1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* This file provides ECC correction for more than 1 bit per block of data,
* using binary BCH codes. It relies on the generic BCH library lib/bch.c.
*
* Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com>
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand-ecc-sw-bch.h>
#include <linux/bch.h>
/**
* struct nand_bch_control - private NAND BCH control structure
* @bch: BCH control structure
* @errloc: error location array
* @eccmask: XOR ecc mask, allows erased pages to be decoded as valid
*/
struct nand_bch_control {
struct bch_control *bch;
unsigned int *errloc;
unsigned char *eccmask;
};
/**
* nand_ecc_sw_bch_calculate - Calculate the ECC corresponding to a data block
* @nand: NAND device
* @buf: Input buffer with raw data
* @code: Output buffer with ECC
*/
int nand_ecc_sw_bch_calculate(struct nand_device *nand,
const unsigned char *buf, unsigned char *code)
{
struct nand_chip *chip = mtd_to_nand(nanddev_to_mtd(nand));
struct nand_bch_control *nbc = chip->ecc.priv;
unsigned int i;
memset(code, 0, chip->ecc.bytes);
bch_encode(nbc->bch, buf, chip->ecc.size, code);
/* apply mask so that an erased page is a valid codeword */
for (i = 0; i < chip->ecc.bytes; i++)
code[i] ^= nbc->eccmask[i];
return 0;
}
EXPORT_SYMBOL(nand_ecc_sw_bch_calculate);
/**
* nand_ecc_sw_bch_correct - Detect, correct and report bit error(s)
* @nand: NAND device
* @buf: Raw data read from the chip
* @read_ecc: ECC bytes from the chip
* @calc_ecc: ECC calculated from the raw data
*
* Detect and correct bit errors for a data block.
*/
int nand_ecc_sw_bch_correct(struct nand_device *nand, unsigned char *buf,
unsigned char *read_ecc, unsigned char *calc_ecc)
{
struct nand_chip *chip = mtd_to_nand(nanddev_to_mtd(nand));
struct nand_bch_control *nbc = chip->ecc.priv;
unsigned int *errloc = nbc->errloc;
int i, count;
count = bch_decode(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc,
NULL, errloc);
if (count > 0) {
for (i = 0; i < count; i++) {
if (errloc[i] < (chip->ecc.size * 8))
/* The error is in the data area: correct it */
buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7));
/* Otherwise the error is in the ECC area: nothing to do */
pr_debug("%s: corrected bitflip %u\n", __func__,
errloc[i]);
}
} else if (count < 0) {
pr_err("ECC unrecoverable error\n");
count = -EBADMSG;
}
return count;
}
EXPORT_SYMBOL(nand_ecc_sw_bch_correct);
/**
* nand_ecc_sw_bch_init - Initialize software BCH ECC engine
* @nand: NAND device
*
* Returns: a pointer to a new NAND BCH control structure, or NULL upon failure
*
* Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes
* are used to compute the following BCH parameters:
* m, the Galois field order
* t, the error correction capability
* @eccbytes should be equal to the number of bytes required to store m * t
* bits, where m is such that 2^m - 1 > step_size * 8.
*
* Example: to configure 4 bit correction per 512 bytes, you should pass
* @eccsize = 512 (thus, m = 13 is the smallest integer such that 2^m - 1 > 512 * 8)
* @eccbytes = 7 (7 bytes are required to store m * t = 13 * 4 = 52 bits)
*/
int nand_ecc_sw_bch_init(struct nand_device *nand)
{
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct nand_chip *chip = mtd_to_nand(mtd);
unsigned int m, t, eccsteps, i;
struct nand_bch_control *nbc = NULL;
unsigned char *erased_page;
unsigned int eccsize = chip->ecc.size;
unsigned int eccbytes = chip->ecc.bytes;
unsigned int eccstrength = chip->ecc.strength;
if (!eccbytes && eccstrength) {
eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8);
chip->ecc.bytes = eccbytes;
}
if (!eccsize || !eccbytes) {
pr_warn("ecc parameters not supplied\n");
return -EINVAL;
}
m = fls(1+8*eccsize);
t = (eccbytes*8)/m;
nbc = kzalloc(sizeof(*nbc), GFP_KERNEL);
if (!nbc)
return -ENOMEM;
chip->ecc.priv = nbc;
nbc->bch = bch_init(m, t, 0, false);
if (!nbc->bch)
goto fail;
/* verify that eccbytes has the expected value */
if (nbc->bch->ecc_bytes != eccbytes) {
pr_warn("invalid eccbytes %u, should be %u\n",
eccbytes, nbc->bch->ecc_bytes);
goto fail;
}
eccsteps = mtd->writesize/eccsize;
/* Check that we have an oob layout description. */
if (!mtd->ooblayout) {
pr_warn("missing oob scheme");
goto fail;
}
/* sanity checks */
if (8*(eccsize+eccbytes) >= (1 << m)) {
pr_warn("eccsize %u is too large\n", eccsize);
goto fail;
}
/*
* ecc->steps and ecc->total might be used by mtd->ooblayout->ecc(),
* which is called by mtd_ooblayout_count_eccbytes().
* Make sure they are properly initialized before calling
* mtd_ooblayout_count_eccbytes().
* FIXME: we should probably rework the sequencing in nand_scan_tail()
* to avoid setting those fields twice.
*/
chip->ecc.steps = eccsteps;
chip->ecc.total = eccsteps * eccbytes;
nand->base.ecc.ctx.total = chip->ecc.total;
if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) {
pr_warn("invalid ecc layout\n");
goto fail;
}
nbc->eccmask = kzalloc(eccbytes, GFP_KERNEL);
nbc->errloc = kmalloc_array(t, sizeof(*nbc->errloc), GFP_KERNEL);
if (!nbc->eccmask || !nbc->errloc)
goto fail;
/*
* compute and store the inverted ecc of an erased ecc block
*/
erased_page = kmalloc(eccsize, GFP_KERNEL);
if (!erased_page)
goto fail;
memset(erased_page, 0xff, eccsize);
bch_encode(nbc->bch, erased_page, eccsize, nbc->eccmask);
kfree(erased_page);
for (i = 0; i < eccbytes; i++)
nbc->eccmask[i] ^= 0xff;
if (!eccstrength)
chip->ecc.strength = (eccbytes * 8) / fls(8 * eccsize);
return 0;
fail:
nand_ecc_sw_bch_cleanup(nand);
return -EINVAL;
}
EXPORT_SYMBOL(nand_ecc_sw_bch_init);
/**
* nand_ecc_sw_bch_cleanup - Cleanup software BCH ECC resources
* @nand: NAND device
*/
void nand_ecc_sw_bch_cleanup(struct nand_device *nand)
{
struct nand_chip *chip = mtd_to_nand(nanddev_to_mtd(nand));
struct nand_bch_control *nbc = chip->ecc.priv;
if (nbc) {
bch_free(nbc->bch);
kfree(nbc->errloc);
kfree(nbc->eccmask);
kfree(nbc);
}
}
EXPORT_SYMBOL(nand_ecc_sw_bch_cleanup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
MODULE_DESCRIPTION("NAND software BCH ECC support");
|