};
/* v3.2b: i.MX53 */
static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
.preset = preset_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
.send_read_id = send_read_id_v3,
.get_dev_status = get_dev_status_v3,
.check_int = check_int_v3,
.irq_control = irq_control_v3,
.get_ecc_status = get_ecc_status_v3,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
.correct_data = mxc_nand_correct_data_v2_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
.spare0_offset = 0x1000,
.axi_offset = 0x1e00,
.spare_len = 64,
.eccbytes = 0,
.eccsize = 0,
.ppb_shift = 8,
};
static inline int is_imx21_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx21_nand_devtype_data;
}
static inline int is_imx27_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx27_nand_devtype_data;
}
static inline int is_imx25_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx25_nand_devtype_data;
}
static inline int is_imx51_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx51_nand_devtype_data;
}
static inline int is_imx53_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx53_nand_devtype_data;
}
static const struct platform_device_id mxcnd_devtype[] = {
{
.name = "imx21-nand",
.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
}, {
.name = "imx27-nand",
.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
}, {
.name = "imx25-nand",
.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
}, {
.name = "imx51-nand",
.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
}, {
.name = "imx53-nand",
.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
#ifdef CONFIG_OF
static const struct of_device_id mxcnd_dt_ids[] = {
{
.compatible = "fsl,imx21-nand",
.data = &imx21_nand_devtype_data,
}, {
.compatible = "fsl,imx27-nand",
.data = &imx27_nand_devtype_data,
}, {
.compatible = "fsl,imx25-nand",
.data = &imx25_nand_devtype_data,
}, {
.compatible = "fsl,imx51-nand",
.data = &imx51_nand_devtype_data,
}, {
.compatible = "fsl,imx53-nand",
.data = &imx53_nand_devtype_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
{
struct device_node *np = host->dev->of_node;
const struct of_device_id *of_id =
of_match_device(mxcnd_dt_ids, host->dev);
if (!np)
return 1;
host->devtype_data = of_id->data;
return 0;
}
#else
static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
{
return 1;
}
#endif
static int mxcnd_probe(struct platform_device *pdev)
{
struct nand_chip *this;
struct mtd_info *mtd;
struct mxc_nand_host *host;
struct resource *res;
int err = 0;
/* Allocate memory for MTD device structure and private data */
host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
GFP_KERNEL);
if (!host)
return -ENOMEM;
/* allocate a temporary buffer for the nand_scan_ident() */
host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
if (!host->data_buf)
return -ENOMEM;
host->dev = &pdev->dev;
/* structures must be linked */
this = &host->nand;
mtd = nand_to_mtd(this);
mtd->dev.parent = &pdev->dev;
mtd->name = DRIVER_NAME;
/* 50 us command delay time */
this->chip_delay = 5;
nand_set_controller_data(this, host);
nand_set_flash_node(this, pdev->dev.of_node),
this->dev_ready = mxc_nand_dev_ready;
this->cmdfunc = mxc_nand_command;
this->read_byte = mxc_nand_read_byte;
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
this->onfi_set_features = mxc_nand_onfi_set_features;
this->onfi_get_features = mxc_nand_onfi_get_features;
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk))
return PTR_ERR(host->clk);
err = mxcnd_probe_dt(host);
if (err > 0) {
struct mxc_nand_platform_data *pdata =
dev_get_platdata(&pdev->dev);
if (pdata) {
host->pdata = *pdata;
host->devtype_data = (struct mxc_nand_devtype_data *)
pdev->id_entry->driver_data;
} else {
err = -ENODEV;
}
}
if (err < 0)
return err;
this->setup_data_interface = host->devtype_data->setup_data_interface;
if (host->devtype_data->needs_ip) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->regs_ip))
return PTR_ERR(host->regs_ip);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
} else {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
}
host->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->base))
return PTR_ERR(host->base);
host->main_area0 = host->base;
if (host->devtype_data->regs_offset)
host->regs = host->base + host->devtype_data->regs_offset;
host->spare0 = host->base + host->devtype_data->spare0_offset;
if (host->devtype_data->axi_offset)
host->regs_axi = host->base + host->devtype_data->axi_offset;
this->ecc.bytes = host->devtype_data->eccbytes;
host->eccsize = host->devtype_data->eccsize;
this->select_chip = host->devtype_data->select_chip;
this->ecc.size = 512;
mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
if (host->pdata.hw_ecc) {
this->ecc.mode = NAND_ECC_HW;
} else {
this->ecc.mode = NAND_ECC_SOFT;
this->ecc.algo = NAND_ECC_HAMMING;
}
/* NAND bus width determines access functions used by upper layer */
if (host->pdata.width == 2)
this->options |= NAND_BUSWIDTH_16;
/* update flash based bbt */
if (host->pdata.flash_bbt)
this->bbt_options |= NAND_BBT_USE_FLASH;
init_completion(&host->op_completion);
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0)
return host->irq;
/*
* Use host->devtype_data->irq_control() here instead of irq_control()
* because we must not disable_irq_nosync without having requested the
* irq.
*/
host->devtype_data->irq_control(host, 0);
err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
0, DRIVER_NAME, host);
if (err)
return err;
err = clk_prepare_enable(host->clk);
if (err)
return err;
host->clk_act = 1;
/*
* Now that we "own" the interrupt make sure the interrupt mask bit is
* cleared on i.MX21. Otherwise we can't read the interrupt status bit
* on this machine.
*/
if (host->devtype_data->irqpending_quirk) {
disable_irq_nosync(host->irq);
host->devtype_data->irq_control(host, 1);
}
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
err = -ENXIO;
goto escan;
}
switch (this->ecc.mode) {
case NAND_ECC_HW:
this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc;
this->ecc.correct = host->devtype_data->correct_data;
break;
case NAND_ECC_SOFT:
break;
default:
err = -EINVAL;
goto escan;
}
if (this->bbt_options & NAND_BBT_USE_FLASH) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
}
/* allocate the right size buffer now */
devm_kfree(&pdev->dev, (void *)host->data_buf);
host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
GFP_KERNEL);
if (!host->data_buf) {
err = -ENOMEM;
goto escan;
}
/* Call preset again, with correct writesize this time */
host->devtype_data->preset(mtd);
if (!this->ecc.bytes) {
if (host->eccsize == 8)
this->ecc.bytes = 18;
else if (host->eccsize == 4)
this->ecc.bytes = 9;
}
/*
* Experimentation shows that i.MX NFC can only handle up to 218 oob
* bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
* into copying invalid data to/from the spare IO buffer, as this
* might cause ECC data corruption when doing sub-page write to a
* partially written page.
*/
host->used_oobsize = min(mtd->oobsize, 218U);
if (this->ecc.mode == NAND_ECC_HW) {
if (is_imx21_nfc(host) || is_imx27_nfc(host))
this->ecc.strength = 1;
else
this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
}
/* second phase scan */
if (nand_scan_tail(mtd)) {
err = -ENXIO;
goto escan;
}
/* Register the partitions */
mtd_device_parse_register(mtd, part_probes,
NULL,
host->pdata.parts,
host->pdata.nr_parts);
platform_set_drvdata(pdev, host);
return 0;
escan:
if (host->clk_act)
clk_disable_unprepare(host->clk);
return err;
}
static int mxcnd_remove(struct platform_device *pdev)
{
struct mxc_nand_host *host = platform_get_drvdata(pdev);
nand_release(nand_to_mtd(&host->nand));
if (host->clk_act)
clk_disable_unprepare(host->clk);
return 0;
}
static struct platform_driver mxcnd_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(mxcnd_dt_ids),
},
.id_table = mxcnd_devtype,
.probe = mxcnd_probe,
.remove = mxcnd_remove,
};
module_platform_driver(mxcnd_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MXC NAND MTD driver");
MODULE_LICENSE("GPL");
|